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ABSTRACT

Nuclear power plants (NPPs) face significant financial pres-
sures due to operational and maintenance costs. This research
investigates Fault Detection and Diagnostics (FDD) techniques
to optimize maintenance schedules and reduce expenses. The
NPP condenser plays a critical role in converting turbine ex-
haust steam back into water for reuse. Condenser tube foul-
ing, a prevalent fault mode, impedes heat transfer efficiency
and can lead to decreased plant efficiency and safety risks.
This study proposes an FDD framework that leverages raw
signal analyses from temperature and pressure monitoring to
detect and diagnose condenser tube fouling in both online and
offline settings. The online approach facilitates close-to-real-
time predictions, enabling proactive maintenance strategies.
Additionally, the framework explores incorporating a con-
denser’s maintenance history for enhanced diagnostics. We
employ a dataset obtained from a simulated nuclear power
plant condenser using the Asherah Nuclear Power Plant Sim-
ulator (ANS). ANS replicates the operational dynamics of
a pressurized water reactor (PWR) type NPP. The proposed
methodology utilizes an encoder-decoder (E-D) structured 1D-
CNN model to analyze the raw signals. The research demon-
strates consistent and accurate fault detection and diagnostics
for condenser tube fouling in both online and offline scenar-
ios. A high potential for generalization to unseen conditions
was observed. However, online detection using small data
windows necessitates caution due to potential false alarms
around the transition points. Our findings pave the way for
further exploration of robust diagnostics by accommodating
a wider spectrum of fouling rates within degradation classes
using ANS. This combined online and offline FDD approach
offers a promising solution for promoting operational safety,
efficiency, and cost-effectiveness in NPP condensers.

Ark Ifeanyi et al. This is an open-access article distributed under the terms of
the Creative Commons Attribution 3.0 United States License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

1. INTRODUCTION

Fault detection and diagnostics (FDD) are critical compo-
nents of ensuring the safe and efficient operation of complex
systems (Abid et al., 2021). FDD involves the continuous
monitoring and analysis of system parameters to identify de-
viations from normal operating conditions, pinpoint potential
faults, and diagnose their root causes (Ifeanyi, Dos Santos,
et al., 2024). By enabling proactive maintenance and mini-
mizing downtime, FDD plays a pivotal role in enhancing the
reliability and performance of energy systems (Ma & Jiang,
2011).

In the context of a nuclear power plant (NPP), the associated
operational and maintenance expenses represent a significant
financial burden. Even with extended operating licenses, re-
actors are being decommissioned due to their lack of compet-
itiveness against alternative energy sources, leading to early
closures despite their strong safety track record (Walker et
al., 2021). Thus, it is crucial to implement cost-saving mea-
sures to avert these premature shutdowns. The NPP con-
denser stands out as a key component where the implemen-
tation of FDD holds significant implications. The condenser
serves the vital function of converting the steam exiting the
turbine into water for reuse in the steam cycle (Attia, 2015).
Any faults or inefficiencies in the condenser can have cascad-
ing effects on the entire power generation process, leading
to decreased efficiency, increased operational costs, and po-
tential safety risks (Webb, 2011a). One prevalent fault mode
in condenser systems is condenser tube fouling, which oc-
curs when contaminants such as dirt, debris, or biological
growth accumulate on the inner surfaces of the condenser
tubes. Fouling impedes heat transfer efficiency, reducing con-
denser performance and potentially leading to increased tur-
bine backpressure and reduced plant efficiency (Ibrahim &
Attia, 2015).

The objectives of this research include leveraging raw signal
analyses to detect and diagnose faults in the condenser, with a
focus on making close to real-time predictions. Additionally,
this research will investigate the potential of incorporating
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a condenser’s maintenance history into the FDD framework.
By leveraging past cleaning and repair records, the system’s
diagnostic capabilities could be further enhanced.

The implementation of both online and offline FDD method-
ologies offers significant advantages. Online FDD provides
continuous monitoring, enabling early detection of faults and
facilitating prompt corrective actions. Offline FDD, through
periodic in-depth analyses, offers a more comprehensive un-
derstanding of the condenser’s health and aids in long-term
performance optimization. This combined approach ensures
a robust FDD system for the NPP condenser, promoting op-
erational safety, efficiency, and cost-effectiveness.

The dataset used in this research was obtained from mon-
itoring the temperature and pressure in the condenser of a
simulated NPP. The simulation tool used is the Asherah Nu-
clear Power Plant Simulator (ANS). ANS is a specialized
simulation tool originally developed for conducting cyberse-
curity evaluations within nuclear power plants. ANS accu-
rately replicates the operational dynamics of a two-loop 2,772
MWt pressurized water reactor (PWR), encompassing pri-
mary, secondary, and tertiary loops alongside the control sys-
tem. Developed using MATLAB/SIMULINK, ANS employs
straightforward dynamic models for all components and sys-
tems (R. Silva et al., 2020; Hahn et al., 2021). Since ANS rea-
sonably models the physical and operational characteristics
of a specific NPP, it could potentially be used to run scenarios
that might reveal underlying performance issues that are not
immediately apparent due to the aggressive nature of routine
NPP inspection and maintenance. By adjusting parameters
and introducing fault modes, one could observe how the sim-
ulated plant reacts and identify any unexpected behaviors or
performance degradations. We have customized ANS with
specific modifications incorporated to assess the FDD capa-
bilities of our proposed methodology, as detailed in sections
2 and 4.

Through a comprehensive analysis of raw signal data with
different maintenance records, we aim to enhance the relia-
bility and efficiency of condenser operation, contributing to
the overall safety and performance of nuclear power gener-
ation. The rest of this paper presents a review of previous
relevant research to underscore the contribution of this pa-
per (section 2), and thoroughly describes the dataset utilized
(section 3). Section 4 elucidates the methodologies adopted
to accomplish the research objectives. The results of these
methodologies and their implications are discussed in section
5, followed by a summary of the study and suggestions for
future research in section 6.

2. BACKGROUND AND LITERATURE REVIEW

FDD is a common practice in various engineering fields in-
cluding but not limited to building constructions (Shi & O’Brien,
2019), industrial machines and processes (Park et al., 2020),

HVAC systems (Z. Chen et al., 2023), aviation (Basora et al.,
2019), and energy (Shah, 2011). Across these fields, many
methods have been developed for FDD over the years with
preferences given to certain methods in some fields. In fields
like the manufacturing industry, aviation, and energy where
sensors are common or even required components for pro-
cess monitoring and safety purposes, the abundance of data
from these sensors has led to serious investigations into data-
driven FDD methods. Some of these data-driven methods are
purely statistical while others are Fuzzy logic-based, learned
classification-based, clustering-based, and nearest neighbor-
based (Chandola & Banerjee, n.d.). In this work, a direct clas-
sification learned from samples was preferred for its straight-
forward application and reduced requirement of expert knowl-
edge.

In this study, we employ a purposefully structured Encoder-
Decoder deep learning classification model (see section 4.3)
for FDD. Deep learning models offer the distinct advantage of
uncovering complex relationships without necessitating ex-
plicit feature engineering (Ahmed et al., 2023). Specifically,
1-dimensional convolutional neural network (1D-CNN) clas-
sifiers replaced conventional fully connected layer-based clas-
sifiers to preserve temporal relationships within the input data.
This approach’s ability to concurrently capture temporal de-
pendencies of individual sensor variables and nonlinear cor-
relations across multiple sensor variables is a key strength
(Ifeanyi, Coble, & Saxena, 2024).

In the nuclear sector, aging plants face a variety of common
potential faults. These include degradation in instruments’
steady-state performance, such as sensor drift, as well as plant
transients from events like control rod ejection. Anomalies
in the reactor core, such as undesirable power distribution,
and loose parts in the reactor coolant system are also con-
cerns. Additionally, faults in equipment, like motor winding
faults, are among the challenges encountered (Ma & Jiang,
2011). Fault modes of particular interest include the loss of
cooling accident (LOCA), main steam line break, and steam
generator turbine rupture (Elshenawy et al., 2021). Detec-
tion methods for issues such as crack detection (F.-C. Chen
& Jahanshahi, 2017), pipe corrosion (Chae et al., 2020), sen-
sor faults (Yao et al., 2020), and cybersecurity threats (Vaddi
et al., 2020) are also highly studied. These faults can arise
from the failure of individual components or a combination
of component failures, highlighting the importance of moni-
toring and detecting component failures. While components
like the reactor coolant pump (Di Maio et al., 2013), con-
trol rods (Ifeanyi, Coble, & Saxena, 2024), and steam gen-
erators (Razavi-Far et al., 2009) have been the focus of FDD
research in the past, NPP condensers have received less atten-
tion. Over time, some FDD research efforts have been geared
toward condenser-related systems such as the condensate-feed
system as a whole (Vilkov et al., 2022), and its components
like deaerators (Kim & Lee, 2004), and the condensate pump
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(Walker et al., 2021) but as emphasized in section 1, the con-
denser’s crucial role in NPP power generation underscores
the need to address fault detection in the condensers. Thus,
this research aims to detect condenser tube fouling through
condenser monitoring, filling an important knowledge gap.

The condenser is a large chamber typically with a cylindrical
shape and contains thousands of thin tubes running through
its interior. Condenser tubes are the numerous thin tubes that
snake through the interior of the condenser. They provide the
surface area where the hot, low-pressure steam exiting the tur-
bine condenses into water. Cooling water flows through these
tubes’ externals, absorbing the heat from the steam in the
tubes’ internals and carrying it away. The condenser tubes are
the workhorses within the condenser, facilitating the transfer
of heat from the steam to the cooling water (Webb, 2011b;
Sun et al., 2018). Condenser tubes are typically made from
strong, corrosion-resistant materials like titanium or stainless
steel to withstand the constant flow of hot steam and cooling
water (Brodov et al., 2019). These tubes are susceptible to
leaks or blockages over time (Choi et al., 2010). NPPs have
regular maintenance procedures to clean and inspect the con-
denser tubes to ensure optimal performance (Fayard, 2008).
To optimize these maintenance procedures, monitoring the
condition of the tubes and performing FDD is crucial.

Although a previous paper has explored the FDD of con-
densers in coal power plants (Muñoz & Sanz-Bobi, 1998),
investigating FDD in NPPs remains imperative. Unlike coal-
fired boilers, the radioactive primary loop of an NPP operates
at significantly higher pressure and temperature levels. Con-
sequently, the exhaust steam from a nuclear turbine is hotter
compared to that from a coal plant turbine. The condenser
in an NPP must efficiently remove heat to maintain optimal
turbine performance by sustaining lower pressure levels. In
contrast, the operating temperature of coal boilers results in
cooler exhaust steam, imposing a less rigorous cooling de-
mand on condensers in coal plants. Therefore, further explo-
ration of FDD in NPPs is essential to ensure the efficient and
safe operation of these critical facilities, given the distinct op-
erational challenges and requirements they face compared to
coal-fired plants. Recent research attention given to NPP con-
densers focused on prognostics (Xiao et al., 2023; Zanotelli
et al., 2024) which is concerned with estimating the remain-
ing useful life of the investigated system, a different task from
FDD.

Several research endeavors have employed the ANS model
for NPP cyber security assessment, establishing its usefulness
and validity (Lee et al., 2022; R. B. Silva et al., 2021). For ex-
ample, ANS was used to simulate a nuclear power system to
detect false data injection on key equipment such as the con-
trol system actuator (Zhang & Coble, 2020). In more recent
prognostics applications, ANS has been adapted to include
degradation in the condenser caused by tube fouling (Xiao

et al., 2023; Zanotelli et al., 2024). Tube fouling was simu-
lated by reducing the number of useful tubes in the condenser
over time (Xiao et al., 2023). Fouling hinders the condenser’s
ability to transfer heat by blocking the tubes and adding a
new layer that reduces heat transfer efficiency. This layer
also slows down the flow, which further reduces heat transfer.
By removing tubes, we can simulate these effects, mimicking
the decreased heat transfer and altered flow caused by foul-
ing. This paper builds on these recent modifications of ANS
by adding random Gaussian noise across the PWR system to
vary the response of the NPP for each simulation run before
applying different FDD techniques.

3. DATA SET

As mentioned in section 1, ANS was used to obtain temper-
ature and pressure measurements in the condenser of a simu-
lated NPP. These measurements were obtained under ten op-
erating conditions shown in Table 1. These conditions were
generated by varying the final fouling thickness in the con-
denser tube and the repair history. ANS offers the possibility
of immediately restoring the health of a degraded component
and this was used to simulate different maintenance histories
where a 70% repair mimics partial repairs like incomplete re-
moval of debris and a 100% repair mirrors a replacement with
a new and similar component. ANS further allows the user to
specify two final fouling thickness values, one before repair
and another after repair. For the repaired cases in Table 1,
the same values were used before and after repair. As shown
in Fig. 1, the final fouling thickness was used as a proxy for
varying fouling rates since the degradation is linear over time.
Since all simulations had the same period of observation, un-
repaired scenarios with higher thicknesses will degrade faster.
Fig. 1 demonstrates the fouling thickness profile of an operat-
ing scenario of the condenser tubes under varying operating
states. As seen, fouling thickness remains at 0 mm during
normal operation between 0-3000 seconds but steadily rises
after fault onset at 3000 seconds until it reaches an initial fi-
nal fouling value of 2.5 mm at 6500 seconds. The fouling
thickness drops to 30% of 2.5 mm after the simulated instan-
taneous 70% repair and then rises again at a slower rate than
before, eventually reaching a final thickness value of 1.5 mm.

The plant was run for ten thousand seconds during each sim-
ulation but multiple simulations were done under each condi-
tion to produce multiple sequences of ten thousand seconds.
For example, under scenario ‘10’ (normal operation) where
there is no degradation and therefore, no repair of the con-
denser, Fig.2 shows two samples of the generated sequence
data. The sampling frequency of the sensors is 10Hz so 100,000
points of data were obtained per sequence. These were how-
ever mean-filtered with a window size of ‘10’ without overlap
to have one data point per second. The filtered versions were
the samples used in the research. The ANS model was created
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Figure 1. Fouling profile for different operating states

Table 1. Operating Scenarios of the Simulated Data

S/N Final Fouling
Thickness (mm)

Maintenance
History

1 2.5 100%
2 3.0
3 4.0
4 2.5 70%
5 3.0
6 4.0
7 2.5 No Repair
8 3.0
9 4.0
10 No Fouling No Repair

for cyber security assessment tests so repeated simulations
did not originally vary. For this research, white noise was
added to the ANS model at different points to simulate real-
istic variations in operations due to measurement and process
noise. The marked-out section of Fig.2a (see zoomed-in ver-
sion (Fig.2b)) emphasizes the variations in the two sequences
generated under the same operating scenario. This variation
shown for scenario ‘10’ alone is experienced in every other
simulated scenario.

The normal operation for all tests in this research is defined
as a complete sequence during the 10,000 seconds of observa-
tion that does not exhibit signs of degradation (scenario ‘10’).
A faulty operation, on the other hand, can take one of any of
the other nine scenarios (‘1-9’). For all tests conducted in
this research, degradation began at observation 30,000 (3000
seconds), except otherwise stated. Considering the scenarios
without any repair history, Fig. 3 shows how the unfiltered
pressure profile differs for components with different degra-
dation rates, highlighting the potential of fault detection and
diagnostics from raw signal analyses. As shown, significant
deviations begin around observation 30,000 with the faster
degrading component most deviating from the normal profile.

To summarize this section, it’s crucial to note that each sim-

a)

b)

Figure 2. Pressure profile - two normal sequences. a) - mean
filtered, and b) - zoomed-in section.

ulation output, post-filtering, comprises two variables, each
consisting of 10,000 data points, respectively representing
condenser temperature and pressure. In the offline tests con-
ducted in this study, these outputs directly served as samples
for the models. The specifics regarding the number of sam-
ples utilized for various tests are elaborated in section 5. For
the online tests, these sequences were segmented into win-
dows, a procedure detailed in section 4.

4. TECHNICAL APPROACH

There were two general approaches (online and offline) to the
detection and diagnostics in this work. Detection concerns
classifying samples as faulty or not whereas diagnostics in-
vestigates the different fault types. The fault types in this
paper refer to the degradation levels since only one fault type
was investigated. What a sample means in this paper depends
on whether the task is online or offline. The samples of the
different tasks are defined in their appropriate sections.
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Figure 3. Pressure profile for different fouling rates

4.1. Detection

For offline detection, each sample is a complete sequence
with the two monitored variables. In other words, a sam-
ple has shape (10000, 2) so that the input to the model is of
shape (n, 10000, 2) where n is the chosen batch size. This
simulates the real-life scenario where the plant is run up to
the point where a scheduled outage is required. The analysis
of the monitored signal may be done at this point to check
the existence of faults in components that may not have been
scheduled for maintenance during that outage period. If a
fault exists, the component may be maintained before it is
brought back online. This type of detection involves defining
what constitutes the faulty class and in this work, the faulty
class was defined in three different ways leading to three dif-
ferent tests. In the first case, the faulty class included de-
graded samples with a final fouling thickness of 3.0 mm and
did not undergo any kind of repair (scenario ‘8’ from Table 1).
The second test included a mix of samples with the three dif-
ferent simulated degradation rates in its faulty class (scenar-
ios ‘7’, ‘8’, and ‘9’) and the final test had faulty samples with
the same degradation rates but different maintenance histories
(scenarios ‘2’, ‘5’, and ‘8’).

In the case of online detection, the idea was to make predic-
tions at more granular levels of time so that it is not required
to wait for an outage before detecting faults. These online
predictions should potentially improve maintenance planning
so that the outage period is reduced. To achieve this, the com-
plete sequences were broken into smaller windows of fixed
lengths, and in most cases, only one complete sequence was
required to train the classifier. This means that the input shape
of the model is (n,windowlength, 2) where n is the selected
number of windows (batch size) processed at a time. Window
length was varied to produce multiple tests in this category
before varying the degradation start time to better understand
the observed behavior of the model. Finally, the generaliza-

tion capability of a trained model was tested with samples of
different degradation rates.

4.2. Diagnostics

In the offline case of diagnostics, the samples were created
in the same way as in the offline detection but this task was
a multi-class classification where the number of classes de-
pended on the number of fault categories investigated in a
particular test. There were three different tests in this cate-
gory of tests. The first was an attempt to diagnose the dif-
ferent degradation rates of the samples without repair. The
second diagnosed degradation rates for the partially repaired
components whereas the third repeated the task for replaced
components.

The online version of the diagnostics required simulating the
operation of a component that degrades at a high rate before
undergoing partial repair which restores 70% of its health
and leads to the reduction in the rate of degradation. Fixed
windows of the described sequence of operation are created
and assigned three different classes (normal, high degrada-
tion, and low degradation). The model is trained on windows
created from two complete sequences before testing on a third
sequence. This test could be useful for close to real-time as-
sessment of degradation levels of a component under fault.
The component may be allowed to continue to operate under
fault until a threshold degradation level is reached.

4.3. Model

In this study, detection and diagnostics were treated as classi-
fication tasks, with the offline approach processing full time-
series data and the online approach analyzing time-series win-
dows. We employed a 1D-Convolutional Neural Network
(1D-CNN) because of its ability to capture local dependen-
cies in time-series data, making it particularly effective for
detecting subtle transitions from healthy to faulty states. This
is crucial for early fault detection, especially in critical ap-
plications, where recognizing evolving patterns is essential.
Unlike simpler methods such as decision trees or expert sys-
tems, which often rely on static rules or thresholds and may
struggle with the temporal dynamics of the data, the 1D-CNN
excels by learning and adapting to these changes. Moreover,
the 1D-CNN can automatically learn and extract relevant fea-
tures from raw sensor data, reducing the need for extensive
manual feature engineering, which is often required by rules-
based methods. While simpler methods like expert systems
or decision trees could be applied to fault detection and di-
agnosis in nuclear power plant condensers, they may lack the
flexibility and accuracy required for this critical and dynamic
application.

Additionally, we utilized an encoder-decoder (E-D) architec-
ture as illustrated in Figure 4. E-D structures, renowned for
their ability to distill essential information from data, have
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found success in diverse applications, such as denoising with
autoencoders (Vincent et al., 2008) and image segmentation
using the U-Net CNN architecture (Yin et al., 2022). Given
the varied degradation levels within the faulty class, prioritiz-
ing the extraction of crucial information aids in generalization
within this class while effectively distinguishing it from the
healthy class during detection. This choice of the E-D struc-
ture is particularly pertinent considering the limited number
of examples in each class and the absence of data augmenta-
tion in our study.

The input layer can contain either sequences for offline tasks
or windows for online tasks. The final layer of the model
comprises two dense neurons with a softmax activation func-
tion, reflecting the two classes of interest in the detection
tests. For other tasks, the number of neurons in the final layer
is adjusted to align with the classes under investigation, with
most diagnostics tasks necessitating four final neurons. De-
spite the complexity of the task and the constraint of limited
data samples, the employed model remains relatively com-
pact, with approximately 17,000 trainable parameters.

Figure 4. Sample model for detection tasks - Encoder-
Decoder structure

5. RESULTS

Having established the methodology for our study in section
4, we now turn our attention to the results, where we present
the findings and analyses stemming from the various imple-
mented approaches.

5.1. Detection

This section discusses the findings in both the offline and on-
line detection tests. For the offline set of tests, three versions
were conducted as described in section 4.1 and Fig. 5 shows
the confusion matrices for the three different tests. For all
tests in this category of tests, 30 samples per class were used
in total where 80% was for training and 20% for testing. Fig.
5a shows the result when the faulty class only contains sam-
ples from scenario ‘8’ in Table 1. As seen, all test samples
were correctly classified. When the faulty class contained a
mixture of samples from scenarios ‘7’, ‘8’, and ‘9’ in equal
proportions, the detection was perfect as seen in Fig. 5b. In

the third case, the faulty class was a combination of samples
from scenarios ‘2’, ‘5’, and ‘8’ in equal proportions. Again,
the fault detection model accurately classified all test sam-
ples.

a)

b)

c)

Figure 5. Offline detection. a) - Single fouling rate, b) -
Mixed fouling rate, and c) - Mixed maintenance history.
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For the online tests, one complete sequence was split into
windows for training before testing on a separate sequence
split into windows of the same length. Healthy windows are
in class ‘0’ whereas faulty windows are in class ‘1’. The
fault detection plot is used to show the classification of the
windows over the observed period. The first test investigated
the effects of varying window lengths with the same window
overlap of 100 points (see Fig.6). For the first case with 2000
points per window (Fig.6a), an almost perfect detection was
observed whereas as the window length was decreased to 800
(Fig.6b), misclassification began to occur mostly around the
transition point (3000 seconds). In both cases, there were
spurious misclassifications of faulty periods as normal. A
better prediction from the longer-length windows may be ex-
pected because the model is being presented with more exam-
ple points per window aiding in better identifying the long-
term temporal relationships between the data points.

a)

b)

Figure 6. Online detection - Varying window length. a) -
Window length 2000, and b) - Window length 800.

The next online detection test was for generalization capabil-

ity and a window length of 1000 was used with an overlap
of 100. The model was trained on windows from a scenario
‘7’ sequence but tested on sequences from scenarios ‘7’ (Fig.
7a), ‘8’ (Fig. 7b), and ‘9’ (Fig. 7c). The results from Fig. 7
show that the proposed approach and model have a high gen-
eralization potential. All tests showed accurate detections ex-
cept around 3000 seconds. This generalization performance
is not unexpected because the model was trained to detect
the smaller rates of degradation which should be potentially
harder to detect than higher degradation rates. Generalization
to lower degradation rates will be tested in the extension of
this study.

So far, except for Fig.6a, it is observed that early fault clas-
sification occurs around the transition point which is not un-
expected since those windows likely contain data points from
both normal and faulty operation periods. It is, however, note-
worthy that healthy windows are classified as faulty around
that point. Although this is undesired in practice because it in-
creases the rate of false alarms, It can be managed by adding a
threshold to the number of detected windows before making
a final decision. For example, a threshold of 5 consecutive
faulty windows before taking corrective actions would elimi-
nate the false alarms in Fig.6b. This false alarm rate is likely
because the normal operating points are only about one-third
of the total, making the majority of the points faulty. As a re-
sult of this imbalance in the training samples, the model may
have been slightly more sensitive to faults such that as soon as
faulty points are included in the test windows, the observed
phenomenon of early fault prediction around the transition
point occurs.

To investigate the hypothesis, two approaches may be taken:
First, the operating period could be reduced to 6000 seconds
with the degradation start time maintained at 3000 seconds;
Second, the degradation start time could be increased to 5000
seconds leaving the operating period at 10,000 seconds. The
second approach was taken in this paper to avoid losing train-
ing data that could be potentially relevant while balancing the
classes. A window length of 1500 was used with an overlap
of 100. The model was retrained with balanced samples be-
fore testing. As shown in Fig. 8, this approach resulted in
misclassifying the faulty periods around the transition point
as normal, supporting the suspicion of the effect of class im-
balance on the previous models. Now, a slightly delayed fault
prediction is observed as opposed to early fault predictions
reducing false alarm rates.

5.2. Diagnostics

Offline diagnostics involved one broad test type namely the
degradation rate test. For all offline diagnostics in this study,
each class had 30 samples (sequences) separated into train-
ing and testing with the same strategy employed for offline
detection (see section 5.1).
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a)

b)

c)

Figure 7. Online detection - Generalization test. a) - Final
fouling 2.5 mm, b) - Final fouling 3.0 mm, and c) - Final
fouling 4.0 mm.

The task is to differentiate samples from the four different
fault classes (no fault, and three degradation rates). It can be
considered redundant to diagnose the state as nominal after

Figure 8. Online detection - Balanced data

fault detection but this was done because it could be useful
in cases where a fault is falsely detected. In this test cate-
gory, there were three tests with similar goals of diagnosing
the level of degradation of samples. In diagnosing fault levels
in components with no prior maintenance (Fig. 9a), classifi-
cation was excellent in all classes except for a single misclas-
sification in the 2.5 mm final fouling thickness class. Similar
fault level classification results were seen for the maintained
components (Fig. 9b) and the replaced components (Fig. 9c)
with singular misclassifications respectively in the 4.0 mm
and 3.0 mm final fouling thickness categories.

Online diagnostics was treated as online detection where one
component experiences different rates of degradation before
and after repair. In the investigated scenario, at 3000 sec-
onds, a high degradation rate with a final fouling thickness
of 3.5 mm was introduced before repair occurred at 6500 sec-
onds followed by a lower degradation rate with a final fouling
thickness of 2.0 mm. The pressure profile of the described
scenario is shown in Fig 10 with the test result shown in Fig
11. As with other online tests windows were created but in
this case, two training sequences were required to provide
more example windows to the model. The test was done on a
separate third sequence. The window length used in this case
was 2500 with an overlap of 200, hence the reduced number
of windows. The result shows a single wrong classification
out of 38 windows across the three classes.

While the proposed methods and classification models in this
paper demonstrate promising performance in simulated envi-
ronments, their applicability to real-world experimental data
necessitates scrutiny. Despite efforts to introduce measure-
ment noise into the simulation for enhanced realism, transi-
tioning from simulated to real-world data poses challenges
including additional uncertainties and unforeseen operational
conditions. If real-world data become available, the accu-
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a)

b)

c)

Figure 9. Offline diagnostics - Degradation rate test. a) - No
repair, b) - Partial maintenance, and c) - Component replace-
ment.

racy of the simulated fault scenarios and the resulting anal-
ysis could be validated; however, operating NPPs typically
perform routine inspection and maintenance at intervals that

Figure 10. Pressure profile - Mixed rates with repair

Figure 11. Online diagnostics

eliminate fouling before it impacts operation, and real-world
data is thus difficult to obtain. Furthermore, accurately repli-
cating fault scenarios encountered in real-world settings within
simulations can be intricate.

6. CONCLUSION

Through the utilization of an E-D structured 1D-CNN model
to analyze raw temperature and pressure signals, consistent
detection of condenser tube fouling faults was achieved both
in online and offline scenarios of the simulated operations.
Model performance was well generalized to unseen but worse
fault conditions. However, it is crucial to exercise caution,
particularly in online detection, as predictions derived from
small-sized windows may introduce bias stemming from class
imbalance. Similarly, employing a comparable strategy, both
offline and online diagnostics demonstrated high accuracies
with the investigated system, yet there remains an avenue for
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future exploration regarding online diagnostics with smaller
window sizes. In future endeavors, it could be beneficial to
enhance the versatility of the simulator (ANS) by customiz-
ing it to accommodate a broader spectrum of fouling rates
within each degradation class. This adaptation could signifi-
cantly bolster the robustness of the diagnostics model, allow-
ing for more comprehensive analyses and refined insights into
the behavior of the system under varying degrees of fouling.

Overall, this research underscores the importance and sub-
stantial potential of embracing a hybrid approach to FDD. By
integrating both online and offline methodologies, this ap-
proach enables informed short-term maintenance decisions
through real-time data analysis, while simultaneously facil-
itating the development of optimized long-term maintenance
plans through comprehensive offline analyses.
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