
1

Towards a Fault Management Analysis Tool for Model Centric

Systems

Ksenia Kolcio1, Maurice Prather2, David Wagner3, Maged Elaasar3, Narek Shougarian3,

1,2 Okean Solutions, Inc, Seattle, WA, 98122, USA

ksenia@okean.solutions

maurice@okean.solutions

3 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 91109, USA

David.Wagner@jpl.nasa.gov

Maged.Elaasar@jpl.nasa.gov

Narek.Shougarian@jpl.nasa.gov

ABSTRACT

In an effort to effectively develop more complex spacecraft

fault management (FM) systems new technologies are sought

to enable rapid diagnostic model generation and validation,

and provide tools to perform FM analyses Model-based

Systems Engineering approaches to FM system development

are uniquely suited to be combined with model-based tools

currently utilized in the design of other parts of flight

systems. Combined tools utilizing information from a

common system model can reduce design inconsistencies and

gaps in analyses. Tighter integration of FM with other

system-level and subsystem-level hardware/software

development activities allows crucial redundancy and sensor

placement trades to be performed earlier and throughout the

mission lifecycle.

Our work has been towards the integration of a model-based

fault management tool suite called MONSID®, with JPL’s

Computer Aided Engineering for Systems ARchitecture

(CAESAR) platform as a way to improve FM system

modeling and analysis. MONSID relies on application-

specific models of the system being monitored. MONSID

models consist of interconnected elements representing

system hardware and measurement/command input points,

called the topology. Model topology design is currently a

manual process and often relies heavily on paper

documentation such as hardware/software specs, engineering

drawings, and interface control documents. CAESAR is a

semantically- driven toolchain for model-based system

engineering. At the core is a system model expressed in the

Ontological Modeling Language (OML). It is intended to

support semantic modeling, consistency validation, and

continuous integration.

A goal of the combined toolset is to automate FM model

development by directly extracting models from CAESAR

and then analyzing them in MONSID. Analyses currently

available in MONSID include model topology inspection and

validation and fault isolation capability based on sensor

placement. While we have focused on two specific tools, the

integration approaches can be leveraged by other

semantically driven model-centric platforms and tools.

This paper describes the evolution of our integration

approaches as we evaluated different insertion points in the

CAESAR toolchain with respect to MONSID model

requirements. The MONSID-CAESAR tool is demonstrated

on a simplified example of a spacecraft heat reclamation

system. Results of the generated MONSID model are

discussed, including levels of automation achieved and

information surfaced to the users about the extracted model

topology.

1. INTRODUCTION

New technologies are sought to effectively manage and

streamline increasingly complex fault management (FM)

systems, enable rapid diagnostic model generation and

validation, and provide tools to perform FM analyses and

trades e.g., fault isolation capability, FM model validation,

and sensor placement.

Traditional fault detection systems monitor signals for known

out of limit levels (e.g. over temperatures, excessive rates,

stale data). Such monitors are designed to detect specific fault

conditions. In contrast, the model-based fault detection

approach utilized in this work relies on exposing deviations

from modeled behavior which is assumed to be correct and

as intended.

Ksenia Kolcio et al. This is an open-access article distributed under the

terms of the Creative Commons Attribution 3.0 United States License,

which permits unrestricted use, distribution, and reproduction in any

medium, provided the original author and source are credited.

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2024

2

Systems Engineering approaches to FM system development

are uniquely suited to be combined with model-based tools

currently utilized in the design of other parts of flight

systems.

Tighter integration of FM with other system-level and

subsystem-level hardware/software development activities

allows crucial redundancy and sensor placement trades to be

performed earlier and throughout the mission lifecycle.

Our work in the first year of a two-year program has been

towards the integration of a model-based fault management

tool suite, called MONSID® (Kolcio 2016), with JPL’s

Computer Aided Engineering for Systems ARchitecture

(CAESAR) (Elaasar, Rouquette, Wagner, Oakes, Hamou-

Lhadj, Hamdaqa, 2023) platform as a way to improve FM

system modeling and analysis. MONSID relies on

application-specific models of the system being monitored.

MONSID models consist of interconnected elements

representing system hardware and measurement/command

input points, called the topology. Model topology design is

currently a manual process and often relies heavily on paper

documentation such as hardware/software specs, engineering

drawings, and interface control documents. It is also iterative,

which itself is not problematic but when relying solely on

manual updates, can lead to inconsistencies with the physical

system it is supposed to be modeling. CAESAR is a

semantically- driven toolchain for model-based system

engineering. It is intended to support semantic modeling,

consistency validation, and continuous integration. As such,

CAESAR is an authoritative source of truth for the design of

the physical system. The toolchain is used at JPL for flight

system engineering design, mainly for power systems. It is

also starting to be used by other disciplines including flight

software, mechanical, and now fault management and safety

and mission assurance. Where once systems engineering

model development was siloed by discipline, CAESAR

enables models to be developed and maintained from the

same data source.

A goal of the combined toolset is to automate FM model

development by directly extracting models from CAESAR

and then analyzing them in MONSID. Analyses currently

available in MONSID include model topology inspection and

validation and fault isolation capability based on sensor

placement. While we have focused on two specific tools, the

integration approaches can be leveraged by other

semantically driven model-centric platforms and tools.

The rest of this paper is organized as follows. We first

introduce the MONSID and CEASAR technologies. Next,

we describe our integration approaches and development of a

MONSID-CAESAR adapter. We then discuss how the

adapter was demonstrated on an example system modeled in

CAESAR. Finally, we offer conclusions from the

demonstration and discuss future work.

1.1. MONSID Background

The MONSID system is a model-based software package

designed to detect and identify hardware faults and off-

nominal behavior. MONSID is composed of a diagnostic

engine and models of nominal behavior of the target system

hardware. The generalized fault detection and identification

approach is applicable to virtually any system with health and

safety requirements. The physics-based models are

application-specific. There are opportunities for model reuse

for programs leveraging similar COTS or GOTS

(commercial/government off-the-shelf) hardware. Examples

of MONSID applications include rovers (Kolcio, Fesq, &

Mackey, 2019), CubeSats (Mackey, Nikora, Fesq, & Kolcio,

2021), and high-fidelity testbeds (Kolcio & Prather, 2023). In

this paper we focus on MONSID model generation and

analysis.

1.1.1. MONSID Model Development and Analyses

MONSID models are comprised of interconnected

components representing various system functions. By

design they capture interactions among components and so

provide a system-level view. At the top level, the MONSID

model represents the system topology, i.e., how the various

components are interconnected, and data insertion points

where commands and sensor data enter the model. Model

topology can be derived from system architecture and high-

level operational descriptions.

For example, power system block diagrams, command and

telemetry dictionaries, and operational concept documents

can be used to specify the MONSID model topology of a

power subsystem.

MONSID model developers use these artifacts to determine

how the various power subsystem hardware components

should be interconnected and where to place sensor and

command insertion points. Factors considered as part of the

high level MONSID model design include level of detail

(assembly level, box level, or slice) and minimum sensor

suite needed for fault detection and isolation. These design

choices ultimately reflect the accepted single point failure for

the mission risk classification per guidelines, for example as

defined in NASA Procedural Requirements (NPR) 8705.4,

Risk Classification for NASA Payloads. As FM design

evolves through the program phases, so must model

development, and it is crucial to avoid gaps and

inconsistencies between the model and underlying system.

Model topology can be analyzed to determine regions in the

model where it is not possible to identify a single fault source.

These regions are called ambiguity groups. An ambiguity

group with more than one member implies that every member

is a fault suspect but there is insufficient information to

resolve the fault to one member. For a perfectly diagnosable

model, each component and sensor would be the only

member in its own ambiguity group. Ambiguity groups with

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2024

3

more than a single member can be reduced with the addition

of sensors, which may be possible when fault management

design is closely coupled with flight system design.

MONSID model topology development and analysis are

completed with the help of the MONSID tool suite. The tool

suite includes a web app called MONSID Toolkit which

provides visual model design and is also used to analyze how

well faults can be isolated to a single component (diagnosis

resolution (Kolcio, Fesq, & Mackey, 2017]). Model

visualization and diagnosis resolution are the primary uses

for models generated by the MONSID-CAESAR adapter.

Although not further discussed here, Toolkit is also used to

step through MONSID engine runs. Screenshots depicting

various Toolkit usages are shown in Figure 1.

The model development time depends on the scale of the

program and available expertise. For example, it can take 3-

4 person months for an engineer with an attitude control

system background to develop an ACS MONSID model of a

program on the scale of a CubeSat or rover. It can take

considerably more time for engineers venturing outside their

domain of expertise. Perhaps the largest factor affecting

development time is the availability, correctness, and

1 GitHub - opencaesar/oml: Ontological Modeling Language (OML)

completeness of the resources used to develop the models.

Sources are not always in familiar or easily navigable

formats. Even when sources/data are available, it could take

time and coordination to gain access to it, which can happen

when different departments or organizations are involved.

Heavy reliance on paper documentation which can be

outdated or the wrong version can also result in design gaps

and mistakes.

The resource issues are compounded for model development

on larger scale programs with more complex systems, larger

teams, and much more paper documentation to utilize. While

the current model development process is viable and has

resulted in validated, proven, and effective models, there is

room for improvement. To date, MONSID has been applied

to fairly small-scale systems like CubeSats, rovers, and

hardware testing platforms. Without improvements in current

processes, we can expect significant increases in model

development time for large, complex systems.

1.2. CAESAR Tool Chain

CAESAR 1 is an open-source technology developed and

maintained by NASA JPL designed to enable different

Figure 1. MONSID users can visualize and analyze and models, and inspect MONSID engine runs

via the Toolkit web app.

https://github.com/opencaesar/oml

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2024

4

engineering teams to effectively share and manage program

data in the process of performing domain-specific program

development activities. It provides ontological description, or

modeling, of various system data. In CAESAR, the data is

modeled via ontological instances with precise syntax and

logical semantics, and thus no longer tool-specific. Often

referred to as a “semantic data warehouse” CAESAR is fully

compatible with the Web Ontology Language (OWL-2,

specified by the Worldwide Web Consortium). To make

working with ontologies more efficient and easier, JPL has

developed the Ontological Modeling Language (OML) that

is a subset of OWL 2. OML provides more concise textual

and XMI representations of OWL that precisely encode the

expressive patterns and rules most commonly used in

engineering descriptions. OML also uses description logic

rules so that vocabulary consistency can be formally verified

and models can be verified for consistency with the

vocabulary using generic commercial or open-source

reasoners. Logic reasoners are used to add inferences to the

data which allows queries and database engines to pick up

inferred associations.

The CAESAR environment consists of several tools to

accomplish workflows from authoring models, called

descriptions at one end to generating reports from various

queries at the other end. The environment includes a

conversion tool OML to OWL which allow open-source

description logic reasoners such as Pellet to check model

consistency. CAESAR is being utilized on NASA JPL

programs including PSYCHE, Europa Clipper (Wagner,

Kim-Castet, Jimenez, Elaasar, Rouquette, & Jenkins, 2020).

and Mars Sample Return.

The initial focus has been on Electrical Flight System

Engineering and harness design. Authoring and reporting

tools were developed for this domain. On Europa Clipper and

Psyche, electrical system assemblies, electrical interfaces and

interconnectivity were captured. CAESAR was also used to

integrate with telemetry and command specification data.

Benefits to using CAESAR included a reduction on manual

steps in harness specification and design, enabling system

engineers to specify requirements instead of design, and re-

usability (from Europa Clipper to Psyche). The MONSID-

CAESAR interface will provide similar benefits, i.e.

reducing manual steps to MONSID model creation.

At this time most of the models in CAESAR are higher-level

system architecture specifications. Efforts at JPL have started

to incorporate behavioral and analytical models. Near term

plans include adding more domains such as mechanical and

thermal. The FM piece has not yet been addressed, but could

clearly benefit from a modeling platform.

2. MONSID AND CAESAR – THE BIG PICTURE

System engineering uses models to help automate

engineering analysis. In this case, we are using a model

transformation from CAESAR’s descriptive system model to

MONSID’s analytical model to enable the kind of fault

analysis that MONSID can provide. Model-based approaches

enable different engineering teams to effectively share and

manage a variety of data in order to perform domain-specific

mission development activities. Government and industry

organizations are seeking ways to better integrate the myriad

tools through the use of authoritative source of truth modeling

environments such as CAESAR. Figure 2 illustrates the

capability in the context of FM system engineering activities.

The CAESAR modeling environment is the central area

where program data is manipulated, and effectively kept

under revision control such that information entered by

hardware/software engineers on the left side of the figure can

be utilized to generate a diagnostic model and update FM

system analyses shown on the right side of the figure. The

flow of information to/from CAESAR is facilitated by

adapter interfaces allowing custom/COTS tool to work with

the modeling environment.

Figure 2. Model-based FM interacting with a modeling

environment.

The core of modern system engineering processes are the

models. Practically, there are many types of models, with

different data types and levels of fidelity, used for various

purposes. Although it is not feasible to think of “one model

to rule them all”, one can consider the authoritative and

traceable representation of knowledge as sources of truth.

That is what environments such as CAESAR are designed to

do. A CAESAR model captures a set of facts about a system

architecture and maintains change control over those facts.

The facts describe elements that define the architecture, their

properties, and relations, particularly including functional

interface relations. It is the authoritative source of truth for

this information on projects utilizing CAESAR.

Model-based FM can benefit from this source not only by

extracting continuously up to date information needed to

develop and test diagnostic models but also by the ability to

automatically generate these models. MONSID models in

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2024

5

particular describe the nominal behavior of the underlying

physical system.

However, there currently are no FM-specific interfaces to

CAESAR for tools like MONSID. A goal of a MONSID-

CAESAR adapter is to alleviate this problem. As emphasized

in the NASA Fault Management Handbook (2012), tighter

and earlier integration (w.r.t lifecycle) of FM with “nominal”

system engineering activities such as system-level and

subsystem-level hardware/software development can enable

crucial trade studies, such as redundancy and sensor

placement, to be performed earlier, more often, and more

quickly.

Enabling the FM practice to be more tightly integrated with

the other systems engineering activities makes it more

accessible to non-FM experts to improve the overall system

design. Providing this capability enables the systems team to

more easily visualize models and glean precise information

they need without necessarily having to understand all the

technical details of the underlying FM design.

Through a MONSID-CAESAR adapter many of the

previously mentioned issues with manual information

collection can be alleviated and eventually removed.

Information from disparate sources would be presented to

FM engineers with consistent terminology and format.

CAESAR would keep an authoritative running history of that

data. This will shorten design time as well as improve model

fidelity. As CAESAR evolves to include analytical models

that capture behavior/operation, this information can be

extracted to readily generate constraints for MONSID

components, which are needed to realize an executable model

that can be run with real data. Initially, the actual coding of

MONSID components would still be done manually. The

long-term goal would be to incorporate transformation tools

to automate MONSID component development in support of

automatically generated flight software.

FM analyses can greatly benefit from improved models.

Model topology has been successfully used to determine how

well the MONSID engine will be able to isolate faults based

on the ambiguity groups. The results of ambiguity group

analysis and sensor placement trades generated by MONSID

can be fed back to CAESAR. This process would allow

changes that influence the FM capabilities to be readily

validated to ensure the changes don’t adversely affect the

established baseline functionality. For example, without this

capability, if a sensor is removed from a subsystem, the

system engineer may not know that removal would adversely

affect the FM design.

A long-term goal of a MONSID-CAESAR adapter is to

improve the determination and analysis of fault containment

regions (FCR), which are key for fault tolerance. An FCR

delineates a boundary around spacecraft components

(hardware and/or software) such that a fault within the

boundary of the FCR does not propagate outside (Avizienis,

1997). Partitioning of containment regions (Chau, Alkalai, &

Tai, 2000) involves determination of a subsystem to system

hierarchy, redundancy scheme, and design diversity

(different hardware/software to accomplish the same task).

Thus, faults can be contained in different ways through non-

intersecting paths (e.g., separate data/power buses), and

functionally or identically redundant hardware strings.

Ensuring that the fault containment design will meet fail

safe/operational requirements for single point failures is a

manual, painstaking process. The number of FCRs is a

primary factor in determining how many faults a system can

tolerate and still preserve the spacecraft.

We postulate that MONSID models can also be used to

analyze FCRs in a similar fashion to ambiguity groups.

Through inputs from CAESAR, the identification of and

tracing/analyzing FCR would be facilitated and eventually

automated. It should be noted that, in general, diagnostic

resolution and FCR are not the same. However, they can

overlap when lower-level fault isolation is not needed or not

possible. Rigorous assessment of FCR will provide assurance

that mission risk classification requirements with respect to

single point failure tolerance are being met.

While our effort has thus far focused on creating an adapter

to work one way, from CAESAR to MONSID, it is desired

to eventually bring results back into CAESAR. In the current

process, such information would need to be manually

authored into the CAESAR model. An automated two-way

adapter would place MONSID model data and analyses into

the continuous integration toolchain. Tighter integration of

FM design with nominal system design would also be

facilitated and would greatly benefit from a two-way adapter.

3. INTEGRATION APPROACHES

The task of converting one representation of data to another

is simply a transformation exercise. The most important

aspect of this task is identifying the places where data can be

accessed and manipulated to achieve the desired goal. The

CAESAR toolchain has several stages as shown in Figure 3,

with the data cycle moving in a left to right fashion.

The key characteristic of that cycle is that model data will be

stored in a database. This database breaks the data lifecycle

into two phases, which we have simply termed as “pre-

database” and “post-database”. The CAESAR toolchain is

responsible for populating the database with reasoned data,

meaning the source OML model has instantiated, rules

applied and the composite information has been run through

a semantic reasoner. The database contains a well-formed and

semantically correct model.

In the pre-database phase, referring to Figure 3,

transformation is handled through the creation and

maintenance of OML vocabularies and OML-based tools

(not shown in Figure 3). We note that in this paper,

vocabulary names are in lower case to distinguish them from

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2024

6

similarly named organizations or products. JPL, for example,

relies on the integrated model-centric engineering (imce)

vocabulary when constructing models for any project. Then

project-level vocabularies can also be created to specialize

imce vocabulary terms as well as additional terms specific to

a particular project’s needs. MONSID terminology is

appended to the system model via the monsid and mapping

vocabularies (discussed in the next section). The result is run

through a semantic reasoner and loaded to a database, as

represented by the CAESAR Model in Figure 3.

In the post-database phase, the transformation task takes on a

more traditional ETL (extraction, transform, load) approach.

Data contained in the database can be queried to produce a

variety of reports and outputs that can be fed to other

downstream processes. As illustrated in Figure 3, queries are

used to generate HTML reports and text files (CSV). The

adapter processes the text files to generate MONSID model

definitions which can be visualized and analyzed in the

Toolkit app. As with any ETL task, the source and target

schemas must be well defined.

3.1. MONSID-CAESAR Adapter

There were two main requirements defined for the adapter:

• Generate MONSID model topology from a CAESAR

project

• Format shall be ingestible by MONSID Toolkit web

application

To meet the first requirement, key MONSID model topology

elements were identified as things to be mapped to a

CAESAR model. The MONSID topology elements are

defined by:

Models

• Contain Components

• Represent subsystems

Components

• Contain Nodes

• Represent hardware and physical behaviors

Nodes

• Effectively represent state variables

o Conserved state variables (e.g., fluid flow,

electric current, momentum)

o Potential state variables (e.g., pressure,

voltage)

• Used as endpoints for each Connection

Connections

• Used to describe a link between 2 nodes

Sensors

• Provide commanded and reported data from the physical

system

• Provide data directly to Nodes

In order to extract existing model information for utilization

in the MONSID tool suite, we establish a set of guiding

principles for the MONSID-CAESAR adapter.

• Create a repeatable process that is not ad hoc for projects

to add FM analysis.

• Keep the setup cost to a minimum. Ideally, we wanted

all users of a specific vocabulary to gain the same benefit

as past projects.

• Make it adjustable, knowing that each project will have

some customizations that can only be addressed with

bespoke adjustments to the adapter.

Figure 3. The MONSID adapter to CAESAR consists of portions before and after the CAESAR database to leverage the

reasoning and query execution tasks of the CAESAR toolchain.

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2024

7

By providing a general framework to extract any CAESAR

model and bringing that information into MONSID, we

needed to explore how to best utilize the CAESAR toolchain.

We examined two strategies leveraging post-and pre-

database phases of the CAESAR toolchain starting with post-

database.

3.1.1. Post-database

We created a prototype adapter to convert an existing

CAESAR model of an example heat reclamation system by

solely leveraging the reasoned data contained within

database. We decided on this approach as a first step to better

understand the mechanics of the CAESAR toolchain and

build a suite of tools that would allow the ingest of any

CAESAR model.

The prototype adapter was implemented in two parts. The

post-database adapter and data flow are shown on the right

side of Figure 3. The first part was the extraction of MONSID

model elements from the CAESAR database. This was

accomplished by creating queries and scripts to generate

output files (CSV format) that contained MONSID model

topology elements. The second part of the adapter was the

creation of an executable that generated a MONSID model

definition file from the csv output files.

When working with CAESAR models, there are effectively

two model states. The first, is the native OML format, which

we refer to as the source model. In this state, the model

reflects the exact representation as intended by the authoring

team and, more importantly, has not been altered by the

reasoner. Once the source model is fed to the reasoner, the

model becomes the reasoned model. In this state, a reasoned

model has been validated/verified by the reasoner as well as

contains additional data that may injected by other parties.

This injection is discussed in the Pre-database section that

follows. The reasoned data can be considered a more

complete and expanded representation of the initial source

model.

Although it is possible to design an adapter to exclusively

work in the post-database realm, we found that quite a bit of

knowledge of the vocabulary and source model was required.

The database queries had to be extensively tailored to the

source CAESAR model. Although some tailoring from

project to project is to be expected, one of our objectives was

to minimize project-specific tailoring to make the adapter

more generalizable and easier to introduce to other projects.

The problem with queries for the post-database only case is

that the query authors need to really understand the

vocabularies that are in use for the CAESAR model. This

presents a substantial learning curve for MONSID users as

some expertise of vocabulary structure and how it’s used is

required. Moreover, completely new queries would be

needed for applications with different vocabularies.

The verbosity of the source model is highly dependent on

institutional knowledge and practices. Thus, reasoned data

alone does not give us more context and it becomes very

difficult to determine what source model elements are needed

in the resulting MONSID model. The prototype was

dependent on a priori knowledge of the source model and that

information was embedded throughout the two parts of the

adapter.

Lastly, the executable needed to incorporate a variety of

assumptions in order to process the data produced by the

queries. For example, state variables were not explicitly

implemented in the source model but needed to be realized in

the final transformation step when creating the MONSID

model. It should be mentioned that this is a limitation of the

source model used to demonstrate our work, not the

CAESAR platform itself. One could also argue that any

source model designed for other system engineering purposes

may need some augmentation in order to be useful for

MONSID. However, any augmentation done exclusively in

the post-database space introduces project-specific artifacts

which we would like to minimize.

Heavy use of hard-coded knowledge may serve for a

prototype; however, incorporating this type of information

would not make for a scalable and general solution that could

be easily transported to another project.

3.1.2. Pre-database

By working with data in the pre-database phase, it becomes

easier to transform any CAESAR model into the desired

representation. This is done by leveraging the strength of

CAESAR’s OML vocabulary and vocabulary mapping

constructs. Work in this phase utilizes the semantic reasoner

to associate and transform the data. In a typical ETL project,

the Transformation step follows extraction; however, by

utilizing OML, the transformation step is handled first which

allows the overall solution to become more readily project

agnostic.

There are three key elements to this process:

1. Create a vocabulary that represents the target vernacular.

In this case, we need to create an OML vocabulary that

represents the MONSID topology elements defined in

the MONSID-CAESAR Adapter section.

2. Identify the most common vocabulary (e.g., upper

ontology) for the source project. In this case we used

JPL’s imce vocabulary.

3. Create a mapping vocabulary between the monsid

vocabulary and common vocabulary. This may be

further expanded to include a project-level mapping

vocabulary to accommodate project customizations.

Creating a vocabulary that represents MONSID elements is a

task that only needs to be completed once. This vocabulary

represents all the tangible items and relationships that are

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2024

8

needed to describe a MONSID model within OML. This task

is effectively a one-time task and becomes a crucial

component in the overall toolchain process.

The monsid vocabulary represents elements of the MONSID

Model Library API. Vocabulary OML classes were created

for each of the MONSID model topology elements listed

above. See Figure 4 for a sample representation of the monsid

vocabulary.

Figure 4. Subset of monsid vocabulary

In the second step, identifying the common vocabulary that a

given organization prefers is straightforward as most projects

within that organization will use a single vocabulary along

with project-level customizations. Time invested in

understanding this vocabulary will make it easy to consume

any project that leverages the same vocabulary.

Mapping Vocabulary

The third step involves establishing a mapping between the

vocabulary of the CAESAR model to the vocabulary of the

analysis tool. Thus, the goal is to understand how the imce

vocabulary is utilized and then create a single mapping

vocabulary between monsid and imce (the monsid-imce

vocabulary).

The OML language syntax provides a mechanism by which

a vocabulary can be extended by another vocabulary. This is

a powerful way to easily transform the original representation

created by the source vocabulary. For example, in the monsid

vocabulary there exists an OML Concept called Component.

In the imce vocabulary, there is an OML Concept called

Assembly. With OML, it’s straightforward to create a

mapping that states an imce Assembly is a specialization of

monsid Component. Figure 5 illustrates a subset of the

monsid-imce mapping vocabulary.

Figure 5. Subset of the monsid-imce mapping vocabulary.

By that same extension, if a project creates a project-specific

vocabulary, a project-level mapping vocabulary can also be

created as seen in Figure 6. For example, using the same

model used in the first prototype adapter, we were able to

clearly define items that could be treated as monsid

StateVariables and subsequently eliminate the hard-coded

assumptions that involved them in the post-database tools

(see yellow box in Figure 6).

Figure 6. Subset of project-level mapping vocabulary.

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2024

9

By leveraging mapping vocabularies, all the benefits of the

semantic reasoner come into play. All the rules, properties,

and associations will be honored once the mapping is utilized.

Further, by leveraging OML, the expertise needed to

incorporate project customization is already available. More

importantly, though, once the data has been reasoned and

loaded into the database, the tool adapters will no longer need

to know anything about the source vocabulary or project-

specific details. Everything can be queried relative to our

monsid vocabulary. This greatly simplifies the database

queries as everything is relative to MONSID elements. Hard-

coded knowledge, string lookups, and other assumptions

about the project’s contents can be removed from the

database queries and any of the tools that consume those

queries.

Finally, and perhaps most importantly, aside from injecting

the mapping vocabularies into the source project, there is no

need to adjust the source project. This is a key characteristic

as additional tooling should benefit but not require altering

existing CAESAR models in order to use them. A

combination of pre- and post-database interaction offers the

most flexibility and scalability for any model-based tool that

would like to leverage the data within a CAESAR model.

4. EXAMPLE DEMONSTRATION

The combined pre- and post- database adapter was

demonstrated on the fluid domain of a simplified heat

reclamation system (HRS) based on the Europa Clipper

mission. The HRS circulates a working fluid to heat and cool

spacecraft components as needed to maintain thermal

stability. The working fluid was assumed inviscid and

isothermal, thus volumetric fluid flow and pressure were the

only sensed state variables. A block diagram of the pump

assembly portion of the HRS is shown in Figure 7.

Figure 7. Block diagram of Heat Reclamation System.

The system includes three parallel banks of two pumps

connected to two pumps in series for a total of eight pumps.

Sensors are represented by the blue circles. Pressure sensors

are labeled PT and flow sensors are labeled FT. The lines

connecting the pumps represent pipes. The small black

squares represent pipe junctions. The pump configuration of

the example system is representative of actual spacecraft

HRS. Simplifications such as ideal pipes and incompressible

fluid were deemed appropriate for demonstrating the

feasibility of the adapter.

A CAESAR model of HRS was specified using the imce

vocabulary and specializations thereof to describe the

individual pumps, flow and pressure sensors, and ideal pipes

and pipe junctions. The load was not modeled. Pumps and

pipe junctions included fluid in-port and out-port interfaces

(not shown in the figure). Each pipe created a fluid flow

connection between out port and in ports. Fluid flow and

pressure state variables were not explicitly modeled in

CAESAR. The fluid state variable was implied by the pipe

connections. The pressure sensors implied pressure state

variables.

The monsid-imce mapping vocabulary (see Figure 5)

described above was used directly in the pre-database portion

of the adapter. A project level vocabulary (see Figure 6) was

created to map the HRS sensors to MONSID sensors, and in-

port and out-port type to the corresponding MONSID input

and output node types. Flow and pressure types were created

in the HRS mapping vocabulary to separate and make explicit

fluid flow and pressure, which were implied in the CAESAR

model. The FlowType maps to ConservedStateVariable and

PressureType maps to PotentialStateVariable, as shown in

the yellow box in Figure 6.

The adapter executable generated additional nodes and

connections as needed based on state variable type

(conserved or potential). For example, each input/output

node on a pump component was expanded into separate

nodes for fluid flow and pressure. For a pipe junction

component, one additional input node and output node (and

connections) were needed for the pressure state variable.

A snapshot of the MONSID model generated by the adapter

executable is shown in Figure 8. It is annotated for

comparison with the HRS block diagram in Figure 7.

Comparing this to the block diagram in Figure 7, a similar

configuration of pump and junction components and sensors

is seen.

The MONSID model topological elements introduced

previously in 3.1 are now described for the HRS MONSID

model shown in Figure 8. The orange boxes are the

components which represent system hardware such as the

pumps. Pipe junctions are also represented as components to

model fluid flow splitting into different paths. The small

green boxes on either side of the components are the

input/output nodes; nodes on the left side of a component are

input and nodes on the right are output. Each node is either a

pressure or fluid type, as appropriate for a fluid domain

model. The black lines between nodes are the connections. In

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2024

10

MONSID models there are separate paths for each state

variable, in this case for flow and pressure. The adapter

ensures that each fluid node is connected only to another fluid

type node and similarly for pressure node types. The purple

ovals represent sensors, which for this model are pressure and

flow sensors. MONSID sensors represent points in the

system where there is information available about its

behavior. Sensors play an important role in the formation of

ambiguity groups as will be discussed later.

The model generated by the adapter can be loaded into

Toolkit to visualize and review its topology.

The Toolkit checks models for unconnected nodes and

unattached sensors and displays a list of any such occurrences

to the user. For the HRS model, the topology review feature

noted that two input nodes on the left junction component

were not connected. A screenshot of the model opened in

Toolkit is seen in Figure 9; the two unconnected nodes are

listed in the review pane located on the right side of the page.

While the adapter generated a nearly complete MONSID

model, some manual manipulation was needed in order to

perform meaningful ambiguity group analysis. A snapshot of

the model in the Analyze page is shown in Figure 10. This

page displays the current state of ambiguity group

determination, including a list of items that were not

considered in the calculation because of topological issues

(bottom left pane in the figure). In this case, the left junction

component and, by extension, the pressure sensor attached to

its second from the top output node (appearing in lighter gray

in the figure) are not considered because of the two

unconnected input nodes previously mentioned. Note that

intentionally leaving items out of the ambiguity group

calculations allows some analysis of partial or incomplete

models to be performed. This is particularly useful in the

development cycle when models are under construction.

On the Analyze page sensors can be added to the model to

see how ambiguity group membership reduces. Ambiguity

groups are automatically recalculated when model topology

changes. To include the junction component and pressure

sensor in the calculation, new sensors are added to the two

input nodes of the left junction component. The result of

adding the new sensors (labeled Sensor 8 and Sensor 9) is

shown in Figure 11. First notice that now all items in the

model are considered in the ambiguity group calculations (all

are same shade of gray). Second, new ambiguity groups

appear on the left side. There are two groups with more than

a single member, one with 11 members shown with teal

highlights and one with 3 members. The 3-member group

includes the left junction component and the two new

sensors.

The larger 11-member group is a result of the lack of sensors

in between components. This is clearly undesirable from an

FM perspective because a fault occurring in that group cannot

be further narrowed down to any specific members. The

diagnostic resolution would be improved if there are more

ambiguity groups with fewer members in each group. The

ideal ambiguity group is composed of a single member.

Sensors located between components form an ambiguity

group with themselves and so are single member groups. The

HRS model naturally has four such groups, the PT-2, FT-1,

FT-2, and FT-3 sensors.

There are a few ways to reduce the 11-member group. One

way would be to add three more sensors in between the output

flow nodes of the parallel pumps and the input nodes of the

right junction component as shown in Figure 12. This action

splits the 11-member group into 8 smaller groups. The pumps

in series are now in a separate group. Each of the three

branches of the parallel pump configuration is now a separate

group consisting of two members each. The pumps in series

are in a 5-member group with the right junction component

and two sensors. Finally, the three additional flow sensors are

single members of their own group. Another way would be

Figure 8. HRS MONSID model generated by the adapter and visualized in Toolkit.

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2024

11

to add sensors to the output nodes of the right junction

component. This costs less additional sensors than the

previous option but puts the parallel pumps into a 7-member

group with the right junction component. These are just

examples of the kinds of sensor placement trades that can be

performed.

Figure 9. Screenshot of the adapter-generated model opened in Toolkit. The topology review panel shown on the right side of

the page alerts the user to the two unconnected node interfaces.

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2024

12

Figure 10. Screenshot of the model displayed in the Analyze page. Items not considered in ambiguity group calculation due

to topology issues are listed in the pane on the bottom left. Item not considered are shown in a lighter shade of gray.

 13

Figure 11. Screenshot of the model in Analyze page after sensors (sensor 8 and 9) are added to each input on the left junction

component. New ambiguity groups and their members are listed on the left. The largest group with 11 members is

highlighted in teal. All model items are now considered in the ambiguity calculations (the Items not Considered list is empty

and is not displayed).

Figure 12. Screenshot of the model in Analyze after sensors 10, 11, and 12 are added to inputs on the right junction pipe.

Additional ambiguity groups with fewer members are created thus improving diagnosability.

 14

5. CONCLUSIONS AND FUTURE WORK

The MONSID adapter to CAESAR enables faster diagnostic

model generation with less errors compared to a documents-

based and hand-coding process.

This approach also constitutes a significant step towards

integrating FM with nominal flight systems engineering.

Model generation can occur as the CAESAR model is being

populated and thus can start earlier in the project life-cycle.

Since the adapter is effectively part of the CAESAR

toolchain, MONSID models evolve concurrently with other

systems engineering activities including harness design and

flight software development.

Post-database only transformation requires a lot of project

specific information. It is viable but not scalable nor a very

reusable solution. The problem lies in that the transformation

logic becomes deeply embedded into multiple places, which

is the antithesis of leveraging OML as the authoritative

source of truth. Adding a pre-database component makes

transformations more generic as the reasoner can apply a

mapping vocabulary which allows the post-database portion

to be more application-agnostic. The use of mapping

vocabularies in the pre-database portion leverages the power

of the reasoner to validate the semantic structure of the

model. Hierarchical organization of the mapping vocabulary

into upper-level and project-level allows re-use of the upper-

level across projects within an organization (i.e. common

vocabulary mapping that is project-agnostic) while allowing

project-specific mappings and definitions to be constrained

to the project-level.

The design of the MONSID-CAESAR adapter utilized the

assumption that components in the source model have been

specifically typed to accurately imply their behavior.

Currently, CAESAR models for flight projects are primarily

used to map interfaces and types are applied to define

canonical interfaces. Here we assumed that this can also

imply behavior. Whether this is sufficiently precise to enable

useful fault analysis is the subject of ongoing investigation.

The benefits of a MONSID-CAESAR adapter were

effectively demonstrated on the simplified HRS example

system with less than 40 of any one topology element. We

expect it to scale well for more complex flight systems. The

adapter is particularly suited for real-world, larger systems

that may have hundreds to thousands of elements. In the

combined power and command & data handling subsystems

on JPL’s Mars Sample Return Lander (SRL) flight program,

for example, there are upwards of one hundred assemblies,

over two thousand interfaces, and thousands of sensors. The

time consuming and error-prone tasks of manually making

2 Reference herein to any specific commercial product, process, or service

by trade name, trademark, manufacturer, or otherwise, does not constitute or

and keeping track of interface connections are eliminated

with the adapter.

The next step in the adapter development is to apply it to a

more complex CAESAR model utilized on an actual flight

program. To that end, work is in progress to extend the

adapter with the intent to demonstrate it on the CAESAR

model of JPL’s SRL flight program. Initial focus is on the

SRL power system because it is the most populated. A goal

of this effort will be to compare the results of diagnosis

resolution analysis (also known as ambiguity group analysis)

on the SRL MONSID model to fault containment regions

specified in the CAESAR model.

ACKNOWLEDGEMENTS

This work was sponsored in part by a NASA Phase II SBIR

contract under the Jet Propulsion Laboratory 2 , California

Institute of Technology.

REFERENCES

Avizienis, A., (1997). "Toward systematic design of fault-

tolerant systems," Computer, vol. 30, no. 4, pp. 51-58,

April 1997, doi: 10.1109/2.585154.

Chau, S., Alkalai, L., & Tai, A. T., (2000). “Analysis of

Multi-Layer Fault Tolerant COTS Architecture for Deep

Space Missions,” Symposium on Application-Specific

Systems and Software Engineering and Technology, Mar

24.

Elaasar, M., Rouquette, N., Wagner, D., Oakes, B., Hamou-

Lhadj, A., & Hamdaqa, M., (2023). "openCAESAR:

Balancing Agility and Rigor in Model-Based Systems

Engineering", Proceedings of SAM 2023, Oct., Västerås,

Sweden.

Kolcio, K., (2016). “Model-Based Fault Detection and

Isolation System for Increased Autonomy”, AIAA

SPACE 2016, AIAA SPACE Forum, (AIAA 2016-5225),

Sept 13-16 , Long Beach, CA.

Kolcio, K., Fesq, L. M., & Mackey, R., (2017). “Model-

Based Approach to Rover Health Assessment for

Increased Productivity”, IEEE Aerospace Conference,

Mar 5-10, Big Sky, MT.

Kolcio, K., Fesq, L. M., & Mackey, R., (2019). “Model-

Based Approach to Rover Health Assessment - Mars

Yard Discoveries”, IEEE Aerospace Conference, Mar 2-

9, Big Sky, MT.

Kolcio; K., & Prather, M., (2023). "Implementation and

Evaluation of Model-based Health Assessment for

Spacecraft Autonomy", IEEE Aerospace Conference,

March 4-11, Big Sky, MT.

Mackey, R., Nikora, A., Fesq, L. M., & Kolcio, K., (2021).

“On-Board Model Based Fault Diagnosis for CubeSat

imply its endorsement by the United States Government or the Jet Propulsion

Laboratory, California Institute of Technology

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2024

15

Attitude Control Subsystem: Flight Data Results”, IEEE

Aerospace Conference, Mar 6-13, Big Sky, MT.

NASA Fault Management Handbook, (2012). (NASA-

HDBK-1002), April 2.

Wagner, D., Kim-Castet, S. Y., Jimenez, A., Elaasar, M.,

Rouquette, N., & Jenkins, S., (2020). "CAESAR Model

Based Approach to Harness Design", IEEE Aerospace

Conference, Big Sky, MT, doi:

10.1109/AERO47225.2020.9172630.

BIOGRAPHIES

Ksenia Kolcio is the President of

Okean Solutions, an SBC located in

Seattle, WA, where she leads

aerospace systems engineering

technical activities. Ksenia has been

the PI on several SBIR Phase I, II, and

III programs with the DoD and NASA

focusing on model-based fault management solutions that

strive to increase spacecraft autonomy. Ksenia has also

worked on other NASA Phase and DoD contracts in the

areas of autonomy architecture development, spacecraft

attitude control and navigation mission analysis. Prior to

co-founding Okean Solutions, she was employed at

Microcosm, Inc. as a Senior Systems/GN&C Engineer

where she led and managed GN&C hardware & software

development, CONOPS, and systems analysis. She started

her career in aerospace at Northrop Grumman where she

worked on a variety of NASA and DoD flight programs

spanning proposal development to Integration and Test.

Ksenia has a BS in Electrical Engineering from the

University of Toronto and a Ph.D. in Electrical

Engineering from University of Cincinnati. She is a senior

member of AIAA and a member of the AIAA Intelligent

Systems Technical Committee.

Maurice Prather is the co-owner of

Okean Solutions, Inc. and currently

serves as the company Vice President.

Maurice received a BS in Aerospace

Engineering and an MS in Mechanical

Engineering from the University of

Alabama. Maurice has spent over 25 years in the aerospace

and software industries. He currently works as a system

architect, developer and trainer, including lead

development architect/manager for the MONSID fault

management system. Maurice started his career as an

aerospace engineer working on various software programs

in Boeing's commercial airplane division in the noise and

flight operations areas. Afterwards, he worked for

Microsoft as a software design engineer on one of

Microsoft's most popular business product lines. Maurice

has worked as an IT consultant providing architectural

guidance, leading development teams, and building

custom applications for a large number of corporate and

government clients. He is a member of AIAA.

David Wagner manages both the

System Modeling and Methodology

group as well as product development

on the CAESAR project at the Jet

Propulsion Laboratory. He holds a

bachelor’s degree in Aerospace

Engineering from the University of

Cincinnati, a master’s degree in Aerospace from the

University of Southern California, and over forty years of

experience in systems engineering large and small projects

at JPL.

Maged Elaasar is a senior software

architect at the Jet Propulsion

Laboratory (California Institute of

Technology/NASA), where he

technically leads the Integrated Model

Centric Engineering program and the

CAESAR product. Prior to that, he

was a senior software architect at IBM, where he led the

Rational Software Architect family of modeling tools. He

holds a Ph.D. in Electrical and Computer Engineering and

M.Sc. in Computer Science from Carleton University,

(2012, 2003), and a B.Sc. in Computer Science from

American University in Cairo (1996). He has received 12

U.S. patents and authored over 30 peer-reviewed journal

and conference articles. He is a regular contributor to and

leader of modeling standards at the Object Management

Group like UML and SysML. Maged is also the founder of

Modelware Solutions, a software consultancy and training

company with international clients. He is also a lecturer in

the department of Computer Science at the University of

California Los Angeles. His research interests span model-

based engineering, semantic web, big data analytics, and

cloud-computing.

Narek Rouben Shougarian is a

Systems Engineer in the Project

Systems Engineering Group for Earth

and Europa at the Jet Propulsion

Laboratory, where he has worked as

part of the Europa Clipper Project

System Engineering Team since 2017.

He is responsible for the Probabilistic Risk Assessments

on Clipper and is on systems engineering leadership team

for the system level EMI/EMC test. He holds a MEng

degree in Aeronautical Engineering from Imperial College

London and a PhD in Aerospace Systems from the

Massachusetts Institute of Technology.

	1. Introduction
	1.1. MONSID Background
	1.1.1. MONSID Model Development and Analyses

	1.2. CAESAR Tool Chain

	2. MONSID and CAESAR – The Big Picture
	3. Integration Approaches
	3.1. MONSID-CAESAR Adapter
	3.1.1. Post-database
	3.1.2. Pre-database
	Mapping Vocabulary

	4. Example Demonstration
	5. Conclusions and Future Work

