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ABSTRACT

Change detection is crucial for various industrial applications.
Although image change detection datasets are abundant, the
collection of labeled video data is time-consuming, expen-
sive, and cumbersome. This scarcity of labeled data moti-
vates the development of few-shot or zero-shot video change
detection techniques which may generalize well to new situa-
tions. Existing video change detection methods require large
amounts of labeled data, are task-specific, and difficult to gen-
eralize. Therefore, in this paper, we propose a zero-shot video
change detection algorithm using pre-trained deep learning
models and conventional image processing techniques. Our
approach identifies matching frames from input videos, ad-
justs lighting conditions if necessary, and uses an existing ob-
ject detection model to identify objects in both frames. The
method is easily generalizable by making few changes. We
evaluate our proposed method on the VDAO dataset collected
in a cluttered industrial environment and demonstrate its ef-
fectiveness in detecting changes between pairs of videos con-
taining single and multiple objects.

1. INTRODUCTION

Video change detection is the process of identifying and an-
alyzing differences between two or more video frames cap-
tured at different times. The goal is to detect meaningful
changes in a scene, such as the appearance or disappearance
of objects, modifications in the environment, or movement.
This technique is crucial in various applications, including
surveillance, forensic analysis, and environmental monitor-
ing. For example, in surveillance systems, video change de-
tection can automatically flag when an object is left behind or
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removed from a scene, such as in cases of suspicious activi-
ties. The process typically involves comparing frames pixel
by pixel or analyzing patterns in object movements to detect
significant alterations. However, challenges such as lighting
variations, shadows, and background movement (e.g., trees
swaying) can complicate accurate detection. Advanced tech-
niques, like background subtraction, optical flow, and deep
learning, help improve the accuracy of detecting only mean-
ingful changes while minimizing false positives caused by
noise or minor scene variations.

Consequently, sophisticated deep learning-based techniques
are utilized to identify changes between a pair of videos. Col-
lecting sufficient labeled video data for training large deep
learning models is time-consuming, cumbersome, and expen-
sive. As such, it is imperative to develop a few-shot, ideally, a
zero-shot video change detection technique for industrial ap-
plications where labeled data are scarce. Zero-shot change
detection refers to a method that identifies changes between
two sets of data without requiring any labeled training ex-
amples of those changes. In the context of video analysis,
the model does not rely on previously labeled data indicat-
ing what types of changes to look for. Instead, it detects
differences by analyzing the features of objects in the data
and identifying new, disappeared, or altered elements directly.
This approach allows the model to generalize to unseen sce-
narios without needing specific prior training for each type of
change.

Few studies in the literature introduce deep learning video
change detection techniques using publicly available datasets.
Nevertheless, these methods require huge labeled video data
to train deep learning models from scratch. Furthermore, the
existing methods are task specific and, hence, difficult to gen-
eralize. Therefore, in this paper, we propose a zero-shot video
change detection algorithm utilizing pre-trained deep learn-
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ing models and conventional image processing and computer
vision techniques. More specifically, our proposed technique
incorporates the following steps: i) identify matching pairs
of frames from the pair of input videos, ii) adjust lighting
condition between the matching pairs if necessary, iii) adjust
any misalignment between the matching frames, iv) utilize
an existing pre-trained deep learning object detection model
to identify objects in both the matching frames, and finally
v) find nonoverlapped object bounding boxes between each
pair of video frames to identify the changes. Our proposed
method is easily generalizable by making few changes in the
steps mentioned above. We investigate the efficacy of our
proposed method on the publicly available Video Database of
Abandoned Objects (VDAO) collected in a cluttered indus-
trial environment. Our results suggest the proposed zero-shot
video change detection framework shows improved perfor-
mance compared to an ideal change detection scenario.

2. RELATED WORK AND OUR OBJECTIVE

Several works in the literature propose various methods for
solving the change detection problem (Zhang et al., 2022; Li
et al., 2022; K. Chen et al., 2022; Daudt et al., 2018). How-
ever, the majority of the works focus on the image change
detection, and hence, video change detection problem is still
largely unexplored albeit numerous practicable industrial ap-
plications. Consequently, this work proposes a novel frame-
work for zero shot video change detection in the complex in-
dustrial environment.

Image change detection has been an active research area for
decades, with numerous techniques proposed over the years.
These approaches can broadly be categorized into traditional
methods and deep learning-based methods. Traditional ap-
proaches involve pixel-based methods, such as image dif-
ferencing and image ratioing, which calculate the difference
or ratio between pixel values from two images to identify
changes (Singh, Harrison, & Aggarwal, 1989). Another ap-
proach, change vector analysis (CVA), analyzes the differ-
ence in spectral bands and principal components of mul-
tispectral images to detect changes (Malila, 1980). With
the advent of machine learning, researchers began exploring
supervised and unsupervised techniques. Supervised meth-
ods include support vector machines (SVM), decision trees,
and random forests, which require labeled data to learn and
classify changes (Bruzzone, Rizzo, Gaddi, & Marconcini,
2004). Unsupervised methods, such as K-means clustering
and Gaussian mixture models, identify changes by group-
ing pixels with similar characteristics (Celik, 2010). Deep
learning-based approaches have recently gained popularity in
image change detection due to their ability to extract features
automatically and model complex relationships. Convolu-
tional neural networks (CNNs) have been widely used for this
task, including architectures like U-Net, FC-EF, and ResNet
(Zhang et al., 2022; Li et al., 2022; K. Chen et al., 2022). Au-

toencoders have also been employed for unsupervised change
detection, as they can learn meaningful representations from
the data without requiring explicit labels (Daudt et al., 2018).
Briefly, image change detection has evolved from pixel-based
and traditional machine learning methods to deep learning ap-
proaches, showcasing the continuous progress in this field.
As techniques continue to advance, so does the potential for
more accurate and efficient change detection systems.

Video change detection poses greater challenges than image
change detection due to various factors, with labeled data
scarcity and complexity being key contributors. Labeled data
scarcity is a significant issue in video change detection, as
large amounts of annotated data are often unavailable or chal-
lenging to obtain. This is due to the time-consuming nature
of annotating video datasets and the potentially high costs as-
sociated with the process. Consequently, unsupervised meth-
ods, transfer learning, traditional computer vision approaches
and a combination of all of the above approaches may be nec-
essary to design a robust video change detection algorithm.
The complexity of video data is another critical challenge in
video change detection. Videos contain spatial and tempo-
ral dimensions, leading to larger data volumes compared to
images. Analyzing temporal information requires capturing
spatial changes over time, which can be computationally ex-
pensive and challenging to model. Moreover, videos often ex-
hibit different scene variations, camera motions, illumination
changes, and occlusions, further complicating the change de-
tection process. Additionally, the presence of irrelevant mo-
tions, such as moving background objects or camera jitter,
can introduce noise and hinder accurate detection. In sum-
mary, video change detection is more challenging than image
change detection due to labeled data scarcity and the inher-
ent complexity of video data. Addressing these challenges
requires innovative approaches to training models and effi-
ciently handling spatial and temporal information.

Video change detection has evolved significantly over the
years, with various approaches proposed to address the chal-
lenges posed by the temporal dimension of video data. Tra-
ditional video change detection methods typically involve
background subtraction techniques, which identify changes
by comparing each frame to a background model (Elgammal,
Harwood, & Davis, 2000). Techniques such as frame differ-
encing, optical flow, and motion compensation have also been
employed for change detection (Hu et al., 2011; Mahade-
van & Vasconcelos, 2012). Handcrafted feature-based ap-
proaches extract features like histogram of oriented gradients
(HOG), scale-invariant feature transform (SIFT), and local bi-
nary patterns (LBP) from video frames (Mittal & Zisserman,
2013; Saha, Chaudhury, Banerjee, & Saha, 2013). These
features are then analyzed for changes using various ma-
chine learning techniques, including support vector machines
(SVM) and Gaussian mixture models.Deep learning-based
methods have recently emerged as powerful tools for video
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change detection. Recurrent neural networks (RNNs), such
as long short-term memory (LSTM) networks, have been ap-
plied to model temporal information in videos (Z. Chen et
al., 2018). Convolutional neural networks (CNNs) and their
variants, such as two-stream CNNs and fully convolutional
networks, have also been used to extract spatiotemporal fea-
tures (Bai et al., 2019; Yang, He, Chen, Tian, & Yu, 2020).
More recently, transformers have demonstrated strong poten-
tial in video change detection, as they can efficiently capture
long-range dependencies (Zhu et al., 2021). Nevertheless,
collecting large amount of labeled video data is very difficult
especially in real life industrial use cases. As such, zero-shot
video change detection has emerged as a promising approach
to address the challenges of annotated data scarcity in video
analysis.

Zero-shot video change detection methods aim to detect
changes in unseen scenarios without requiring labeled data
for specific events or categories. One approach involves
leveraging pre-trained visual-language models that have been
trained on large-scale image-text datasets (Ahmad et al.,
2023). These models learn to associate visual features with
textual descriptions, enabling zero-shot recognition of actions
or events in videos. Another line of work utilizes foundation
models like the Segment Anything Model (SAM) (Telle et al.,
2023). In this approach, the model detects semantic regions in
previously acquired maps and live views, and change detec-
tion is performed by comparing the segmentation masks. Ad-
ditionally, some techniques such as event composition knowl-
edge extracted from web images (Gan et al., 2017) are uti-
lized for zero-shot event detection in videos. These methods
aim to understand the relationships between events and rec-
ognize unseen events based on their composition. However,
the above mentioned methods suffer computational complex-
ity and generalization issues. Furthermore, the foundational
visual-language models are resource intensive which is pro-
hibitive in most real life industrial applications.

In view of the challenges posed by generalization and
resource-intensive nature of existing methods, this research
presents a robust zero-shot video change detection framework
specifically designed for real-life industrial applications. Our
novel approach overcomes these obstacles by integrating
pre-trained deep learning models with conventional image
processing and computer vision techniques. The key steps of
our method include:

1. Matching frame identification from a pair of input
videos.

2. Lighting condition adjustment between the matching
frames.

3. Misalignment correction between the matching frames.

4. Object detection in both frames using a pre-trained deep
learning model.

5. Non-overlapping object bounding box comparison to
identify changes.

Our proposed technique can be easily generalized with minor
adjustments in the above steps.

3. BACKGROUND

The following few sections provide a brief background on the
YOLO object detection model, color transfer and video frame
matching techniques.

3.1. YOLO Object Detection

YOLO is a real-time object detection model that balances
speed and accuracy. It combines the efficiency of a uni-
fied architecture with the precision of a specialized detec-
tion method, making it effective across various applications
and deployment scenarios. In this work, we utilize the more
advanced YOLOv7 (Cholakkal et al., 2022) object detection
model. The YOLOv7 model consists of scaled-YOLOv7 (S-
YOLOv7) and CSP-YOLOv7, which enable the model to
significantly outperform other state-of-the-art detectors. S-
YOLOv7 introduces architectural changes such as scaling
the YOLOv7 architecture to different sizes, allowing for effi-
cient and accurate object detection across various devices and
datasets. This adaptability ensures the model’s performance
is maintained even when deployed on resource-constrained
devices. CSP-YOLOv7 is another important component of
the overall architecture, leveraging the Cross-Stage-Partial
(CSP) approach to further improve the model’s performance.
By implementing CSP modules within the YOLOv7 frame-
work, CSP-YOLOv7 enhances the extraction and processing
of essential object features, leading to increased detection ac-
curacy. The YOLOv7 architecture is trained from scratch on
the MS COCO dataset, demonstrating its effectiveness in han-
dling diverse and complex object detection tasks. We utilize
the pre-trained YOLOv7 model to solve the object detection
step of our proposed video change detection algorithm. How-
ever, in scenarios where the object of interest in the video is
unique or significantly distinct from the objects used to train
YOLOv7, finetuning the model with a small custom-labeled
dataset may be necessary for optimal performance.

3.2. Color Transfer

Image color transfer aims to modify a target image’s colors
to match the color palette, tone, or lighting of a reference
image. Common methods include palette-based clustering
for segmenting images into color regions and defining color
mapping strategies to reproduce the desired color distribu-
tion. Additional techniques like histogram matching, neu-
ral style transfer, and lighting optimization enhance the vi-
sual similarity between reference and target images for seam-
less color transfer.This paper employs a fast and robust color
transfer method proposed by (Reinhard, Adhikhmin, Gooch,
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Figure 1. Overall pipeline of the zero-shot video change detection framework.

& Shirley, 2001), which effectively transfers color character-
istics between images, such as color palette, tone, and light-
ing. The approach utilizes palette-based clustering to seg-
ment images into different color regions and defines a color
mapping strategy to replicate the reference image’s color dis-
tribution onto the target image. Lighting optimization is also
applied to further improve the visual similarity between the
two images, resulting in a more seamless color transfer.

3.3. Video Frame Matching

Video frame matching (Teller, Larsen, & Foga, 2022; Laptev,
Weickert, & Rae, 2022) is a process that involves establish-
ing spatial and temporal correspondences between frames in
a video sequence or between frames from different videos.
The goal is to correct any misalignments caused by camera
motion, object movement, or variations in the scene, ensur-
ing that frames can be accurately compared or combined for
tasks such as video stabilization, object tracking, or video
similarity analysis. Common methods include feature-based
matching, optical flow estimation, and deep learning-based
techniques for accurate frame registration and alignment. In
this paper, we utilize a ResNet based feature matching algo-
rithm to solve the video frame matching step in our proposed
video change detection framework.

4. METHODOLOGY

Figure 1 presents an overview of the proposed zero-shot video
change detection framework, which comprises several critical
components designed to address real-world challenges, such
as frame misalignments and varying lighting conditions. The
framework consists of the following steps.

i) Frame Matching - Establishing Corresponding Pairs

The inputs to the video change detection framework are a pair
of video sequences. Video sequences often suffer from frame
misalignments, making it difficult to directly compare corre-
sponding frames from video A and video B. To address this
challenge, this framework employs a ResNet-based feature
matching algorithm to identify the most similar frames be-
tween videos A and B. Specifically, the algorithm extracts
frames from both videos at regular intervals, preprocesses
them by resizing and normalizing, and then computes fea-
ture vectors using the ResNet18 model. These vectors cap-

ture high-dimensional representations of the frames’ visual
content. The cosine similarity between feature vectors of
frames from the two videos is calculated to find the most
similar pairs. This method selects the top n pairs based on
their similarity scores. The chosen features and distance met-
ric used to compare them determine the sensitivity of the
matching process to factors such as lighting variations and
camera motion. By accurately matching frames despite these
challenges, the framework establishes a robust foundation for
subsequent change detection. This ensures that any differ-
ences detected between the videos are based on relevant, cor-
responding frames, enhancing the reliability of the compar-
ison. Therefore, the initial step guarantees that our method
remains unaffected by the varying number of frames between
the two videos, discrepancies in their starting points, and dif-
ferences in the frame rates of the videos.

ii) Lighting Adjustment - Ensuring Consistency

Videos A and B might be captured under different lighting
conditions, leading to inconsistencies that can hinder change
detection. The framework utilizes an efficient color transfer
technique proposed by (Reinhard et al., 2001) to mitigate this
challenge. This process adjusts the lighting of the matched
frame from video B to align it with the lighting of the cor-
responding frame from video A. By mitigating lighting in-
consistencies, the framework allows for more accurate object
detection and change identification in the following steps.

iii) Frame Alignment - Refining Correspondence

Despite successful matching, minor misalignments may still
occur within frames due to factors such as camera motion
or object movements. This necessitates the calculation of
horizontal and vertical shifts between the matched objects
within the frames. To address this, various techniques can
be employed to align the images. One approach involves
leveraging geometric methods to utilize the scene’s geome-
try for alignment. For instance, homography estimation tech-
niques can be utilized to determine the transformation matrix
that relates corresponding points in the two images, assuming
that the scene is planar. Additionally, other methods exploit
the epipolar geometry between the images to establish corre-
spondence and align them. Furthermore, techniques like nor-
malized cross-correlation between local image patches can
be employed to determine the optimal horizontal and vertical
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Figure 2. Example of labeled VDAO dataset, left is single object, right is multiple objects.

shifts for alignment. By applying the calculated shifts, the
framework aligns the B frames with the A frames, ensuring
precise object localization across matched frames and lead-
ing to more reliable change detection. This comprehensive
approach to frame alignment is essential for ensuring the ac-
curacy and reliability of image processing tasks.

iv) Object Detection - Identifying Objects of Interest

This step leverages a pre-trained or fine-tuned YOLOv7 ob-
ject detection algorithm to identify objects within both the
original A frame and the aligned B frame. YOLOv7 is a
state-of-the-art object detection algorithm known for its abil-
ity to detect objects in real time with high accuracy. It pre-
dicts bounding boxes and corresponding object class labels
for each detected object within an image. Object detection
provides crucial information about the presence and location
of objects in each frame, allowing the framework to pinpoint
potential changes.

v) Identifying Changes - Analyzing Overlaps

The final step focuses on analyzing the overlaps between the
bounding boxes identified in the A and B frames using ob-
ject detection technique mentioned in the previous step. The
framework calculates the intersection area between each pair
of bounding boxes. A high degree of overlap suggests the
object might be present in both frames, while minimal or no
overlap indicates a potential change. Bounding boxes with
minimal or no overlap in the A and B frames are flagged as
potential new objects or areas of change. This information
can be further processed to pinpoint specific types of changes,
such as object additions, removals, or modifications. Tech-
niques like analyzing object class labels or comparing image
patches within non-overlapping bounding boxes can be em-
ployed to refine change detection and potentially identify the
nature of the change (e.g., object type change, damage assess-
ment).

In summary, our proposed zero-shot video change detection
framework offers a robust and efficient solution to identify

changes in video sequences. By combining frame match-
ing, lighting adjustment, object detection, and change iden-
tification algorithms, the proposed pipeline effectively ad-
dresses real-world challenges, such as frame misalignments
and varying lighting conditions, ensuring reliable perfor-
mance in practical scenarios. It is important to highlight that
our model is referred to as zero-shot because it does not rely
on labeled changes within the videos. Specifically, in this pa-
per, we do not use labeled abandoned objects to perform the
change detection task; labels are only employed for perfor-
mance evaluation. Instead, our approach identifies objects in
both videos and compares the overlap in their detections to
detect new objects.

5. RESULTS AND DISCUSSIONS

5.1. VDAO Dataset Description

The authors in (Freitas et al., 2014) presents a comprehen-
sive video database called VDAO, which is designed to eval-
uate surveillance systems for the automatic detection of aban-
doned objects in cluttered environments. The dataset pro-
vides two types of videos, i) a reference video of the cluttered
environment without any abandoned object which we refer as
V ideoRef and ii) a video of the same cluttered environment
with the addition of the abandoned object(s) which we re-
fer as V ideoObj . More comprehensively, the dataset includes
66 videos: 56 single-object shown in the left of Figure 2, 6
multi-object shown in the right of Figure 2, and 4 reference
videos without objects, recorded under two lighting condi-
tions (spotlight and natural light) using two high-resolution
cameras. The single-object videos feature 9 different objects,
each captured in 3 distinct positions, while the multi-object
videos consist of 15 objects placed in 3 different arrange-
ments. This results in an approximate total of 8.2 hours of
video. Each frame in the dataset is meticulously annotated
with bounding boxes around the objects. In our work we uti-
lize this dataset to evaluate the performance of our proposed
zero-shot video change detection framework.
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Figure 3. Example of proposed video change detection pipeline. Notably, in the final output majority of the FPs are removed
by the non-overlap bounding box identification algorithm.

5.2. Experiment Setup and Evaluation

The objects used in the VDAO dataset are obscured in an in-
dustrial setting. Therefore, directly applying a pre-trained
deep model is challenging. As such, we fine-tune a pre-
trained YOLOv7 model using the objects in the VDAO
dataset videos. As mentioned in the previous section, the
VDAO dataset includes 56 object classes, such as white-box,
dark-blue-box, black-backpack, and pink-backpack. We re-
duce the class granularity by grouping the object classes into
13 classes: backpack, box, bottle, coat, bag, bottle-cap, mug,
string-roll, umbrella, wrench, jar, shoes, and towel. We ran-
domly sample 500 frame images from all classes to fine-tune
YOLOv7 model for 50 epochs. We ensure that the training
videos utilized for object detection fine-tuning task are sepa-
rate from the test videos.

The main objective of this work is to detect the changes
between the reference (V ideoRef ) and the videos with ob-
jects (V ideoObj). The video change detection task is ob-
tained by following the pipeline show in Figure 1. For bet-
ter understanding, an example of the major steps of our pro-
posed algorithm using the videos from the VDAO dataset
is shown in Figure 3. We evaluate the performance of our
proposed method by computing the frame level object detec-
tion accuracy. For each pair of frames we run the fine-tuned
YOLOv7 object detection model on both the matched frames
of V ideoRef and V ideoObj . The output of the YOLOv7
model is a set of bounding boxes obtained from V ideoRef

frame and the V ideoObj frame. We apply non-overlapping
bounding box identification algorithm on the set of V ideoRef

frame and the V ideoObj frame bounding boxes. We com-
pare the final outcome with the ground truth to identify which
bounding boxes are true positives (TP), false positives (FP)
and false negatives (FN). We compute TP, FP, and FN for all
the frames of the V ideoRef and V ideoObj . We repeat this
process for six different videos of three different object cate-
gories to obtain the total number of TP, FP, and FN. Finally,
we compute the precision and recall metrics using the total
number of TP, FP, and FN.

The existing deep learning based video change detection tech-
niques are trained using labeled data, and hence, are un-
suitable to perform a direct comparison with our proposed
method. As such, we utilize an ideal scenario where we as-
sume that it is already known which frames of the V ideoObj

contains the new objects. In this case the V ideoRef video
is ignored to identify the change. We run the fine-tuned
YOLOv7 model only on those frames to obtain the object de-
tection outputs. We then compare the detection outputs with
the ground truth to obtain TP, FP, and FN. The pipeline of the
ideal change detection case in shown in Figure 4. In this case
also we utilize the exact same six videos that we used for our
proposed method. Similarly, for the ideal pipeline we com-
pute the precision and recall metrics using the total number
of TP, FP, and FN.

For the videos containing multiple objects, we follow the
same evaluation strategy. However, the VDAO dataset in-
cludes limited videos containing multiple objects. We use two
videos which provides ground truth labels for performance
evaluation.

5.3. Analysis of Results

We first evaluate the results for the videos containing sin-
gle objects. Table 1 shows a comparison between the ideal
change detection case and our proposed zero-shot change de-
tection technique for the single object video use case in terms
of TP, FP, FN, Precision and Recall. We use two different in-
tersection of union (IOU) thresholds to determine correctness
of a bounding box. For example, an IOU threshold greater
than 0.5 means, if there is a 50% overlap between the pre-
dicted bounding box and the ground truth box we consider
that bounding box as a correct detection i.e. TP. Understand-
ably, setting a higher IOU threshold results in poor correct
bounding box detection performance. Table 1 demonstrates
that our proposed method shows slightly better performance
compared to the ideal scenario when IOU threshold is greater
than 0.5. However, when the IOU threshold is greater than
0.95 our method performs significantly better than the ideal
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Figure 4. Ideal change detection pipeline. It is assumed that the pipeline already has access to the frames where the new object
appears without using the reference video frames.

scenario. It should be noted here that our proposed algo-
rithm automatically reduces many false positives during the
non-overlap bounding box identification steps, and hence, the
overall performance improvement.

Ideal Change Detection Our Proposed
IOU > 0.5
TP 4158 4156
FP 198 90
FN 12 12
Precision 0.95 0.98
Recall 0.996 0.997
IOU > 0.95
TP 966 966
FP 3390 2760
FN 3204 3198
Precision 0.22 0.26
Recall 0.231 0.232

Table 1. Comparison between ideal change detection scenario
vs our proposed method for single object video use case.

Next we use the videos containing multiple objects to com-
pare our proposed method with the ideal change detection
case. Table 2 shows the comparison between the two methods
in terms of TP, FP, FN, Precision and Recall for two different
IOU thresholds, 0.5 and 0.95, respectively. In this case also,
the results suggest that our proposed algorithm shows sig-
nificantly improved performance compared to the ideal case
scenario. Once again, Table 2 demonstrates the FP reduction
efficacy of our proposed algorithm.

It is observed from Table 2 that the object detection perfor-
mance for the multi object use case is significantly lower than
that of the single object use case. The number of FPs and
FNs are significantly higher in this case. This is due to the
hidden positioning and small size of the objects. Figure 5

Ideal Change Detection Our Proposed
IOU > 0.5
TP 9995 9985
FP 4275 1821
FN 5802 5817
Precision 0.70 0.85
Recall 0.63 0.63
IOU > 0.95
TP 1786 1794
FP 8277 2760
FN 9520 9516
Precision 0.17 0.39
Recall 0.16 0.16

Table 2. Comparison between ideal change detection scenario
vs our proposed method for multiple object video use case.

shows an example where some target objects are hidden in
the background, making them difficult to detect even with the
human eye. These objects are highlighted with orange bound-
ing boxes. Furthermore, we fine-tuned the YOLOv7 model
using only 500 images in total across all classes. Addition-
ally, the number of samples for some classes are very few in
the training set.

6. CONCLUSION

This paper presents a zero-shot video change detection algo-
rithm which leverages pre-trained deep learning models, con-
ventional image processing and computer vision techniques
to detect changes between pairs of input videos. Our pro-
posed method is designed to be easily generalizable by mak-
ing few changes, allowing it to be applied in various indus-
trial applications where labeled data are scarce. Through ex-
tensive experimentation publicly available VDAO change de-
tection dataset collected in a cluttered industrial environment,
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Figure 5. Example of some of the objects hidden in the background. Left is the object video, Right is the ground truth for that
frame, hidden object is highlighted in orange.

we demonstrate the efficacy of our proposed change detection
method. The VDAO dataset comprises of videos containing
single and multiple objects. The change detection task in-
volves identifying the changes in the videos compared to a
reference video that may or may not contain any object. Our
results suggest that our proposed zero-shot video change de-
tection method shows improved performance compared to an
ideal change detection scenario. While our approach lever-
ages the strengths of pre-trained object detection models, its
success relies heavily on the accuracy of the object detec-
tion models; therefore, any limitations in the object detection
model performance may have a ripple effect and impact the
overall performance of the change detection technique. In
the future, we plan to further evaluate our proposed method
on more datasets and explore its application in various real-
world scenarios.
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