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ABSTRACT 

Challenges in detecting machinery faults, particularly in 

multivariate sensor environments, necessitate advanced 

feature extraction and classification techniques. This study 

introduces a novel approach that combines Multilinear 

Principal Component Analysis (MPCA) with a 1D-

Convolutional Neural Network (1D-CNN) for efficient fault 

detection. By constructing Frequency Domain (FD) tensors 

from multivariate sensor data and applying MPCA for 

dimensionality reduction, our methodology enhances the 

capabilities of a 1D-CNN in feature learning and fault 

classification. The efficacy of this approach is validated 

through experiments on a Machinery Fault Simulator (MFS) 

with acoustic and vibration sensors, demonstrating notable 

improvements in fault detection accuracy compared to 

benchmark methods. The study results demonstrate that the 

proposed approach exhibits high accuracy in identifying 

machine fault conditions and outperforms the benchmark 

methods. The findings of this study have significant 

inferences for machine fault detection and fill the gap of more 

effective and reliable techniques in this domain. 

Keywords: Predictive maintenance, Prognostic health 

monitoring, Real-time fault diagnosis, Condition monitoring, 

Rotating machinery faults, Multilinear principal component 

analysis, 1D-convolutional neural network 

1. INTRODUCTION 

The process of identification of malfunctions or faults in 

machinery systems is critical for maintaining proper 

equipment health. The primary objective of this process is to 

minimize downtime, lower maintenance costs, and ensure 

safe and efficient machinery operations (Nallusamy & 

Majumdar, 2017). Industrial practitioners utilize various 

methods and tools for monitoring and diagnosing machinery 

faults. Among these practices, data-driven techniques have 

proven to be the most efficient and effective compared to 

visual inspections or regular tests (Gonzalez-Jimenez et al., 

2021). In the last two decades, advancements in sensing 

devices have led to a revolution in their capacity for sensing 

and computation efficiency, enabling real-time monitoring 

and diagnosis to improve the system's health and ensure 

productivity (Javaid et al., 2021; Kalsoom et al., 2020). 

Researchers have also found that multi-sensor information 

can achieve more accurate fault diagnosis, providing 

comprehensive information on the machinery system's 

operation compared to using single sensor information. This 

is known as  multi-sensor fusion (Liton Hossain et al., 2018). 

Acoustic, vibration, pressure, temperature, and current trends 

are frequently used signals for  multi-sensor fusion (Mallegni 

et al., 2022). After collecting data from multi-sensors, 

extracting the essential features from the data is the next vital 

step. This process helps ML algorithms to identify 
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relationships by providing appropriate input features. By 

accurately determining the essential features, the ML 

algorithms can successfully identify patterns and trends of 

data and can assist with a productive way of decision-making 

about the machinery system (Aguileta et al., 2019; Kullu & 

Cinar, 2022; Zoghlami et al., 2021).  

The decisions about machinery systems depend heavily on 

the features extracted from the collected multi-sensor data (Y. 

Liu et al., 2019). However, obtaining significant knowledge 

from this data for use in ML models can be complicated by 

several factors. These factors incorporate correlation effects, 

extreme noise associated with various conditions, data 

inadequacy, the complex nature of machinery-related 

catastrophic faults, and various fault types or combinations of 

them (Tripathi et al., 2021). These factors irritate the feature 

extraction procedure, eventually lowering decision-making 

accurateness and identifying the source and cause of any 

faults. Therefore, it is imperative to pay significant attention 

to the feature extraction of multi-sensor fused data to ensure 

the decision-making process's precision. Over the years, 

Principal Component Analysis (PCA) has been widely used 

as an unsupervised linear feature extraction and reduction 

technique for fault diagnosis problems in machinery systems 

(Chen et al., 2018; Jollife & Cadima, 2016). However, using 

PCA in high-volume tensor objects necessitates 

vectorization, growing computational cost, and memory 

requirements. Multilinear Principal Component Analysis 

(MPCA) is a process for dimensionality reduction that serves 

on a tensor object rather than its vectorized arrangement, 

providing a novel approach (Lu et al., 2008). A few research 

have been conducted using this technique in the fault 

diagnosis domain and showed that it is dependable and 

enhances the accuracy with multi-sensor data captured from 

machinery systems (Guo et al., 2021;Al Mamun et al., 2023; 

Fu et al., 2020; Hu et al., 2021). 

Convolutional Neural Network (CNN) architecture and its 

variations have been widely used in fault diagnosis (Jiao et 

al., 2020; Jing et al., 2017). Most of the research in this 

domain focused on using CNN-based approaches to 

identifying faults in machinery systems using single-sensor-

based analysis (Ince et al., 2016). These studies have 

converted time-based signals into fault-related images and 

then used these images to analyze faults (Ma et al., 2019). 

However, there needs to be more research on analyzing high-

volume data obtained from multi-sensors in machinery 

systems, which is essential for accurate decision-making. A 

few studies have attempted to identify faults using deep CNN 

models on raw vibration data obtained from multi-sensors (H. 

Chen et al., 2019; Lee et al., 2017). Still, highly redundant 

noise in the raw data and the effects of correlations between 

the multi-sensor data can make the fault identification 

process computationally intensive and less accurate. Few 

researchers have explored tensor data analysis using MPCA 

and CNN to overcome the issues mentioned above (Y. Guo 

et al., 2021). However, the increased number of 

heterogeneous sensors equipped to record the system 

behaviors or high-volume data may reduce the ability of fault 

identification using this method. Furthermore, utilizing 

multivariate sensor types such as vibration, acoustic, 

temperature, etc., limited this approach's performance.  

There is currently a high demand for intelligent and 

dependable techniques that can be used to identify faults in 

machinery systems using multi-sensor data. To reach this 

goal, a novel improvement to the previous methodological 

approach is proposed (Al Mamun et al., 2023). The 

contribution of this study is two-fold. Firstly, an improved 

version of method for machinery fault diagnosis is 

introduced. The methodology proposes using MPCA to 

extract low-dimensional features from FD tensors built with 

multivariate sensor signals and a supervised 1D-CNN 

architecture for identifying faults. Secondly, a performance 

comparison study is used to show the advantage of using 

MPCA over traditional PCA for tensor data analysis on 

machinery fault identification. Comparison analysis 

combines state-of-the-art ML methods with features 

extracted from MPCA and PCA on FD tensors for multi-

sensor fused data. Also, compare the relative performance of 

previous and new methods for benchmarking. A case study 

about rotating machinery fault classification using MFS 

sensor data is conducted to compare the performance. It has 

been demonstrated that the suggested approach outperformed 

the traditional PCA-based benchmarking ML methods and 

was trustworthy for detecting machinery faults using multi-

sensor tensor-based data. 

The paper is structured in the following way: Section 2 

presents the literature review of multi-sensor data-based fault 

diagnosis, MPCA-related studies, and recent studies of 

machinery fault diagnosis. Section 3 outlines the proposed 

methodology, which describes the two steps involved. 

Section 4 analyzes the proposed methodology's experimental 

performance in rotating machinery experiments and 

compares it with existing feature reduction techniques using 

popular ML algorithms. Finally, Section 5 presents a 

conclusion and suggests possibilities for future research. 

2. LITERATURE REVIEW 

2.1. Multi-sensor fusion-based fault diagnosis 

Sensor fusion techniques are widely applied to combine data 

collected from multi-sensor to obtain a more understandable 

and reliable perception of a machinery system. Data-level 

fusion, feature-level fusion, and decision-level fusion are the 

three types of fusion techniques commonly used in 

machinery health monitoring and diagnosis (Al Mamun et al., 

2023). Data-level fusion combines multi-sensor data into a 

comprehensive dataset synchronized in time or frequency 

domain to capture correlations between different sensors. 

Researchers combined raw vibration signal from multiple 

datasets and increased data size prior to the process of feature 
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learning and training (W. Zhang et al., 2018). Also, ML 

models are utilized to fuse data for pattern recognition instead 

of manually combining data (Banerjee & Das, 2012; Jiao et 

al., 2019). A recent investigation shows that feature-level 

fusion provides more accurate and detailed information for 

diagnosis problems compared to data-level fusion (Z. Chen 

& Li, 2017). Instead of combining raw signal data, feature-

level fusion aims to extract meaningful features from raw 

data to generate more informative representation of the 

machinery system. For example, extracting time-domain 

statistical features, spectral features, then merge all features 

to establish a dataset for fault detection (L. Guo et al., 2016; 

Xia et al., 2018). Decision-level fusion involves analyzing 

and combining decisions from multiple classifiers, 

generating an outcome at a higher level. Techniques such as 

fuzzy rules, Min rule, Compromise rules, one-vs-all lookup 

tables, etc. (S. Chen et al., 2020; Le Bris et al., 2019). (Niu et 

al., 2007) designed a decision fusion system for motor fault 

diagnosis by generating decision vectors and feeding the 

vectors to multi-agent classifiers. (X. Liu et al., 2009) 

incorporated feature-level fusion and decision-level fusion 

using fuzzy measures and fuzzy integrals for accurate rolling 

bearing fault diagnosis.  

Multiple studies have shown that sensor fusion techniques are 

highly effective in diagnosing faults in machinery systems. 

These methods involve placing sensors at various locations 

within the system environment to represent the system 

comprehensively. This approach provides a more complete 

and accurate view of the system's performance, improving 

overall operational efficiency. 

2.2. Multilinear principal component analysis 

PCA is one of the most widely used algorithms for feature 

extraction and dimension reduction. It creates a linear 

projection of the original data onto a new orthogonal 

coordinate system. Because of the limitation of PCA on high 

dimensional data, such as high computational and memory 

demand and ignorance of high order dependencies present in 

the original data (Z. Chen & Li, 2017), variations of PCA are 

developed (Choi et al., 2005; Wang et al., 2017). Among the 

variants, multilinear principal component analysis (MPCA) 

(Lu et al., 2008) is more efficient when dealing with higher 

dimensional data. It extends feature reduction in feature 

extraction and data reduction by directly operating on the 

original high-order tensors to decompose them into n-mode 

core components and performing PCA in each mode. In the 

study of (Paynabar et al., 2013), multi-sensor time series data 

was processed by uncorrelated MPCA to effectively capture 

the interrelationships of data from various sources. 

According to research findings, the application of MPCA 

allows for successfully capturing the correlation between 

data from multi-sensor compared to PCA. Further, MPCA 

can effectively retain the shared patterns across various 

sensors. These influences emphasize the potential use of 

MPCA in the context of multi-sensor data-based fault 

diagnosis. 

2.3. Recent development of machinery fault diagnosis 

With the advancements in data-driven ML methods and tools, 

machinery health monitoring has significantly improved. 

Data-driven ML methods in fault diagnosis involve learning 

the observed patterns of normal operating conditions and 

classifying deviations as potential faults according to patterns 

detected in the real-time operating machines. Among these 

methods, deep learning-based fault identification practices 

have gained more attention due to their proven ability to 

automatically learn deep features. Deep learners, such as 

Artificial Neural Networks (ANN), Deep Belief Networks 

(DBN), Autoencoders (AE), Stacked Autoencoders (SAE), 

Recurrent Neural Networks (RNN), and CNN, are the 

learning architectures that perform relatively more 

promisingly than traditional methods in fault pattern 

identification (Gao et al., 2015; Senanayaka et al., 2022; Yu 

et al., 2022).  

CNN has made significant progress in detecting machinery 

anomalies and diagnosing faults across various applications. 

(Hoang & Kang, 2017) converted 1-D time series vibration 

data into 2-D images for automatic learning and classification 

for fault identification. However, practitioners prefer 1D-

CNN for vibration-based fault classification problems than 

2D-CNN-based models because it is not mandatory for 

comprehensive dimension conversion from 1-D to 2-D (Yu 

et al., 2022). In a study (S. Chen et al., 2020), the feature 

vectors generated by a 1-D CNN were exported to another 1-

D CNN for bearing fault diagnosis. (Eren et al., 2019) 

conducted a study where they introduced an adaptive 1D-

CNN classifier for fault identification. Their experiments 

demonstrated the method's effectiveness for bearing fault 

diagnosis and confirmed that it required no dimension 

conversion. In a further study, researchers used envelope 

spectrum and 1D-CNN for rotating machinery fault 

diagnosis, varying the rotary machine speed. They found that 

1D-CNN was easily adaptive for fault identification and 

classification of defects (Appana et al., 2018). Additionally, 

the frequency spectrogram provides a deeper insight into 

frequency behaviors of the frequencies that are not obvious 

in raw time-based data. A study shows that an imbalance of 

the rotor occurring at a high amplitude can be captured using 

the frequency spectrum analysis and used for fault 

identification (Janssens et al., 2016). (Souza et al., 2021) 

proposed a CNN-based framework to detect machine faults 

with vibration data in the frequency domain. The utilization 

of CNN-based methodologies has demonstrated its 

proficiency in detecting faults in machinery systems. 

2.4. Research gaps in related works  

In the context of rotatory machines, issues such as bearing 

faults tend to show periodically, giving rise to distinct 



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2024 

4 

frequency peaks (Janssens et al., 2016).  These peaks are 

often challenging to determine in the time domain. Also, 

frequency domain analysis provides considerable advantages 

over time domain analysis. These include enhancing signal 

quality by eliminating unwanted noise through transforming 

time into frequency, streamlining specific frequency 

component identification within a signal, the usefulness of 

linear systems with periodic signals, and the representation of 

the signal's energy as a distribution. Consequently, this study 

integrates frequency domain tensors instead of time domain 

analysis. Traditional feature reduction methods, such as PCA 

and its variants, have been widely applied for feature 

extraction and dimensionality reduction. The MPCA 

methodology has significant advantages over PCA, 

particularly its ability to handle multi-dimensional tensor 

object data (elements of a tensor usually have two or more 

indices) (Lu et al., 2008). Unlike PCA, MPCA extracts 

feature directly on each mode (dimension) of the high-order 

tensor without breaking the tensor structures. Thus, MPCA 

retains the original multi-dimensional data structure, bringing 

more insights into the extracted features. In the existing 

literature, few studies have employed MPCA for high-

dimensional feature extraction, yielding significant insights. 

Notable contributions include the works of Al Mamun et al. 

(2023), Hu et al. (2021), and Guo et al. (2021). The 

integration of MPCA features from FD tensors via multi-

sensor fusion and 1D-CNN for the purpose of machinery fault 

diagnosis has received limited attention. As a result, we have 

developed a novel approach that emphasizes feature-level 

multi-sensor fusion, low-dimensional frequency domain 

feature extraction using MPCA, and machinery fault 

classification employing 1D-CNN. 

3. PROPOSED METHODOLOGY 

This methodology has been proposed to diagnose faults in 

machinery systems, which consists of two primary steps. The 

first step involves creating FD tensors by concatenating 

multiple frequency domains of acquired data from multi-

sensor. For creating FD tensors from the multi-sensor data, 

time domain data is converted into frequency components. 

The second step involves decomposing the features into a 

low-dimensional domain using MPCA to train a 1D-CNN for 

fault diagnosis. A workflow diagram in Figure 1 extends an 

overview of the proposed methodology and its essential 

steps.

 

Figure 1: Proposed workflow diagram of the multi-sensor signal fused fault diagnosis. 

3.1. Step 1: Build a fused FD tensor with multiple 

channels 

The present study concerns a machinery system equipped 

with multivariate sensors. The raw data from multiple 

location sensors is transformed using a fast Fourier transform 

(FFT) technique. This technique aims to obtain the frequency 

components of the system's raw signals from different 

location sensors/channels. The resulting frequency 

components of sensor arrays are then integrated to form a 

multi-dimensional tensor.  

The space of time domain signals is represented by 𝒳, where 

𝑋𝑡
𝑝

 is the observed time signal at time 𝑡 , where 𝑡 =
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 1,2,3. . . , 𝑚 and from a channel/sensor at location 𝑝, where 

𝑝 = 1,2,3, … , 𝑁 . The 𝑚  and  𝑁 represent the number of 

signals recorded and sensors available in various locations, 

respectively. The label space, 𝒴 , consists of 𝑌𝑡
𝑐  labels for 

recorded time signal at 𝑡  for 𝑐𝑡ℎ  fault conditions of the 

operating system, where 𝑐 =  1,2, … , 𝐶 , number of fault 

conditions available represents 𝐶. The observed time signals 

at 𝑝𝑡ℎ  location with 𝑐𝑡ℎ  condition of the system can be 

represented by the following equation (1). 

{𝑋(.)
𝑝

, 𝑌(.)
𝑐 } = {(𝑥1

𝑝
, 𝑦1

𝑐), (𝑥2
𝑝

, 𝑦2
𝑐), … , (𝑥𝑚

𝑝
, 𝑦𝑚

𝑐 )}                    (1)  

The spectral decomposition of a time-varying signal can be 

represented as 𝑓[𝑋𝑡
(.)

]. This involves the determination of the 

frequency content of a given fault condition at a specific 

instant in time. 

The frequency components of multi-location sensors, each of 

a unified length d, is integrated to construct an FD tensor of 

dimension 𝐷 , 𝐷 =  𝑑 × 𝑁 , where 𝑁  represents the total 

number of the available sensors with different locations. This 

resulting FD tensor (𝑨𝒕)  can be represented as in (2). 

𝑨𝒕  ∈ ℝ𝑑×𝑁            (2) 

For more in-depth insights into the generation of FD tensors, 

please refer to (Al Mamun et al., 2023). 

3.2. Step 2: Extract low-dimensional features and train 

1D-CNN 

During the feature extraction process, important 

characteristics or attributes are identified as low dimensions 

from the FD tensors generated in the previous step. The 

technique used in this step, MPCA, is a statistical method that 

can reduce the dimension of tensor data while maintaining its 

structure. The dimension-reduced FD tensor can be 

represented as follows, 

𝑨𝒕
∗ = 𝑨𝒕 ×1 𝑱(1)𝑇

×𝟐 𝑱(2)𝑇
                                                   (3) 

where 𝑨𝒕
∗ ∈  ℝ𝑟1×𝑟2(1 < 𝑟1 < 𝑑 𝑎𝑛𝑑 1 < 𝑟2 < 𝑁) , the 𝑱(.) 

represents the projection matrices, and ×(.)  represents the 

modular product between the given matrix and the tensor (Lu 

et al., 2008, Guo et al., 2021).   

The present study employs a 1D-CNN as an ML algorithm, 

which is a less sophisticated variant of the traditional 2D-

CNN. The 1D-CNN has proven to be effective in fault 

diagnosis of machinery systems, offering comparable 

accuracy and facilitating improved decision-making (Eren et 

al., 2019; Kiranyaz et al., 2019; Yu et al., 2022). In this 

instance, the input features used for the 1D-CNN model are 

low-dimensional one-dimensional data extracted from 

frequency-domain tensors. The convolutional layer primarily 

aims to transform 1D features into feature maps nonlinearly. 

The convolutional layer's mathematical model can be stated 

as follows: 

ℎ𝑚
𝑙 = 𝑓 (𝑏𝑚

𝑙 + ∑ 𝑐𝑜𝑛𝑣1𝐷
𝐶𝑙−1
𝑗=1 (𝑤𝑗𝑚

𝑙−1, 𝑥𝑗
𝑙−1))                            (4) 

where ℎ𝑚
𝑙  represents the convoluted output after passing 

through an activation function 𝑓(. ). In this procedure, the 

input of the 𝑙𝑡ℎ layer is determined by the combined bias of 

the 𝑚𝑡ℎ neuron, 𝑏𝑚
𝑙 . The output of the previous layer's 𝑗𝑡ℎ  

neuron, 𝑥𝑗
𝑙−1 , is linked with the kernel, 𝑤𝑗𝑚

𝑙−1  which is 

subsequently subjected to a convolution operation (Kiranyaz 

et al., 2021; Yu et al., 2022). As the process is carried out step 

by step, the convolution operation is able to identify the 

distinctive features present in the input data, ultimately 

leading to the development of feature maps through learned 

patterns. After the convolution operation, it is typical to apply 

a pooling operation to the feature maps to decrease 

dimensionality. In this process, the feature maps have been 

reduced in size by utilizing max pooling, which involves 

selecting the maximum value within a local region of the 

feature map. 

As this is a classification problem, categorizing faults for 

employing a classifier function is crucial. SoftMax classifier 

is one of the widely used techniques to accomplish this task. 

This technique is expressed mathematically as a function that 

determines the probability distribution of the data into 

various categories. The mathematical expression can be 

written as follows: 

𝑃𝑟𝑐 =
𝑒(𝜔𝑐𝑥+𝑏𝑐)

∑ 𝑒(𝜔𝑐𝑥+𝑏𝑐)𝐶
𝑖=1

 , 𝑐 = 1,2, … 𝐶                                       (5) 

where 𝑃𝑟𝑐  is the output, the estimation of class probability 

obtained through the 𝑐𝑡ℎ class, which is a result of the input 

feature vector 𝑥 . The 𝜔𝑐  represent the weight coefficients 

and 𝑏𝑐 is the bias in the fully connected layer. The number of 

classes is represented by 𝐶 (Yu et al., 2022). 

4. CASE STUDY 

This section evaluated the proposed methodology's 

performance using MFS built by Spectra Quest Inc. The 

simulator machinery system is installed with multiple types 

of sensors for real-time fault identification. 

4.1. Experimental setup 

The MFS system is equipped with three accelerometers and 

eight microphones to record multi-location directional 

signals. To capture vibration signatures, single-axis 

accelerometers were utilized, specifically the Industrial ICP® 

608A11 model, with frequencies ranging from 0.2 to 15 kHz. 

On the other hand, Adafruit® silicon MEMS microphones 

were used to acquire acoustic signals with a sensitivity 

frequency range from 100 to 100 kHz. The experimental 

setup of MFS is illustrated in Figure 2. 
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Figure 2: Experimental setup of MFS for  multi-sensors data 

collection 

 

The MFS is setup with an induction motor (notation I.M.) 

powers the system. A tachometer (notation T) is installed on 

the motor to accelerate the rotating speed. B1 labels the 

rolling bearing at the coupling end with fault while B2 

Indicates the rolling bearning at the shaft end without fault. 

The number of 1-8 are where the acoustic sensors (MEMS 

microphones) placed on system housing. From number 9 to 

11 locates accelerometer for vibration data collection. 

 

The experimental design focuses on detecting bearing faults 

in a single faulty bearing where a fault bearing is installed at 

the coupling end (B1). The acoustic sensors are installed on 

the system housing, whereas the vibration sensors are placed 

in fault-bearing housing. The sampling frequency for 

vibration and acoustic emission signals is set at 10 kHz. 

During the experiment, the induction motor runs at a speed 

of 1800 rpm (30 Hz), and data is collected for five distinct 

operating conditions, each of which is classified into class 

labels, as shown in Table 1. 

Table 1: Operating condition of MFS 

Bearing 

@ 

coupling 

end 

Bearing 

@ shaft 

end 

Condition Class 

label 

Number 

of 

samples 

No Fault No 

Fault 

Standard Normal  300 

Ball Fault No 

Fault 

Fault Ball 450 

Inner race 

Fault 

No 

Fault 

Fault Inner  450 

Outer race 

Fault 

No 

Fault 

Fault Outer  450 

Combined 

Fault 

No 

Fault 

Fault Comb  450 

 

The collected data is obtained under steady-state operating 

conditions of the system, verified by using a Tachometer (T) 

to ensure that the motor speed is correct. For each run, the 

data is collected for three replicates of 300 seconds, resulting 

in a total of 300x10000 data samples for each channel for 

acoustic and vibration signals. The data samples in each 

channel is segmented into 2 second time frames, result in 150 

samples for each run. After carefully examine the samples, 

300 samples of normal condition and 450 samples of each 

rest fault condition are selected for further analysis. 

4.2. Evaluation and performance comparison 

Multiple experiments were conducted to assess the 

effectiveness of the proposed fault diagnosis methodology. 

The purpose of a comparison study is to demonstrate the 

superiority of MPCA over traditional PCA for analyzing 

tensor data. The outcomes were reported as performance 

measures classified by class/condition, which were computed 

from the confusion matrix. The measures included accuracy 

(TP+TN)/(TP+TN+FN+FP)), precision (TP/(TP+FP)), recall 

(TP/(TP+FN)), and F1-score (average of precision and 

recall). In this regard, the TP, TN, FP, and FN, respectively, 

refer to true positive, true negative, false positive, and false 

negative. Precision is a measure of what proportion of fault 

identifications was actually correct, while recall is a measure 

of finding the proportion of actual faults identified correctly.  

4.2.1. Detailed configuration of the proposed method 

To begin the process, FD tensors were generated. These 

tensors were built using the methods explained in section 3.1. 

Two-second time interval of time frames using a 10 kHz 

sampling rate was captured, which resulted in 450 

observations for each condition. The collected vibration and 

acoustic signals in the time domain were transformed into the 

frequency domain and concatenated to fuse the signals in FD 

tensors. Then, FD tensors were subjected to MPCA 

projection to obtain low dimensional features. The FD tensor 

feature vectors were of size 32x32 in feature reduction, where 

each sample is a second-order tensor. The percentage of 

variation kept in each mode is 97, which allowed the 

identification of the most critical features that were 

consequently entered into different classifier models. To 

identify fault patterns in each category, the resulting features 

were fed to 1D-CNN learners. Grid search hyperparameter 

optimization has been performed to select the best 

combination of parameters. The minimum loss in categorical 

cross-entropy was optimized using the Adam optimizer. The 

basic structure and specifications of the 1D-CNN can be 

found in Table 2, but these were subjected to changes during 

training to optimize the minimum loss in categorical cross-

entropy using the Adam optimizer.  

Table 2: The basic structure and specifications of the 1D-

CNN  
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Layers 

 

Specification 

Conv 1D Filters: (64x4), Activation = “relu” 

Conv 1D Filters: (64x4), Activation = “relu” 

        Dense Nodes = 16, Activation = “relu” 

Max Pooling1D PoolSize = 2, Stride =2 

Flatten (.) 

Dense Nodes = 5, Activation = “softmax” 

4.2.2. Performance comparison 

The essential goal of this section is to conduct a 

comprehensive analysis and comparison of conventional 

fault identification methods with the proposed techniques 

under different fault patterns. This study examines the 

effectiveness of combining PCA or MPCA with advanced 

ML techniques for machinery fault identification using FD 

tensors, such as support vector machines (SVM), neural 

networks, and 1D-CNNs. Also, compare the relative 

performance of previous and new methods improvements. 

Besides, these methodologies compared with the proposed 

preparation flow, identifying specific fault categories without 

changing the dataset source and targets. For a generalized 

comparision, all cases were evaluated using the average of 5-

fold coss validation test scores. To align with the MPCA 

methodology, 97% of the variation was retained to facilitate 

comparison during feature reduction with PCA. During the 

process of developing classifiers, the SVM classifier was 

tested with varying combinations of kernels and 

hyperparameters, and upon careful evaluation, the 

configuration that yielded the highest accuracy was selected 

for the final results. The deep learning models were subjected 

to a fine-tuning process where a basic structure with varying 

learning rates and filters was employed, as outlined in Table 

2. The evaluation results of the performance comparison 

study have been summarized in Table 3. The results have 

been averaged over 10 trials, and standard deviation (SD) 

values have been provided for each. Figure 3 shows the 

average accuracy of fault classification experiments using 

traditional and proposed methods. 

 

Table 3: A comparison of the proposed method with currently available methods. 

 

AI methods Measure Normal Ball fault  Inner race fault Outer race fault Combined fault 

PCA 

+ 

SVM  
(Shuang & Meng, 2007) 

Precision (SD) 0.0000 (0.0000) 1.0000 (0.0000) 1.0000 (0.0000) 1.0000 (0.0000) 0.5868 (0.0006) 

Recall (SD) 0.0000 (0.0000) 0.9733 (0.0018) 0.9978 (0.0000) 0.9911 (0.0000) 1.0000 (0.0000) 

F1-Score (SD) 0.0000 (0.0000) 0.9864 (0.0009) 0.9989 (0.0000) 0.9955 (0.0000) 0.7396 (0.0005) 

PCA 

+ 

NN 
(You et al., 2022) 

Precision (SD) 0.9102 (0.0247) 0.9482 (0.0101) 0.9512 (0.0417) 0.8742 (0.0883) 0.8611 (0.0556) 

Recall (SD) 0.9578 (0.0437) 0.9289 (0.0465) 0.8933 (0.0517) 0.8963 (0.1325) 0.8385 (0.1161) 

F1-Score (SD) 0.9270 (0.0287) 0.9339 (0.0231) 0.9122 (0.0482) 0.8724 (0.1003) 0.8316 (0.0669) 

PCA 

+ 
1D-CNN 

(S. Zhang et al., 2023) 

Precision (SD 0.9919 (0.0114) 0.9053 (0.0831) 0.9804 (0.0278) 0.9879 (0.0035) 0.8462 (0.0734) 

Recall (SD) 0.9956 (0.0031) 0.8511 (0.1248) 0.9689 (0.0275) 1.0000 (0.0000) 0.8585 (0.1813) 

F1-Score (SD) 0.9935 (0.0044) 0.8417 (0.0642) 0.9709 (0.0134) 0.9938 (0.0018) 0.8120 (0.1537) 

MPCA 
+  

NN 

(Al Mamun et al., 2023) 

 

Precision (SD) 0.9989 (0.0016) 0.9943 (0.0035) 0.9654 (0.0474) 0.8521 (0.1121) 0.9586 (0.0509) 

Recall (SD) 0.9956 (0.0042) 0.9978 (0.0031) 0.9349 (0.0922) 0.9252 (0.0949) 0.9037 (0.1037) 

F1-Score (SD) 0.9972 (0.0016) 0.9959 (0.0013) 0.9132 (0.0354) 0.8776 (0.1118) 0.9147 (0.0997) 

MPCA 

+ 

1D-CNN 

(Proposed method) 

Precision (SD) 1.0000 (0.0000) 0.9987 (0.0011) 0.9991 (0.0011) 1.0000 (0.0000) 0.9987 (0.0011) 

Recall (SD) 1.0000 (0.0000) 0.9987 (0.0004) 1.0000 (0.0000) 0.9991 (0.0011) 0.9987 (0.0011) 

F1-Score (SD) 1.0000 (0.0000) 0.9987 (0.0005) 0.9996 (0.0005) 0.9996 (0.0005) 0.9987 (0.0005) 
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Figure 3: Average accuracy results for fault classification 

with traditional and proposed methods 

The class-wise multi-class fault classification results 

demonstrate that the proposed method achieved the highest 

precision, recall, and F-scores. The average accuracy is 

99.98%, almost perfect and the best performance. In 

comparison, the second-best performance was 94.83% in our 

previous method. The average accuracy of traditional 

methodologies combined with PCA, SVM classifier, NN, and 

1D-CNN classifiers is 84.9%, 89.9%, and 93.05%, 

respectively.  

The proposed method performs superior in all measures, 

making it a dependable option for real-time fault 

identification and diagnosis in machinery systems. The 

MPCA and 1D-CNN combination is particularly strong due 

to its ability to reduce dimensionality and identify faults 

based on low-dimensional feature classification. This 

combination provides a total capacity for both dimension 

reduction and fault identification. 

5. CONCLUSION  

Multivariate sensor-based fault diagnosis in machinery 

systems often leads to a wide range of high-dimensional 

information. The nature of destructive faults in machinery is 

inherently complex, and sensor data variability requires 

advanced feature extraction, reduction, and pattern 

recognition, making it a demanding task to analyze them to 

make real-time decisions. This paper proposes an accurate 

real-time machinery fault identification method using 

multivariate sensor data. This approach is two-fold, where the 

first frequency components of raw time domain multi-sensor 

data are integrated to build an FD tensor. Then, MPCA with 

1D-CNN architecture is used for fault pattern identification. 

The performance of the proposed approach is validated 

through multi-class classification using the machinery fault 

simulator's fault patterns. The experiment results illustrate 

that the proposed method can accurately detect faults in the 

machinery system. Moreover, the experimental study is 

extended to verify the relative performance of the fault 

identification capability with the currently available state-of-

the-art methodologies. Specifically, ML models such as 

SVM, NN, and 1D-CNN are combined with the PCA 

technique. The comparison study shows that the proposed FD 

tensor-based MPCA+1D-CNN outperforms multivariate 

sensor-based approaches for fault pattern identification. The 

findings of this study have important implications for 

practitioners in industrial fault detection and diagnosis, 

suggesting that the use of FD tensor-based MPCA in 

combination with 1D-CNN can lead to significant 

improvements in the dependability and safety of industrial 

machinery. 

 

A couple of potential directions can be identified for future 

extensions of this method. The complexity of the multivariate 

sensor data can be increased by installing a different type of 

sensors in various locations, and evaluating the performance 

of the proposed method is one direction that can be addressed 

in the future. The performance of the proposed method can 

be evaluated for incorporated faults in the system, where 

bearing, motor, and shaft faults are simultaneously occurring. 

This is another direction of study that will be addressed in the 

future and lead to significant implications in industrial 

machinery. Also, another concern identified in industrial 

machinery systems is missing or highly variable data 

recorded in sensors due to sensor malfunctions or data 

recording issues. In the future, further advancements will be 

added to the current methodology to address these issues. 

Another area of research that can add value is the optimal 

alignment, sequence, direction, and arrangement of sensor 

arrays for fault data capture in machinery systems. Hence, 

exploring the significance of sensor arrangement in detecting 

faults in machinery systems is another possible area worth 

investigating. 
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