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ABSTRACT

Early fault detection in rotating machinery needs careful
expert analysis of vibration data for monitoring a component
state. Online methods that automatically set a threshold and
raise an alarm when the vibration signature is anomalous
are meant to efficiently manage key assets in a preventive
maintenance plan.

In recent years a focus has raised on data driven methods
in parallel with the increasing attention towards machine
learning and, particularly, deep learning models. In this re-
gard, for rotating equipment components, an important aspect
relates to labelled data scarcity for supervised training. On
the other hand, the advent of the Internet of Things allows
to gather data from multiple assets with relevant information
on the asset state itself. Self-supervised learning methods in
deep learning application are currently tackling this problem.
Investigating Self-learning approaches to integrate domain
knowledge and learn relevant features from unlabeled data is
therefore important for condition monitoring applications.

In this paper a methodology is proposed based on cycle
consistency representation learning for training an embedder
network on univariate unlabeled data. In order to learn a
distance metric in the embedding space the original data are
transformed to generate sequences of augmented inputs to
enforce learnable pattern similarity in the augmented pairs. A
differentiable cycle-consistency loss is chosen to maximize
the numbers of augmented pairs in the learned embedding
space that have minimum features distance. The pretext
task in the described self-supervised setting aims to train a

Fabrizio De Fabritiis et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

feature extractor for discriminating dissimilar samples in the
embedding space by a distance metric and to provide a useful
representation for down-stream tasks.

The paper analyzes the performance of the approach for
anomaly detection in rotating machinery. The methodology
is tested on vibration data provided by the Center for Intelli-
gent Maintenance Systems (IMS), University of Cincinnati,
considering different accelerated life test campaigns. The
data were collected to monitor the fault development in bear-
ings and the model shows how the learned embedding space
discriminates effectively anomalous samples from normal
ones in the degradation stages of the bearings.

1. INTRODUCTION

In rotating machinery, critical mechanical components
are commonly monitored with vibration sensors directly
mounted onto the machine. Incipient faults are detectable
observing the variations in the vibration pattern (Henriquez,
Alonso, Ferrer, & Travieso, 2013) and the context in which
the machine is operating. While displacement sensors and
velocity sensors are preferred for specific applications, piezo-
electric accelerometers are widely adopted in most cases
for being affordable, small and sensitive to a wide range of
frequencies (Bogue, 2013).

Early fault detection in rotating machinery relies on model-
driven (Jalayer, Orsenigo, & Vercellis, 2021) or data-driven
(Liu & Gryllias, 2021) methods. A methodology for early
fault detection is effective if it enables the identification of
anomalies in e.g. vibration signals which are symptoms of
the dynamic forces originated from the initial development of
a defect in the monitored component. As an example, assess-
ing the state of gears and bearings is critical for drivetrains
in complex systems, such as wind turbines. A sudden failure
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can cause extensive downtime or catastrophic failure of an
entire wind turbine (Yan, Dunnett, & Jackson, 2023).

The exponential growth of computing power in the last
two decades has brought a major research interest towards
data-driven methods in condition monitoring. In this regard,
the availability of data plays an important role. During a
machine lifetime a few measurements are collected under a
faulty state of a component. The imbalance between healthy
data and anomalous samples has motivated unsupervised or
semi-supervised approaches in anomaly detection, in partic-
ular One-class Classifiers (Bi et al., 2024), (Liu & Gryllias,
2021). Among them, the following have been extensively
applied for machine fault detection in literature: One-class
Support Vector Machines (OCSVM), Deep Support Vector
Data Description (Deep SVDD), Autoencoder (AE) and its
variants, such as the Variational Autoencoder (VAE).

Prior knowledge on the geometry of the monitored com-
ponent, the shaft rotational speed and the sampling rate are
taken into account for reliable model-driven approaches to
capture relevant information content on the dynamics of a
machine sub-system from a vibration signal. The load and
the context in which the machine operates can affect the
measurements and the dynamics and therefore can be also
included in a model depending on the targeted task. Deep
learning architectures are able to extract low level features
from complex vibration signals at a feature extraction stage.
Nevertheless, features extracted in a pre-processing stage
from vibration signals can facilitate the successful accom-
plishment of a condition monitoring task. In (Cui, Bangalore,
& Tjernberg, 2018) the Wavelet Transform is applied for
pre-processing the vibration data. In (Chen, Mauricio, Li,
& Gryllias, 2020) the Cyclic Spectral Coherence map is
used as input for a fault detection model in a deep learning
framework.

To avoid data labelling, which can be expensive and time
consuming with human-annotated labels, unsupervised learn-
ing has been proposed. Recent developments in unsupervised
learning have led to a subset of approaches classified as self-
supervised (Gui et al., 2023). Self-supervised learning aims
to learn discriminative features on the data regardless of their
labels. A deep learning model is trained on a pretext task
for representation learning. The focus on the pretext task dif-
ferentiate self-supervised learning from general unsupervised
learning. The learned representation is then used in a down-
stream task where the inputs are the features which are the
outputs of the pre-trained model. The remaining paper is or-
ganised as follows. In Section 2 the proposed methodology
is introduced. Moreover in Section 3 the methodology is ap-
plied on a publicly available dataset and the results are an-
alytically presented. The paper closes with a conclusion at
Section 4.

2. PROPOSED METHODOLOGY

The proposed methodology is based on data augmentation
and self-supervised learning for training a convolutional neu-
ral network (CNN) to map an input in an embedding space
with a selected metric. The distance metric is intended to
discriminate effectively dissimilar samples. Each embedding
extracted by the pre-trained model from a test set is matched
with the closest embedding from a reference set of healthy
samples. The distances in the embedding space are consid-
ered in this methodology as anomaly scores.

2.1. Data pre-processing

The vibration signals collected from an accelerometer posi-
tioned on a bearing housing are processed to obtain spectro-
grams. The discrete short-time Fourier transform (STFT) is
applied to the raw time signal xn with window w

STFT {xn} (h, k) = X(h, k) =

N−1∑
n=0

xn+hwne
−i2π kn

N

leading to a time-frequency representation in the complex
plane with phase and magnitude. In the proposed method-
ology, the magnitude of the STFT is retained as input of the
CNN.

2.2. Data augmentation

Image transformations like translation, crop, flip, rotation,
contrast, blur, and color distortion are used for augmenta-
tion as state-of-the-art techniques (Russell & Wang, 2023).
In the case of a time frequency representation only a subset
of those transformation is applicable. Frequency masking and
time masking augmentation have been proposed in literature
(Park et al., 2019) (Kim, Han, & Ko, 2021). The transforma-
tion considered on the STFT magnitude for data augmenta-
tion are:

• Random scaling

• Random frequency masking

The first transformation scale the input with maximum value
between 1 and 0.1. The second transformation masks half of
the frequencies similarly either to a band pass filter or to a
band-stop filter as shown in Figure 1.

2.3. Deep learning model

Multi-layer neural networks and, in particular, CNNs have
been applied extensively in representation learning and clas-
sification tasks. CNNs require significantly lower number of
model parameters than fully connected (FC) networks, mak-
ing them less prone to overfit. In contrast to FC networks,
CNNs learn optimal kernels by incorporating the inherent
spatial relationships within the data. For this reason, FC net-
works are not suitable for data with a grid-like topology such
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Figure 1. Frequency masking on a spectrogram. The masked
frequencies are in white. In case (a) the frequencies are
dropped out according to a band-stop filter. In case (b) the
frequencies are dropped out according to a band pass filter.
For each time bin the mask position is set randomly

as images or time-series. With regard to condition monitor-
ing, CNNs are preferred over FC networks for tracking the
degradation of a system where sensors are placed to provide
time series through a data acquisition system. Considering
the topology of the spectrogram input of a convolutional neu-
ral network, with shape (h, l), the kernel size of the first layer
of the network has been set according to Table 1.

Layers Kernel shape [Ch in,Ch out] Activation
Convolutional 2D (h× 3) [1, 10] ReLU
Convolutional 2D (1× 3) [10, 20] ReLU
Convolutional 2D (1× 3) [20, 40] ReLU

Out features
FC Linear 20 - -

Table 1. CNN Hyperparameters for each layer

2.4. Cycle-consistency learning

The proposed self-learning paradigm is based on extracting
features that align two augmented views of the spectrograms
in the training set. In order to map closely two transformed
inputs from the same spectrogram, the number of points that
can be paired from the two augmented views can be max-
imized by minimizing their distance in the learned embed-
ding space (Dwibedi, Aytar, Tompson, Sermanet, & Zisser-
man, 2019). An embedding from one view is cycle-consistent
when, once mapped to an embedding in the other view, is
mapped back to itself. In other words, the embedding is
cycle-consistent if it cycles back to itself. The embedding of
a sample pi in one augmented view P = {p1, . . . , pN} is the
output of the neural network fi = ϕ(pi, θ), being ϕ the neural
network and θ its parameters. A point pi is cycle-consistent
if, considering another augmented view Q = {q1, . . . , qN}
and the embeddings G = {g1, . . . , gN} where gi = ϕ(qi, θ),
the nearest neighbour gj = arg ming∈G∥fi − g∥ of its em-
bedding fi maps to the same embedding point when find-
ing the nearest neighbour in F = {f1, . . . , fN} following

(a) Threshold computation
(b) Anomaly score compu-
tation

Figure 2. (a) From a reference set the pre-trained encoder ex-
tract the embeddings and their distance is used to define an
anomaly threshold. (b) In the test phase the anomaly score is
computed as distance from the nearest neighbour in the refer-
ence set.

fj = arg minf∈F ∥gj−f∥. In order to train a neural network
maximizing the cycle-consistent points between two views of
N elements in the training set, the soft nearest neighbours
f̃ , g̃ are defined for a differentiable cycle consistency loss.
The nearest neighbour of fi is defined as g̃ =

∑N
j αjgj

with αj = softmax(−∥fi − gj∥). Considering a classifica-
tion problem where each element of the view is a class it-
self, the cross entropy loss is minimized with predicted labels
ŷk = softmax(−∥g̃ − fk∥). The training procedure is de-
scribed in Figure 11.

2.5. Anomaly detection

The pre-trained feature extractor maps the spectrograms in
the learned embedding space. The distance metric enforced
during training in the computation of the soft nearest neigh-
bour is a dissimilarity measure used to discriminate embed-
dings for the task of anomaly detection. From a reference
set of signals collected during a normal state of the machine
component, the features of the spectrogram from the pro-
cessed signal can be computed and a suitable threshold can
be defined. For each spectrogram si in the reference set
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(a)

(b)

Figure 3. (a) Sensor level detection results for bearing 3 of
dataset 1 and (b) bearing state recognition.

S = {s1, . . . , sN} the nearest neighbour is computed as

ŝi = arg mins∈S\{si}∥ϕ(si, θ)− ϕ(s, θ)∥ (1)

where ϕ is the neural network with pre-trained parameters θ.
Indicating the distance in the embedding space between si
and the nearest neighbour snni in the reference set as

di = ∥ϕ(si, θ)− ϕ(ŝi, θ)∥ (2)

The mean and variance of the distances of paired neighbours
in the embedding space is

µ =
1

N

N∑
i

di (3)

(a)

(b)

Figure 4. (a) Sensor level detection results for bearing 4 of
dataset 1 and (b) bearing state recognition.

σ =

√√√√ 1

N − 1

N∑
i

(di − µ)2 (4)

From the mean and the standard deviation a suitable threshold
is defined as

dtlim = µ+ 3σ (5)

as shown in Figure 2a. In order to perform early fault detec-
tion, the pre-trained model extracts the embeddings from the
spectrograms in the test set. The distance from the nearest
neighbour in the reference set embeddings

dtj = ∥ϕ(rj , θ)− ϕ(ŝj , θ)∥ (6)

where ŝj = arg mins∈S∥ϕ(rj , θ)− ϕ(s, θ)∥ and rj ∈ R is a
spectrogram in the test set, is, in the proposed methodology,
the anomaly score for a test sample according to Figure 2b.
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(a)

(b)

Figure 5. (a) Sensor level detection results for bearing 1 of
dataset 2 and (b) bearing state recognition.

3. APPLICATION OF THE METHODOLOGY

3.1. Dataset description

The methodology is applied and tested to the publicly avail-
able IMS bearing dataset, firstly introduced in 2006 (Qiu,
Lee, Lin, & Yu, 2006) and provided by the Center for In-
telligent Maintenance Systems, University of Cincinnati.

The dataset includes acceleration measurements from four
separate accelerometers mounted on the housings of four
Rexnord ZA-2115 double-row bearings installed on a single
shaft as shown in Figure 12. The shaft was driven by an AC
motor and maintained at a constant speed of 2000 RPM with
a radial load of 6000 lbs with a belt transmission. The mea-
surements have been collected with a sampling frequency of
20 KHz and each record refer to a 1-second vibration signal.

(a)

(b)

Figure 6. (a) Sensor level detection results for bearing 3 of
dataset 3 and (b) bearing state recognition.

Each record contains 20480 data points, indicating an actual
sampling frequency of 20480 Hz. The measurements have
been acquired at intervals of 5 minutes or 10 minutes. Some
intervals between acquisitions are longer due to interruptions,
therefore the recorded signals can be regarded as a discontin-
uous tracking of the system degradation.

The accelerated life tests were stopped when the accumula-
tion of debris on a magnetic plug exceeded a certain level.
Three run-to-failure tests have been conducted. At the end
of each test all the bearings were examined to assess if and
where faults occurred (Qiu et al., 2006):

• In the first run-to-failure test an inner race defect oc-
curred in bearing 3 and a roller element defect in bearing
4.
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(a)

(b)

Figure 7. (a) Machine level detection results for bearing 3 of
dataset 1 and (b) bearing state recognition.

• In the second run-to-failure test an outer race defect oc-
curred in bearing 1.

• In the third run-to-failure test an outer race defect oc-
curred in bearing 3.

3.2. Input pre-processing

The window length of the STFT selected to process the 20480
data points in each recording is set to 1024 with an overlap
on the previous segment of 50%. A Hamming window is ap-
plied for the Fast Fourier Transform (FFT) with chosen length
of 1028 points. The output of the STFT is a time-frequency
map of size [515 × 41]. In the self-supervised training phase
a random scaling and a random frequency masking is repeat-
edly applied on each input to obtain two different augmented
views per epoch.

(a)

(b)

Figure 8. (a) Machine level detection results for bearing 4 of
dataset 1 and (b) bearing state recognition.

3.3. Detection strategy

The distance metric chosen for the cycle consistency loss op-
timization is the euclidean distance. Once the encoder, with
layers described in Table 3, is trained, the distances between
the nearest neighbours in the embedding space of the train-
ing set are computed with Equation 2. The threshold is set
according to Equation 5 with µ and σ calculated using the
Equations 3 and 4 respectively. The anomaly scores of the
test set are computed using the Equation 6 where the training
set is the reference set of healthy samples. The fault detection
strategy adopted is based on (Liu & Gryllias, 2020) where
three conditions are proposed. Considering a moving win-
dow on the time history of the anomaly scores, the conditions
are:
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(a)

(b)

Figure 9. (a) Machine level detection results for bearing 3 of
dataset 3 and (b) bearing state recognition.

• At least 50% of the anomaly scores in the window are
above the threshold.

• The average value of the anomaly scores in the window
is above the threshold.

• At least 50% of the anomaly scores in the window are
continuously above the threshold.

If all three conditions are satisfied the monitoring
unit/component is considered in faulty state. If one or two
conditions are satisfied, the state is considered a warning.
The unit/component is considered in healthy state if none of
the conditions is satisfied. The moving window length in this
study consider the last ten anomaly scores. In an industrial
application, a number of sensors can be mounted on a unit
and a number of similar units are operating under similar
operating conditions. The unit can be a factory machine,

(a)

(b)

Figure 10. (a) Machine level detection results for bearing 1
of dataset 2 and (b) bearing state recognition.

a wind turbine, a compressor etc. Therefore in the frames
of condition monitoring and anomaly detection a question
which arises is at which level should the training data be
used: a) at a sensor level, where data are used to train a
model specifically for this sensor or b) at a machine level,
where data from all the sensors mounted on the unit are used
to train a model at the unit level. In this paper, the effective-
ness of the proposed anomaly detection model is evaluated at
the two levels, thus the training datasets are prepared based
on (a) data from a single sensor (sensor level) and (b) data
from multiple sensors of one machine (machine level).

3.4. Sensor level early fault detection

All the training sets on which each model is trained under
the self-supervised setting are supposed to contain samples
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Figure 11. Structure of the self-supervised learning approach

acquired during the healthy state of the bearings. The train-
ing ranges for each dataset are set according to (Liu & Gryl-
lias, 2020). In particular, the training set from the dataset
contains the signals recorded from 7.45 days (record #200)
to 17.05 days (record #600) for each sensor. With regard to
this dataset, two accelerometers in orthogonal directions are
placed on each housing. In this study only the data from one
of the two accelerometers for each housing are considered,
i.e. the data of the even numbered channels. For the second
dataset the training set is composed of records collected from
0.35 days (#50) to 2.08 days (#300), while the training dataset
of the third experimental campaign includes records acquired
from 2.08 days (#300) to 10.41 days (#1500) by the start of
the experiment. Each model is trained and tested on data ac-
quired from only one sensor per dataset. The results of the
detection on the faulty bearings are shown in Figures 3, 4 for
dataset 1, Figure 5 for dataset 2 and Figure 6 for dataset 3.
The first detection time of the faulty state is compared in Ta-

Figure 12. Schematic of the IMS bearing dataset test rig

Proposed (Liu & Gryllias, 2020)
Dataset 1
Bearing 3 31.06 days (#1808) 31.16 (#1823)
Dataset 1
Bearing 4 28.05 days (#1446) 19.08 days (#872)
Dataset 2
Bearing 1 3.83 days (#551) 3.69 days (#532)
Dataset 3
Bearing 3 19.2 days (#2697) 42.25 days (#5973)

Table 2. Sensor level detection comparison between the pro-
posed model and the NSVDD model

ble 2 with the Support Vector Data Description method with
negative samples (NSVDD) results reported in (Liu & Gryl-
lias, 2020).

3.5. Machine level early fault detection

In contrast to sensor level fault detection, the machine level
fault detection aims to train a model from the acceleration
responses of all the bearings of the machine. The results of
the detection on the faulty bearings are shown in Figures 7, 8
for dataset 1, Figure 10 for dataset 2 and Figure 9 for dataset
3. The first detection time of the faulty state is compared
in Table 2 with the results from the NSVDD results (Liu &
Gryllias, 2020).

4. CONCLUSION

In this study, a new methodology for early fault detection
based on vibration signals has been proposed. A feature ex-
tractor is trained in a self-supervised learning setting on unla-
belled data. A distance metric is enforced with a cycle consis-
tency loss optimization during training. The metric discrimi-
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Proposed (Liu & Gryllias, 2020)
Dataset 1
Bearing 3 30.47 days (#1724) 31.26 (#1837)
Dataset 1
Bearing 4 29.08 days (#1524) 28.33 days (#1487)
Dataset 2
Bearing 1 3.77 days (#543) 5.11 days (#736)
Dataset 3
Bearing 3 42.24 days (#5972) 44.34 days (#6275)

Table 3. Machine level detection between the proposed model
and the NSVDD model

nates faulty samples from healthy samples in the embedding
space for the task of anomaly detection. The methodology
is applied and evaluated on the publicly available IMS bear-
ing dataset for early fault detection on data from one sensor
or multiple sensors achieving high performance. The results
show that the methodology can be trained using only a limited
amount of training data and that it allows an easy comparison
between vibration signals measuring (dis)similarity.
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