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ABSTRACT

Amid concerns of an aging or diminishing industrial work-
force, the recent advancement of large language models
(LLMs) presents an opportunity to alleviate potential expe-
rience gaps. In this context, we present a practical Prog-
nostics and Health Management (PHM) workflow and self-
evaluation framework that leverages LLMs as specialized
in-the-loop agents to enhance operational efficiency without
subverting human subject matter expertise. Specifically, we
automate maintenance recommendations triggered by PHM
alerts for monitoring the health of physical assets, using
LLM agents to execute structured components of the standard
maintenance recommendation protocol, including data pro-
cessing, failure mode discovery, and evaluation. To illustrate
this framework, we provide a case study based on historical
data derived from PHM model alerts. We discuss require-
ments for the design and evaluation of such “PHM Copilots”
and formalize key considerations for integrating LLMs into
industrial domain applications. Refined deployment of our
proposed end-to-end integrated system may enable less ex-
perienced and professionals to back-fill existing personnel at
reduced costs.

1. INTRODUCTION

Industrial demographics have changed over time in several
domains, in part due to shifting occupational preferences,
shrinking generational cohorts, and lengthened professional
careers (Silverstein, 2008). Additionally, corporate finan-
cialization, technological change, and industrial outsourcing
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have left engineering organizations with numerous workforce
challenges that are not easily resolved by adapting hiring
practices alone (Muellerleile, 2009; Greenberg, 2010). As
a result, a so-called “experience gap” has caused concern in
operational fields (Rovaglio, Calder, & Richmond, 2012). In
particular, monitoring and maintenance of complex engineer-
ing systems typically requires the deployment of specialized
personnel with sophisticated domain expertise, and such staff
are in short supply. Although systemic approaches, such as
large-scale programs to increase vocational training access,
can be impactful, such strategies can be difficult for individ-
ual organizations to implement effectively. Instead, we con-
sider whether recent digital innovation - particularly that of
large language models (LLMs) - can help relieve these work-
force pressures by supplementing less experienced mainte-
nance and reliability professionals.

LLMs are (typically autoregressive) statistical models of to-
ken sequences, learned from large textual corpora (Chengwei
Wei and Yun-Cheng Wang and Bin Wang and C.-C. Jay
Kuo, 2024). In production, these models are often fine-tuned
for instruction-following (Ouyang et al., 2022), whereby
user-provided prompts induce a discrete distribution over
output sequences (Sordoni et al., 2024). These so-called
“instruction-tuned” models can serve as impressive con-
versational agents, but questions remain regarding effec-
tive application in industrial settings, including medicine
(Thirunavukarasu et al., 2023), design and manufacturing
(Makatura et al., 2023), and power engineering (Majumder
et al., 2024).

The so-called “copilot framework” - where artificial intelli-
gence (AI)-powered systems augment, rather than replace,
existing workflows - offers an opportunity to meaningfully
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increase productivity by integrating LLMs alongside human
personnel (Cambon et al., 2023). In conventional Prognostics
and Health Management (PHM) workflows, real-time mon-
itoring of industrial assets typically occurs in a Monitoring
and Diagnostics (M&D) center and is driven by the outputs
of sensor-based PHM models. When an alert is triggered, an
M&D analyst determines if escalation to the plant’s reliability
and maintenance organization is necessary, providing recom-
mendations for initiating appropriate actions, such as iden-
tifying possible fault causes and suggesting steps for trou-
bleshooting. The maintenance organization then investigates
the fault, writes the appropriate work order, and schedules
and executes the required work. Efficient execution therein
is a complex task requiring personnel with domain-specific
expertise. We are interested in exploring applications of the
copilot framework to the PHM domain, with the goal of alle-
viating industrial experience gaps.

1.1. Our contributions

In this work, we consider a potential AI copilot system for the
maintenance and reliability domain. Our main contributions
are as follows:

• We outline a framework for expediting PHM workflows
using integrated, specialized LLM agents (Section 3.1).

• We propose a domain and use case-specific copilot eval-
uation rubric and provide a practical case study lever-
aging publicly-available marketing content detailing real
use cases of a commercial PHM solution (Section 3.2).

• We examine the behavior of our PHM copilot. Our find-
ings include that retrieval-augmented generation (RAG)
with historical cases references measurably improves
system performance in the context of likelihood to make
recommendations based on observed, frequently occur-
ring events (Section 4).

The remainder of this work is organized as follows: Section 2
provides background on the PHM copilot, its building block
concepts, and a literature review of related work. Section 3
outlines the methodology for our prototype PHM copilot. The
case study is divided into two parts: data preparation using a
multi-agent framework and the PHM copilot itself. The re-
sults of the case study are presented in Section 4. Conclusions
and discussion are presented in Section 5.

2. RELATED WORK

2.1. LLM-related technologies supporting copilot devel-
opment

In this section, we review some concepts developed in the
field of Generative AI and LLMs which are currently com-
mon building blocks used in designing copilot architectures.
Note that as development in this area is rapidly evolving, over

time this list will be subject to additions, modifications and
enhancements.

Technical Language Processing (TLP). TLP refers to en-
gineering approaches for tailoring natural language process-
ing (NLP) tools to technical language data (Brundage, Sex-
ton, Hodkiewicz, Dima, & Lukens, 2021; Dima, Lukens,
Hodkiewicz, Sexton, & Brundage, 2021). Developing meth-
ods which adapt LLMs for engineering use cases in practical
ways that meet specific requirements is one aspect of TLP.
One common task in TLP has been failure mode classifica-
tion which labels unstructured maintenance data with struc-
tured fields. This task involves identifying structured fields
from short maintenance work order description such as the
item, fault state and action taken, when possible (Hodkiewicz
& Ho, 2016), (Lukens, Naik, Saetia, & Hu, 2019). Since
descriptions can have zero, one or multiple possible labels,
entity recognition or tagging have been common approaches
(Sexton, Brundage, Hoffman, & Morris, 2017), (Bikaun
& Hodkiewicz, 2021), (Sexton, Hodkiewicz, & Brundage,
2019). Recently, exploration for how to effectively utilize
LLMs for failure mode classification has been conducted
(Stewart, Hodkiewicz, Liu, & French, 2022), (Stewart, Hod-
kiewicz, & Li, 2023).

Retrieval Augmented Generation (RAG). Retrieval Aug-
mented Generation (RAG) has emerged as a standard LLM
paradigm (Lewis et al., 2020; Gao et al., 2023). In a RAG sys-
tem, information retrieval over an external knowledge base
is employed to improve LLM domain awareness and factu-
ality. In its simplest form, a corpus of unstructured text is
divided into smaller passages, encoded into vector represen-
tations using a text embedding model (Reimers & Gurevych,
2019; Ni et al., 2022), and organized into a vector database.
Queries are encoded using the same model and compared
against the database, typically using a vector index and ap-
proximate nearest-neighbor search algorithms (M. Wang, Xu,
Yue, & Wang, 2021). Retrieved passages provide additional
evidence for the LLM when considering the user’s queries.
Recently, more sophisticated approaches have emerged, such
as incorporating a re-ranking step (Glass et al., 2022), self-
reflection (Asai, Wu, Wang, Sil, & Hajishirzi, 2024), and con-
sidering graph community structure (Edge et al., 2024).

LLM Agents LLMs-as-agents is a recent paradigmatic
advancement which generally refers to systems that al-
low LLMs to use tools or otherwise make function calls
(Varshney, 2023). LLM-powered agents have been devel-
oped to support goal-completion in several domains, includ-
ing web browsing (Deng et al., 2024), code debugging (Lee
et al., 2024; Bouzenia, Devanbu, & Pradel, 2024), and social
simulation (Park et al., 2023; Horton, 2023; Gürcan, 2024).

Multi-agent frameworks for LLM systems involve multiple
models with specialized roles. While agents may use the
same LLM, autonomous agents act independently based on
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Figure 1. Conceptual illustration of a PHM Copilot as part of a comprehensive PHM system.

their roles, goals, and contexts. Such systems also require
defined communication protocols and coordination mecha-
nisms. This framework allows for the decomposition of com-
plex problems into manageable tasks, with specialized agents
handling individual aspects (Talebirad & Nadiri, 2023; X. Liu
et al., 2024).

Evaluating LLM systems. LLMs are typically evaluated
against static, standardized benchmarks, such as MMLU
(Hendrycks et al., 2021), HellaSwag (Zellers, Holtzman,
Bisk, Farhadi, & Choi, 2019), and TruthfulQA (Lin, Hilton,
& Evans, 2022). These evaluations do not necessarily map di-
rectly to open-ended tasks or capture the subtleties of human
preferences, however, motivating leader boards that crowd-
source pairwise human comparisons (Chiang et al., 2024).
Specific to engineering applications, DesignQA is a bench-
mark for multimodel LLMs specifically for their ability to
understand and apply engineering requirements in technical
documentation (Doris et al., 2024).

Soliciting human evaluations can be time-consuming and
costly, so LLMs themselves have increasingly been employed
as generative evaluators (Dubois et al., 2024). Strong LLM-
as-judge systems can produce evaluations consistent with
their crowd-sourced equivalents (Zheng et al., 2024), but are

susceptible to judgement biases to varying degrees (Chen,
Chen, Liu, Jiang, & Wang, 2024) and implicitly exhibit pref-
erence for their own generated text over those of other mod-
els and humans (Panickssery, Bowman, & Feng, 2024), pre-
senting several challenges for automated LLM evaluation
(Shankar, Zamfirescu-Pereira, Hartmann, Parameswaran, &
Arawjo, 2024). More involved approaches, such as expert
calibration (Y. Liu et al., 2024) and agent-based collaborative
evaluation (Chan et al., 2024), have been developed to target
these shortcomings.

2.2. Automation of Maintenance Troubleshooting

The concept of automating maintenance troubleshooting rec-
ommendations falls under the broader category of real-time
suggestion systems, which are algorithms designed to sug-
gest relevant information and provide prescriptive decision
support across various applications, requiring well-populated
knowledge frameworks (Lepenioti, Bousdekis, Apostolou, &
Mentzas, 2020). In the industrial domain, real-time sugges-
tion systems have been developed and can be considered a
type of TLP task, providing actionable recommendations akin
to chat-based tasks.

Many M&D centers have accumulated extensive databases of
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historical cases over the years. Recent studies have investi-
gated using a TLP approach to this historical data for extract-
ing knowledge relevant to maintenance and troubleshooting.
Pau, Tarquini, Iannitelli, and Allegorico (2021) utilized NLP
techniques to provide consistent troubleshooting insights in a
Maintenance and Diagnostics (M&D) center (Pau, Tarquini,
Iannitelli, & Allegorico, 2021). Their approach involved
topic modeling and clustering to group cases, allowing for the
extraction of valuable knowledge from the M&D center case
data (Baker Hughes). This initiative aimed to support tech-
nical experts during troubleshooting activities, providing site
operators with consistent technical insights and M&D opera-
tors with consistent recommendations to support junior per-
sonnel. Similarly, Sala and colleagues applied topic modeling
(LDA) to historical records as part of their Product-Service
Systems (PSS) offerings for manufacturing (Sala, Pirola, Pez-
zotta, & Cavalieri, 2022), (Sala, Pirola, Pezzotta, & Cavalieri,
2023), (Sala, Pirola, Dovere, & Cavalieri, 2019).

Peshave, Virani, Yang, and Saxena (2022) focused on eval-
uating vectorization approaches for short-text case titles us-
ing historical cases from an M&D center (Peshave et al.,
2022). Their goal was to reduce the effort required from sub-
ject matter experts (SMEs). Trilla, Mijatovic, and Vilasis-
Cardona (2022) utilized Task Learning Processes (TLP) for
troubleshooting within Prognostics and Health Management
(PHM) (Trilla, Mijatovic, & Vilasis-Cardona, 2022). Their
approach extracted insights to advise maintenance teams on
identifying the most probable root cause of problems. They
developed a failure ontology based on failure modes and ef-
fects analysis, alongside a data-driven quality strategy called
Return on Experience, to eliminate root causes and ensure
sustainable improvements. Their work included developing
“causality embeddings” between problems and root causes,
differing from the conversational approach used in systems
like ChatGPT.

Pires, Leitão, Moreira and Ahmad (2023) compared differ-
ent recommendation systems for manufacturing operations,
including a discrete event simulation model (digital twin)
(Pires, Leitão, Moreira, & Ahmad, 2023). They deployed
their digital twin in a case study of a battery pack assem-
bly line in a university lab, focusing on recommending the
optimal logistical scenario from a set of generated scenar-
ios. This iterative process demonstrated improved user rat-
ings over state-of-the-art recommendation systems. Adde-
palli, Weyde, Namoano, Ayodeji Oyedeji, Wang, Erkoyuncu,
and Roy (2023) developed a knowledge extraction framework
that provides information in response to degradation events
by extracting historical degradation information from full-
text papers (Addepalli et al., 2023).

LLMs to assist in maintenance troubleshooting

Recent advancements have explored the integration of large
language models (LLMs) into maintenance troubleshoot-

ing workflows related to PHM. Vidyaratne, Lee, Kumar,
Watanabe, Farahat, and Gupta developed an LLM-augmented
pipeline to extract content from product manuals and orga-
nize it into troubleshooting tree structures. Their framework
used LLMs to process unstructured text and create system-
atic guides for diagnosing and resolving issues in industrial
equipment (Vidyaratne et al., 2024). Trilla, Yiboe, Mijatovic,
and Vitrià presented a proof of concept for industrial-grade
smart troubleshooting through causal technical language pro-
cessing. Their approach leverages causal associations in text
data used to determine the root cause of a problem and pro-
vide an unbiased estimation of the most likely potential so-
lution and employs LLMs to represent technical knowledge
and assist experts in diagnosing industrial asset issues (Trilla,
Yiboe, Mijatovic, & Vitrià, 2024).

Kohl, Eschenbacher, Besingerand and Ansari propose a
LLM-based chatbot for improving maintenance planning and
operations which combines LLMs with knowledge graphs in
a flexible, modular systems (Kohl, Eschenbacher, Besinger,
& Ansari, 2024). A use-case scenario is presented in the
railway industry, demonstrating the use of the chatbot in
maintaining a cooling system. Similarly, Ferdousi, Hossain,
Yang, and El Saddik propose DefectTwin, which integrates
LLMs with digital twin for visual railway defect inspection.
(Ferdousi, Hossain, Yang, & Saddik, 2024).

D. Li, H. Li, J. Li, H.W. Li, Wang, Minerva, Crespi and
K.C. Li combined blockchain with LLMs in a PHM ap-
plication, using sensor data and maintenance logs. The
blockchain component ensured data security, while LLMs
assisted in classifying equipment failures into “No Failure,”
“Minor Failure,” and “Major Failure” categories (Li et al.,
2024). Lukens and Ali further evaluated zero-shot LLM per-
formance for troubleshooting, highlighting areas for future
research (Lukens & Ali, 2023).

3. METHODOLOGY

3.1. PHM copilot

By “copilot,” we refer generically to a system powered by
LLMs designed to help address complex cognitive tasks (Ren,
Zhan, Yu, Ding, & Tao, 2024). A conceptual illustration of
what a PHM Copilot as part of a comprehensive PHM system
could look like is shown in Figure 1. The major elements
of a PHM system include: (1) data collection; (2) predictive
modeling capabilities; (3) initiating actions based on the data
and model outputs; and (4) validating if the predictions were
correct (Hodkiewicz, Lukens, Brundage, & Sexton, 2021).

Toward this end, we propose a PHM copilot system with the
following key components:

• a real-time predictive maintenance sensor system;

• a data store of historical records, including past failure
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modes and their corresponding anomalous sensor read-
ings;

• a Recommender agent responsible for (1) reviewing sen-
sor reports that are flagged as anomalous and (2) con-
structing a structured list of troubleshooting steps; and

• an Evaluator agent tasked with validating the Recom-
mender’s investigative plan.

The Recommender and Evaluator agents are LLMs induced
to return structured recommendation or evaluation objects,
rather than open-ended responses, using function-calling.
This technique can reduce costs and avoid the need for addi-
tional text processing steps in an automated workflow (Eleti
& Kilpatrick, 2023). Our implementation relies on OpenAI’s
gpt-3.5-turbo-0125 endpoint (Achiam et al., 2023), but the
modular framework allows for alternative models, as well.
Together, the PHM copilot and human personnel collaborate
to identify failure modes as quickly, while prioritizing less
invasive investigative steps first. For each alert from the pre-
dictive maintenance sensor system, the recommender agent is
sent the following prompt:

A sensor system identified the following warning(s):
[observed], pertaining to the asset [asset]. Write a list
of [step number] steps, to be executed in sequential or-
der, by a maintenance professional in order to identify
the casual failure mode. These steps should be as atomic
as possible. Our goal is to identify the failure mode as
quickly as possible, while prioritizing low-invasiveness
steps early on, as well.

where [observed] and [asset] are replaced with cleaned sensor
observations and asset type labels, respectively. [step num-
ber] is set to 10.

The Evaluator agent has access to each incident’s true failure
mode and is tasked with determining if the steps in the Rec-
ommender’s plan would identify the true failure if carried out.
The evaluator is sent the following prompt:

A sensor system identified the following warning(s):
[observed], pertaining to the asset [asset].
This prompted a thorough manual investigation, reveal-
ing the following failure mode: [failure mode].
Without knowing the true failure mode, the following se-
quential investigative plan was proposed: [plan].
For each step in the sequential investigative plan, as-
sess whether or not a trained maintenance professional
would explicitly discover the given true failure mode in
the course of performing that step in isolation and pro-
vide reasoning. If the step would not discover the failure
mode, represent that step with False. If it would dis-
cover the given failure mode, represent it with a True.
For example, for a failure mode of ’punctured inner
tube’, and steps of { step 1: ‘check tire pressure gauge’,
step 2:‘examine inner tube for punctures.’}, you should
represent it as {step 1:False, step 2:True}

where [observed], [asset], [failure mode], and [plan] are re-
placed with the sensor observation(s), applicable asset class,
plan produced by the recommender agent, and the ground
truth failure mode(s), respectively.

The Evaluator produces a boolean for each of the ten steps
in the Recommender’s plan: true if that step would catch the
ground truth failure, and false otherwise. The final output of
the Evaluator is a list of ten boolean values, which correspond
to each step in the given plan. The Evaluator validates each
step and each plan independently, allowing for multiple steps
in a plan to potentially reveal a true failure mode. In Evaluat-
ing cases with multiple failure modes, the Evaluator evaluates
the plan once per failure mode.

3.2. Case study with commercial PHM system records

GE Vernova offers a PHM solution which uses an anomaly
detection algorithm based on multivariate pattern recognition
(Herzog, 2014), (Herzog, Hanlin, Wegerich, & Wilks, 2005).
The company publicizes historical use cases - including sen-
sor anomalies detected by the PHM model, the root cause of
the fault, and the corrective actions taken - on its marketing
web page (GE, 2024). Table 1 illustrates textual data pro-
vided from an example case. The cases include categorical
fields for filtration (Asset, Industry, Market), images which
show the detected anomalous behavior, and free text fields
(Observation, Cause and Value).

To process the historical cases from the website for our au-
tomated workflow, we employ two additional LLM agents,
following the same structured generation via function-calling
scheme as the Recommender and Evaluator:

Observation Agent is responsible for reviewing the unstruc-
tured case text and returning a structured object describing
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Table 1. Example of the text from a case on the GE Vernova
website, with extracted observation and failure mode.

Field Case text

Title Increased bearing temperatures on a gas turbine ex-
posed

Asset Gas Turbine

Industry Power

Market Latin America

Observed Beginning in November, GE Digital’s Asset Perfor-
mance Management detected a deviation on a gas
turbine at a combined-cycle plant. Specifically, the
journal bearing temperature increased from 215◦F
(101◦C) to 245◦F (118◦C). GE Digital’s Industrial
Managed Services team added this item to the weekly
report for discussion with the customer.

Cause After the alert from GE Digital‘s Industrial Managed
Service team, the customer discovered a bearing mis-
alignment. After the customer aligned the bearing,
the journal bearing temperature returned to 208◦F
(97◦C).

Value Due to the early notification from GE Digital’s Indus-
trial Managed Service team, the customer was able to
align the bearing. Overheating of the bearing could
have resulted in damage to the bearing, which could
have led to repair costs, loss of production, and a trip.
GE Digital’s Industrial Managed Service team was
able to verify the maintenance actions were success-
ful by observing the actual values return to the model-
predicted estimate. This catch is estimated to have
avoided approximately $129,600 in costs. Avoided
costs are based on North American average produc-
tion loss.

Observed A deviation was detected on a gas turbine at a
combined-cycle plant. The journal bearing tempera-
ture increased from 215◦F to 245◦F.

Failure
Mode

Bearing misalignment

observed physical conditions. For each observation, the ob-
servation agent is given the following prompt:

You are helping to structure text by only returning the
observed behavior of the sensor system from the full
description. Anything regarding who did the observ-
ing, like GE Digital, or regarding Asset Performance
Management, the Managed Services team and discus-
sions with the customer are out of scope and not an ob-
served behavior of the sensor system. Structure output
in sentences with periods, keeping words like detected,
found or identified and include facility (ex:combined cy-
cle plant, oil and gas processing, offshore platform, coal
power plant, mining, etc) and asset (ex: motor, compres-
sor, steam turbine, gas turbine).. The full description is:
[observed]

The marketing web page data contains information that is not
useful for this case study such as details on the GE team, cost

savings, and customer interaction. An ideal response from the
observation agent will strip the reported text to its machine
observation. It is key that none of the important information
about the system’s observation itself is removed. An example
of an extracted response is shown in Table 1.

Failure Mode Extraction (FME) Agent. The FME agent,
tasked with failure mode classification, is responsible for pro-
cessing the asset, cause, and value fields to produce a struc-
tured list of failure modes. In this context, a “failure mode”
refers to the physical cause of asset failure that needs to be
identified during troubleshooting. Many case descriptions
also include observed faults which are symptoms or conse-
quences of the initial cause. While identifying these sec-
ondary faults is important for tasks such as maintenance plan-
ning, the focus of this use case is on identifying the primary
cause. Diagnosing a symptom rather than the cause may not
necessarily lead to the correct diagnosis or corrective action.
Under this contextual definition of failure mode, we expect
one or two primary faults per case. For each case, the FME
agent is given the following prompt:

You are helping identify the physical cause or failure
mode which contributed to a detected anomaly on a [as-
set]. From the following unstructured cause and value
statements, can you return the failure mode or modes in
a structured form. An ideal failure mode contains infor-
mation about two things: 1. Physical part(s) or compo-
nent(s) and 2. States or condition of the physical object
which caused the fault. If no failure mode is in the de-
scription, return ”no failure mode stated”. There can be
multiple failure modes, separate these with a semi-colon.
Do not return actions taken. Do not return observations
recorded from sensors such as increased temperature or
decreased pressure. The cause is: [cause] and the value
is: [value]

We utilize the processed case records to illustrate system
behaviors and understand practical implementation require-
ments for the PHM copilot. A high level schema of the sys-
tem and overview is shown in Figure 2. Ultimately, 394
historical cases were extracted from the GE Vernova web-
site, covering 36 asset classes, predominantly involving ro-
tating assets such as turbines, pumps, generators, and engines
in process manufacturing industries (oil and gas, chemicals,
mining, etc.). Some cases lacked structured fields; nine as-
sets were completed by our SME based on contextual infor-
mation. The distribution of cases among asset classes is un-
even. Out of the 36 asset classes, 10 (28%) had more than
10 cases each, collectively representing 82% of the dataset
(328 cases). The asset classes with the highest number of
cases include compressors, gas turbines, pumps, combustion
turbines, boiler feed pumps, steam turbines, reciprocating en-
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Figure 2. High level schema of the case study with the LLM agents used.

gines, generators, Heat Recovery Steam Generators (HRSG),
and jet engines.

3.3. RAG experiment

We briefly examine the potential of retrieval-augmented gen-
eration (RAG) to enhance system performance. The Recom-
mender agent is designed with two configurations: a baseline
with no augmentation (“LLM-only”), and a variation where
the Recommender is given access to semantically similar his-
torical records (“RAG”). To support this comparison, the
data is randomly split into a collection and a test set of 100
and 294 records, respectively. The records in the collection
set are organized into a local txtai vector database (Mezzetti,
2020) using the pre-trained all-MiniLM-L6-v2 encoder model
(Sentence Transformers, 2021), a down-sized implementa-
tion of MiniLM (W. Wang et al., 2020). Therein, historical
records are represented by fixed-length vectors representing
the records’ positions in all-MiniLM-L6-v2’s learned latent
space.

In the RAG configuration of the Recommender agent, incom-
ing alerts are queried against the vector database to identify
the 10 most semantically-similar historical records pertaining
to the same asset. Semantic similarity is assessed by pairwise
vector comparison; given vectors u and v (vector represen-
tations for the alert and a historical record, respectively), we
calculate cosine similarity:

similarity(u,v) =
u · v

∥u∥∥v∥
, (1)

i.e., the L2-normalized dot product between u and v. The
following is then appended to the Recommender’s prompt:

Here are some previous examples that may or may not
be relevant for this case: [context]

where [context] is replaced with the retrieved historical
records.

4. RESULTS

Subject Matter Experts (SMEs) were involved to validate
model behavior. The primary SME, a GE Vernova author
with over ten years of experience in commercial software de-
velopment and support, particularly with the software gener-
ating the historical case data, conducted most of the evalua-
tions. A second author with ten years of experience in Asset
Performance Management software and a Certified Mainte-
nance and Reliability Professional also reviewed the SME as-
sessments.

4.1. Observation and FME agents

To validate the results of the observation agent, 50 agent’s
cleaned observation responses were randomly sampled. 46
out of the 50 (92%) of the responses from the observation
agent contained all of the relevant information in the observa-
tion, In other words, for the SME-reviewed sample, the agent
returned the most complete response it could 92% of the time.
And in all 50, the marketing tone was dropped and the obser-
vations read like passive technical descriptions. An example
where the observation agent dropped relevant information is
shown in Table 2. In this example, most noteworthy is the
missing domain context in the original description which was
not present in the response.

As the results were reviewed with the SME, it was observed
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Table 2. Example of the Observation Agent in which con-
text such as the domain was dropped when translating GE’s
online description to a usable engineering description of the
observed behavior. The agent changes the tone and purpose
of the text to focus on the observation itself, as opposed to
superfluous information about GE and the date.

Text

Input On July 15th, GE Digital’s Asset Performance Man-
agement detected a potential performance/balance
flow issue on a boiler feed pump at an combined-cycle
power plant. On August 16, the bearing vibrations
on the outboard bearing of the boiler feed pump in-
creased from values of 1.3 mils up to values as high as
1.88 mils. GE Digital’s Industrial Managed Services
team added this item to the weekly report for discus-
sion with the customer.

Output The bearing vibrations on the outboard bearing of the
boiler feed pump increased from values of 1.3 mils up
to values as high as 1.88 mils.

Table 3. Accuracy metrics for the SME reviewed failure
modes predicted by the FME agent grouped by failure mode
category.

LLM extracted
failure mode

category

Percent
of Cases

Reviewed

Percent
with desired

label

Percent
with desired

label
or Partial

1 Failure Mode 6.2% 92% 100%

2 Failure Modes 7.1% 30% 100%

3+ Failure Modes 100% 0% 89%

No Failure Mode
Stated

100% 7% 13%

that in more complicated cases, such as involving faults aris-
ing from a complex chain of events, the FME agent was more
likely to err and return all possible listed faults (including
symptoms of the fault), list information instructed not to list
in the prompt, or list avoided faults. In some cases it did not
state a failure mode. To address this issue, we determined that
some of the data required hand labeling post-hoc. Rather than
hand labeling all of the data, we used a process for identify-
ing which failure modes to review. The criteria for selecting
data to review and hand labeling was:

• 3+ Failure Modes: If a case has more than 2 LLM ex-
tracted failure modes (28 cases)

• No Failure Mode Stated: If the LLM suggested “no
failure mode stated” (16 cases)

• 2 Failure Modes: Random sample of cases with 2 iden-
tified failure modes (10 cases)

• 1 Failure Mode: Random sample of cases with 1 identi-
fied failure mode (13 cases)

A total of 67 cases were reviewed by SMEs for failure modes,
resulting in 51 failure mode labels being overwritten by SME

labeling. A partial score option was available and typically
used in cases when the desired failure mode was identified,
but additional, extraneous failure modes were also returned.
During hand-labeling, these extraneous failure modes were
deleted. Ultimately, each of the 394 cases ended up with 0, 1,
or 2 failure mode labels.

The accuracy metrics split by failure mode group are reported
in Table 3. The high percentage of correct or partially correct
scores (third column of Table 3) indicates that the LLM often
correctly identified the failure mode, but in some cases added
unnecessary additional failure modes.

4.2. Recommender agent

The Recommender produced 294 plans recommending 10
steps for each case to solve the issue from the asset class and
observation.

The Evaluator agent is used to asses the efficiency of the
Recommender, i.e., how early, if at all, personnel following
the Recommender’s troubleshooting steps would discover the
true failure mode. Example output for the case shown in Ta-
ble 1, pertaining to bearing misalignment on a gas turbine, is
shown in Table 4. In the RAG configuration, the recommen-
dation to check for bearing alignment occurred earlier than in
the LLM-only setting (Step 5 and Step 2, respectively).

Overall, the Evaluator assesses the Recommender as on av-
erage catching more failure modes (96.0%) and doing so
in fewer steps (2.49) when employing RAG than without
(94.0% and 3.49, respectively), as illustrated in Table 5 and
Figure 3.

4.3. Evaluator agent

Our proposed system involves an Evaluator agent, following
existing LLM-as-judge patterns. It is not guaranteed, how-
ever, that the Evaluator is itself a reliable judge. We evaluated
the Evaluator via spot-checking, employing a Subject Matter
Expert (SME) to manually review recommendations across
10 randomly selected cases covering 12 failure modes, for 20
sets of recommendation steps covering 24 failure modes total
(Figure 4).

The Evaluator assessed that the Recommender’s trou-
bleshooting steps would lead to the discovery of the failure
mode in 95.8% of the manually-checked cases; the SME,
on the other hand, found a failure mode discovery rate of
70.8%. Agreement on which step would reveal the failure
mode, however, was only 25% (Figure 4).

5. DISCUSSION

We outline a simplistic LLM agent-based AI copilot frame-
work to understand the scope, requirements and considera-
tions for realistic implementation in the PHM domain. Our
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Table 4. Sample responses of the Recommender (LLM-only and RAG) and Evaluator agents for the example case in Table 1.

Step No. Recommender - LLM only Evaluator
LLM only Recommender - RAG Evaluator

RAG

Step 1 Inspect the gas turbine for any visible signs
of damage or wear such as leaks, corrosion,
or loose components.

FALSE Check for any visible signs of damage or wear on
the gas turbine components, focusing on the
journal bearing area.

FALSE

Step 2 Check the lubrication system of the gas
turbine to ensure proper functioning and
adequate lubricant levels.

FALSE Inspect the alignment of the gas turbine
components, specifically the journal bearing
alignment.

TRUE

Step 3 Review the operating logs and maintenance
records of the gas turbine to identify any
recent maintenance activities or
abnormalities.

FALSE Review historical data of the gas turbine to
identify any previous deviations or trends in
temperature changes in the journal bearing.

FALSE

Step 4 Conduct a vibration analysis on the gas
turbine to detect any abnormal vibrations or
resonance that could indicate a potential
issue.

FALSE Analyze the cooling system of the gas turbine to
ensure proper functioning and circulation of
coolant around the journal bearing.

FALSE

Step 5 Inspect the journal bearings of the gas
turbine for signs of wear, misalignment, or
lack of lubrication.

TRUE Conduct a thermal imaging scan of the journal
bearing area to identify any areas of abnormal
temperature rise.

FALSE

Step 6 Perform a thermographic inspection of the
gas turbine to identify any hotspots or
temperature anomalies.

FALSE Inspect the lube oil system to check for any issues
with lubrication that may be impacting the
journal bearing temperature.

FALSE

Step 7 Check the cooling system of the gas turbine
to ensure proper cooling and ventilation to
prevent overheating.

FALSE Review the control valves and cooling fans
related to the journal bearing to ensure they are
functioning correctly.

FALSE

Step 8 Inspect the inlet air filters of the gas turbine
to ensure they are clean and not causing any
restriction to airflow.

FALSE Perform vibration analysis on the gas turbine to
detect any abnormal vibrations that may be
causing the temperature deviation in the journal
bearing.

FALSE

Step 9 Conduct a borescope inspection of the gas
turbine internals to check for any blockages,
fouling, or damage.

FALSE Check the insulation around the inner barrel
tunnel to ensure there are no gaps or issues
causing heat build-up in the journal bearing area.

FALSE

Step 10 Review the control system and operational
parameters of the gas turbine to ensure they
are within normal operating limits and
settings.

FALSE Verify the alignment and condition of the fuel
nozzles to rule out any potential issues affecting
the journal bearing temperature.

FALSE

Table 5. Output of the evaluator agent across 294 cases and
399 failure modes, comparing two models for recommender
agent - LLM-only and RAG-based. Results are normalized
across both failure mode and case.

Metric LLM-only RAG

No. Failure Modes Caught 375 383
% Failure Modes Caught 94.0% 96.0%
No. Cases all Failure Modes Caught 271 278
% Cases all Failure Modes Caught 92.2% 94.6%
Mean No. of Steps 3.49 2.49
Standard Deviation 3.40 2.28
Median 1.0 1.0

findings identify several areas of priority for developing a
more sophisticated practical system.

Data Preparation. The Observation Extraction task was rel-
atively straightforward for the LLM and generally performed
well. Although content the SMEs found important was oc-

casionally omitted, the agent performed well overall while
executing significantly faster than manual text cleanup.

The FME task was less straightforward, especially in more
complex cases. When the description contained content or-
ganized as a list of failure modes such as a sequence of cas-
cading events or avoided faults, the FME agent struggled to
select the desired fault(s) (cause fault or occurred fault in this
example) and tended to select every possible fault in the de-
scription. The differences in performance between the Obser-
vation and FME extraction tasks highlight the importance of
domain knowledge in failure mode extraction.

PHM Copilot. Our experiment explored providing the Rec-
ommender domain knowledge via retrieved historical cases,
and our results indicate that doing so improves system perfor-
mance. Historical cases, however, do not provide sufficient
coverage to serve as sole exemplars; instead, an approach
that also retrieves passages from relevant technical manuals,
P&ID diagrams, or textbooks may be preferable.

9
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Figure 3. Box plot comparison of the number of steps (for
failure modes identified) in which a failure mode would have
been caught following the recommendations of the recom-
mender agent, according to the evaluator agent. Cases where
the failure mode were never discovered at all are excluded.

Agreement between the Evaluator agent and SME review-
ers was low; future work should explore integrating domain
knowledge on the Evaluator side, as well. We emphasize that
a strong Evaluator can itself lead to a strong Recommender.
Due to the stochasticity of LLM outputs, a self-checking pro-
cedure whereby the Recommender generates several trou-
bleshooting plans and the Evaluator selects the best among
them has the potential to improve Recommender performance
without making changes to the Recommender.

5.1. Limitations and Future work

The limitations in this case study are organized to highlight
areas for future work and key design considerations for adapt-
ing LLM technology to PHM applications.

Case Study Data. The diversity of the different asset types
in the case study dataset was beneficial for identifying high
level requirements, but in practice, each asset type, its us-
age and manufacturer specific design elements are specific
inputs for health monitoring. This variability means that dif-
ferent assets or systems in similar operational contexts may
require distinct technical manuals and specifications with rel-
evant physical system information.

Further, the case study data consists of cleaned success sto-
ries, which may not be representative of realistic asset con-
dition data streaming to a predictive modeling system. This
dataset does not accurately represent a class-imbalanced envi-
ronment, where 99.99% of observations are healthy and false
positives are the predominant type of alert.

Information Retrieval and Reference Data. The retrieval

strategy employed for the Recommender Agent’s RAG con-
figuration is simplistic, relying on semantic similarity alone.
Depending on the use case, more sophisticated approaches
may be applied to retrieve the most relevant context. For fu-
ture system development, an appropriate evaluation processes
is needed to ensure the accuracy and relevance of the docu-
ments retrieved by the system.

While relying solely on historical cases as a reference dataset
can provide insights into commonly recurring faults and help
avoid past mistakes, there are limitations. Rare but high-
consequence faults may not be adequately represented. Ad-
ditionally, using only historical cases overlooks valuable re-
sources such as technical manuals, P&ID diagrams, and rele-
vant textbooks. Recent work has developed approaches for
using LLMs to assist in extracting content from technical
manuals to assist in maintenance troubleshooting (Vidyaratne
et al., 2024).

The LLM used in this work is natively unimodal. Realis-
tic PHM applications, however, may include data best ex-
pressed in non-text modes, such as images or audio. Recently,
multimodel LLMs have been explored for engineering design
(Doris et al., 2024), (Picard et al., 2023), (Ferdousi et al.,
2024). Future work should focus on identifying how to adapt
context- and asset-specific technical content which may be
multi-modal in nature.

Performance Evaluation. Our evaluator agent served as
a placeholder to ensure system validation was explicitly in-
cluded in the PHM co-pilot. In this study, the evaluator agent
simply checked whether a specific failure mode would be
identified by the recommendations. However, other perfor-
mance metrics, such as assessing if the troubleshooting steps
are in order of increasing invasiveness, may also be impor-
tant.

In addition to enhancing the existing evaluation approaches,
future work should focus on expanding the coverage of evalu-
ated responses. While manually review of model outputs de-
mands significant SME bandwidth, it allows for deeper anal-
ysis such as comparing performance across different physical
systems. More broadly, there is a need for standardized ap-
proaches to evaluate and benchmark LLM performance for
industrial applications.

Operational Constraints. The case study was performed
on personal laptops using a shared repository. However, for
an operational system, it is important to consider additional
components including legal, cybersecurity and aspects of Re-
sponsible AI. For instance, access to LLMs like GPT-3.5 are
readily accessible via APIs. However, using these APIs could
result in data leakage through prompts sent to the hosting
company. Protecting sensitive information, such as export
control data in a nuclear power plant, necessitates secure,
controlled environments for deploying pre-trained LLM’s,
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Figure 4. Comparison between the Evaluator agent (output evaluated by LLM) and the SME evaluation (output evaluated by
SME) for a subset of cases covering 24 failure modes.

which presents additional challenges in model and technol-
ogy selection and system design.

Operational constraints also involve data collection, storage
and handling of PHM data. Additionally, human-centered de-
sign is important, as involving end-users in the development
process ensures the tool meets practical needs. These consid-
erations provide a starting point and highlights key areas for
further development with industrial requirements in mind.

6. CONCLUSION

A PHM copilot was implemented using open-source case
data, as a proof-of-concept to explore the potential for tai-
loring LLMs to PHM tasks. At a high level, two primary use
case areas were identified where LLMs demonstrate value:
(1) as tools for data quality improvement, where data may
be insufficient for the desired analytics, and (2) as a tool for
developing a prescriptive layer on an already mature prescrip-
tive model to assist in decision support and recommendations.

A significant challenge in this study was the resource-
intensive process of manual SME reviews, which limited our
ability for deeper exploration such as incorporating additional
performance metrics and integrating additional data sources
such as technical manuals for retrieval. For future develop-
ment in this area, we suggest incorporating simpler, more
gradable tasks upfront to streamline experimentation and al-
low for more efficient evaluation. It may be also beneficial to
modify the design of the PHM recommender system to miti-
gate LLM limitations, such as their non-deterministic nature,
to enhance applicability in industrial settings.
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