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Supervisory Control and Data Acquisition (SCADA) is
widely used to manually monitor and manage distributed
physical assets. Supporting infrastructure was designed and
optimized for that need. Specialized communication proto-
cols are utilized for applications which span large geograph-
ical deployments. These protocols ensure data robustness
and consistency in variable-quality network environments.
However, the resulting data, while forming enterprise data
pipelines, lacks granularity and has irregular time spacing,
making it unsuitable for machine-learning-based predictive
maintenance applications.

We present a hybrid cloud-to-edge health monitoring solution
for assets connected to SCADA or other legacy control sys-
tems. Our solution uses a modbus-based polling system on
the edge, to collect data at a much higher granularity than
the adjacent SCADA system, letting us detect even subtle
and acute patterns in the data. Note that no new sensors are
needed, as we connect to the same registers as the existing
SCADA system. The high granularity data is assessed at the
edge for anomalies, using time series anomaly detection algo-
rithms. We then synthesize the predictions into a health index
that quantifies the recency and the frequency of the detected
anomalies for the asset. The health index is then transmit-
ted to a web-based application, where the user can configure
thresholds for generating alerts based on the criticality of the
asset.

We demonstrate our solution in a case study, where the ap-
plication was deployed using Schneider Electric’s Customer
First Digital Hub, to monitor a sewage pump station for
blockages and other subtle deviations in operating patterns.

1. INTRODUCTION

Wastewater management involves a network of intercon-
nected assets whose purpose is to reliably move wastewater
from homes and workplaces back to centralized processing
facilities. Failures in these operational assets must be very
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rapidly addressed to ensure the continuity of critical services
to our homes and cities. There are several failure modes in
the complex industrial assets. Blockages in pipes may lead
to overflows, as there is no redundancy in the infrastructure.
As a critical active component of wastewater networks, mo-
tors and pumps keep wastewater flowing. Pumps may be in-
stalled as redundant pairs, or as single units. Their failure can
lead to significant financial costs related to repair and restora-
tion. The regulatory climate for compliance and safety has
also motivated the various stakeholders to maintain wastew-
ater treatment facilities with the latest technology and over-
all effectiveness. The community has conventionally relied
on scheduled or surveillance-based maintenance. Such tradi-
tional approaches are often more expensive and may not even
enable timely interventions. To this end, the wastewater treat-
ment industry has untapped potential to benefit significantly
from machine-learning-based predictive maintenance.

Wastewater is hazardous prior to treatment. Any untreated
discharges, caused by failure events that are not addresses in
time, can harm the environment and the public health. On a
human and cost front, failures can occur unpredictably, mak-
ing it difficult for organizations to plan effectively. On a
human level, people must respond at any hour of the day.
They are often recompensed via overtime, which ultimately
the users of the system pay for.

Predicting failure generally relies on proactive identification
of leading indicators. In complex systems, those leading in-
dicators are not easily identifiable either to human operators
or to the simplistic SCADA alarming mechanisms. Each as-
set produces a constant stream of data from interdependent
variables read from multiple sensors. This inherent complex-
ity does not lend itself to automated machine learning-based
modeling and processing.

Moreover, wastewater treatment facilities present some
unique challenges for predictive maintenance. The makeup of
the waste water changes constantly with time. As the assets
age, the types of failures also change. The existing SCADA
systems that are used for monitoring them are woefully ill-
equipped for supporting advanced predictive maintenance

1



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2024

Figure 1. The proposed hybrid cloud-to-edge pump monitoring system.

algorithms. Scalability is also important: the solution must
be widely applicable and support diverse modes of operation.

Given the limitations of the existing SCADA systems in en-
abling predictive maintenance of wastewater systems, there is
a need to go beyond the current monitoring and control infras-
tructure. To this end, we present a hybrid cloud-to-edge mon-
itoring system to enable predictive maintenance of industrial
assets by processing high-frequency multidimensional sensor
data at the edge. Our system trains machine learning mod-
els on the cloud and executes them on the edge to produce an
actionable health index. A threshold can be set based on the
criticality of the asset to open a case when the health index
crosses it.

Our system has two noteworthy features: 1) high-speed
polling over modbus to collect multivariate sensor data and
2) time series anomaly detection and health index calcula-
tion. The sensors that are used by the existing SCADA sys-
tem are polled over modbus to get high-frequency data onto
an Industrial PC (IPC). ML models are trained on such data
in the cloud and deployed on the IPC at the edge. The ML
models detect anomalous patterns in the working on the as-
sets and convert the predictions to a health index. The health
index quantifies the recency and frequency of the anomalous
behavior.

We demonstrated our system at a wastewater treatment fa-
cility and showed that we can accurately monitor the health
of the pumps that are used in the tanks. Blockage in these
pumps is a common problem; a controlled experiment was
conducted at the wastewater treatment plant to mimic block-
ages. The health index and the alarming logic performed ac-
curately and no false alarms were raised.

The rest of the paper is organized as follows. We compare
our work with relevant literature in Sec. 2 and provide back-
ground for understanding wastewater treatment facilities in
Sec. 3. The architecture of the proposed system is presented
in Sec. 4. The time series anomaly detection and the health
index calculations are detailed in Sec. 5. We present the con-
trolled blockage experiment and other results in Sec. 6. We
conclude with directions for future work in Sec. 7.

2. RELATED WORK

The value of SCADA and related data for predictive main-
tenance of industrial assets is well-recognized by the PHM
community. In this section, we focus on wastewater treatment
facilities and SCADA and ML-based approaches and provide
context for our work.

The authors recognize the opportunities of using SCADA
data for machine learning applications in (Šenk, Tegeltija, &
Tarjan, 2024). Applications like anomaly detection, predic-
tive maintenance, and system performance optimization are
explored. Additionally, the authors acknowledge data quality,
security, interpretability as potential challenges. Our work
presents a specific realization of these ideas for wastewater
treatment facilities.

In (Trstenjak, Palasek, & Trstenjak, 2019), the authors intro-
duce a novel decision support system to forecast wastewa-
ter pumping station failures using a Case Based Reasoning
(CBR) classification method with a continuous learning algo-
rithm. Our proposed system goes beyond decision support
and analyzes high-granularity time series data at the edge
to provide near real-time insights about ongoing issues in
the pumps. In (Moreno-Rodenas, Duinmeijer, & Clemens,
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2021), a computer-vision-based approach is presented to de-
tect the accumulation of fat, oil and grease in the sumps of
waster water pumping station. Such approaches do not scale
very well and also need the installation of dedicated cameras
in potentially hazardous conditions. Our system, on the other
hand, uses sensors that the adjacent SCADA system already
uses for its operation.

In (Mosallam, Medjaher, & Zerhouni, 2013), the authors
present a non-parametric trend modeling approach based
on multidimensional sensor data for PHM of industrial as-
sets. Their approach entails novelty detection models trained
on nominal data. Our approach is similar, but is focused
on wastewater systems and combines contextual parameters,
such as the weather and time of day in the anomaly detection
algorithm.

Machine learning-based approaches have found success for
monitoring the health of pumps in other domains, such as
oil and gas and pipelines. In (Concetti, Mazzuto, Ciara-
pica, & Bevilacqua, 2023), the authors proposed an unsuper-
vised anomaly detection for oil and gas sector. They used a
self-organizing map algorithm to identify anomaly from dif-
ferent modes of normal operation. Using an unsupervised
method based on a Gaussian mixture model, authors in (Giro,
Bernasconi, Giunta, & Cesari, 2021) tracked the normal con-
dition of a centrifugal pump using pressure measured on re-
mote points along the pipeline. Using a unlabeled data, the
authors were able to identify pump failure, thereby extending
the lifetimes of the pipelines.

3. BACKGROUND

A wastewater treatment facility consists of a network of tanks
through which the water is circulated. Each tank consists one
or more pumps that work together to circulate the water that is
sent from upstream tanks into the downstream stations. Fig. 1
shows one such tank on the top-left. The pumps begin pump-
ing the water when it reaches a high watermark. As the pumps
kick-in, the water level gradually decreases. They stop when
the water reaches a low watermark.

Conventionally, two or more pumps work in duty cycle fash-
ion, where they take turns in pumping the water out. Each
iteration of the pump turning on, reducing the tank level, and
turning off is called a pump cycle.

In the context of pump stations within the water and wastew-
ater industry, SCADA systems facilitate a lot of critical func-
tions aimed at optimizing operational efficiency and ensur-
ing regulatory compliance. These functions encompass real-
time monitoring of water levels, flow rates, pressure levels,
pump statuses, and other relevant parameters. By continu-
ously collecting and analyzing data from various sensors and
instruments installed throughout the pump stations , SCADA
systems enable operators to gain insights into system perfor-

mance, identify potential issues, and initiate corrective ac-
tions proactively. Moreover, SCADA systems facilitate re-
mote control capabilities, allowing operators to adjust pump
settings, alter flow rates, and implement emergency shutdown
procedures from centralized control centers or mobile de-
vices, thereby minimizing downtime, reducing energy con-
sumption, and mitigating risks associated with equipment
failures or process disruptions. A typical sequence of pump
cycle data collected by the SCADA system is shown in Fig .2.
We show the flowrate (blue), motor amps (red), motor speed

Figure 2. Typical sequence of pump cycle data collected by
SCADA.

(green) and the water level (purple) collected by the SCADA
system across multiple cycles. Each cycle consists of the wa-
ter level decreasing as the motor amps and the motor speed
attain their nominal values. The flowrate out of the tank also
attains its maximum value during the cycle.

SCADA systems originated to enable remote monitoring and
control of industrial processes in sectors like energy, water,
and manufacturing. Designed for real-time data acquisition
over often extensive networks, SCADA systems can handle
vast numbers of data points, or “tags” which can reach into
the millions in large-scale applications. At the time of their
inception, traditional server-based computing was the norm.
Performance and capacity were limited by the computing
power at their disposal and as a result, trade-offs were made
in data polling frequency, system architecture, and prioritiza-
tion by asset operational criticality to optimize performance
within bandwidth and resource constraints.

As industrial operations expanded geographically, traditional
scan-based SCADA protocols struggled with latency, reliabil-
ity, and security over long distances, at the time often under-
pinned by technologies including serial, modem, microwave,
or radio transmission. This prompted the development of spe-
cialized communication protocols for wide-area applications.
Notably, the Distributed Network Protocol version 3 (DNP3)
was created to address these challenges with new features
like report-by-exception, timestamping at source and adding
data buffering on-device. These features made it well-suited
for large-scale, distributed systems. It subsequently enjoyed
broad uptake in particular segments and regions which had
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less reliable and performant network communication, while
needing to continuously manage vast amounts of data.

While SCADA systems are well-evolved for their primary
purpose, the nature of the data they collect is often of
questionable quality for modern organizational data-pipelines
upon which higher level AI capabilities can be built. SCADA
data is very coarse, as depicted in Fig. 2. The low granular-
ity is a result of the deadbands configured in the sampling
of the sensors. Our proposed system, which is described in
the next section overcomes the granularity issue by collecting
and processing the data on the edge.

4. SYSTEM ARCHITECTURE

The solution is developed and deployed on Schneider
Electrics Customer First Digital Hub framework, within
the Industrial Automation Services. This is an open, inte-
grated infrastructure based on industry standards, leveraging
the capabilities of Cloud and Edge computing combined with
Artificial Intelligence. Key elements of the solution include:

• Edge Gateways Deployment: Edge gateways are in-
stalled in the field, interfacing with physical assets and
control systems like PLCs. These gateways use standard
industrial protocols such as Modbus and OPC UA to fa-
cilitate seamless bidirectional communication.

• Machine Learning Integration: Data collected from the
field is used to train Machine Learning (ML) models on
the cloud, harnessing extensive computational resources.
These models are then deployed on the edge, optimiz-
ing for latency, connectivity, bandwidth, and storage ef-
ficiency.

• Centralized Management: The edge gateways are con-
nected to the internet, allowing centralized management
of all edge nodes and ML models. A web-based user in-
terface provides comprehensive oversight, enabling users
to monitor real-time inference based on high granular-
ity data, view alarms, and track low granularity data up-
loaded to the cloud. Users can also provide feedback on
ML model accuracy, fostering continuous learning and
improvement.

This methodology allows seamless integration with existing
control infrastructures, such as legacy SCADA systems, en-
hancing their capabilities with advanced AI models. Essen-
tially, it is like deploying an ”engineer in a box” to valuable
assets, enabling the system to: Detect and alarm on abnormal
operating events. Capture and automate operator expertise
and knowledge through Machine Learning. Deploy work-
flows to mitigate or prevent issues.

Fig. 3 illustrates the high-level architecture of this solution.

5. TIME SERIES ANOMALY DETECTION AND
HEALTH INDEXING

In this section, we describe the anomaly detection pipeline
for the sewage pumps. We begin by framing the anomaly
detection problem and outlining alarming logic.

As described in Section 3, the pumps in the sewage station
operate in cycles. Additionally, the sewage treatment facility
experiences different demand patterns through the day. These
patterns are related to the periodic activities of the residents
of the area. Mornings and evenings, when most people tend
to be at home, result in heavier inflow into the sewage stations
compared to the afternoon and late night hours. Fig. 4 shows
the distribution of length of the cycles for each hour of the
day.

In this context, we define the anomaly detection problem for
sewage pumps as follows. During the peak hours, following
the onset of a cycle, classify windows of predefined length in
time as either anomalous or nominal. During off-peak hours,
at the end of a cycle, classify it as either anomalous or nom-
inal. Note that predictions are made within a cycle during
peak hours, whereas for off-peak hours, the entire cycle is
labeled as nominal or anomalous.

The alarming logic uses a health index that quantifies the re-
cency and frequency of the anomalies. A pre-defined thresh-
old is created for each asset. In Fig. 1, a threshold of 40 has
been chosen. When the health index crosses this threshold, a
notification is issued. The health index works as follows.

1. The health index is nominally close to 0. A low non-0
value is used as the floor. This indicates that no anoma-
lies were seen recently, and the asset is working nomi-
nally.

2. During the high inflow periods, each 10-minute window
of a pump cycle is scored. If the window is deemed nom-
inal, then the health index does not change if it was al-
ready at the floor. If it was elevated, the health index is
decreased at a rate proportional to its level. If the health
index was very high, then the decrease is steep and if the
health index was relatively low (but still elevated from
the floor), the decline is relatively gentle.

3. If the window is deemed anomalous, then the health in-
dex increases. The increase is again proportional to the
current value. If the health index was relatively low, the
increase is steep. If the health index is already elevated,
then the increase is relatively gentle.

4. During normal hours, the health index is updated at the
end of the pump cycle using the same logic as steps 3 and
4 above.

We describe our solution to the anomaly detection problem
and detail the corresponding alerting logic in the following
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Figure 3. Architecture of the hybrid cloud-to-edge health monitoring system: CFDH.

Figure 4. Cycles are longer in the mornings and night times.

subsections. We summarize the working of the anomaly de-
tection algorithm in the flowchart below.

5.1. Pre-processing and Feature Engineering

Every pump cycle begins with an inrush of current into the
motor. This results in a transient spike in the motor current
at the beginning of the cycle. A similar transient behavior is
seen at the end of the pump cycle, where the motor current
ramps down over a period of few seconds.

We ignore the transient periods at the beginning (inrush) and
the end (ramp-down) of the pump cycle. Both these periods
are fixed to be 60 seconds in our case.

The pump operates in a steady state during the cycle and
we focus our feature engineering logic on this period. The
features are intended to capture the temporal patterns across
the four condition indicators collected by the system: motor
amps, flowrate, water level and the water pressure. The fea-

Figure 5. TSAD flowchart.

tures include both statistical aspects of these signals, as well
as morphological changes, like step-changes. We detail the
features, along with the motivations below.
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1. The range, mean, median, skew, and kurtosis of the mo-
tor current and the water level in the tank. Motor current
is an important condition indicator and any changes in
the statistical distribution in time is often associated with
wear and tear. Statistical features like the range, mean
median, skew and kurtosis can be used to characterize
the signal. The nominal distribution is learned during the
training phase and any deviations during operations are
detected using these features.

2. The number of changepoints in the level time series: Step
changes in the signals, which are captured as change-
points, indicate sudden unexpected changes in the sig-
nals and are often associated with anomalous behavior.
We compute the changepoints in the water level signal,
as step changes in the water level are associated either
with an unexpcted change in the pump’s ability to clear
the water, or external sources of water, like rainfall.

3. The correlation between the flowrate and the pressure:
Under nominal operation, the flowrate and the pressure
signals must be highly correlated. When a blockage oc-
curs, the synchrony between the flowrate and pressure
get broken. Therefore, we use the correlation of the two
signals as a feature for anomaly detection.

These features were selected from a superset of features us-
ing feedback from subject-matter experts. Note that all our
features are in the time-domain.

5.2. Modeling

We built a Local Outlier Factor (LOF) algorithm to estimate
anomalies in the wastewater treatment pumps. Next, we
present a brief overview of the algorithm and the implementa-
tion. The LOF algorithm, which is illustrated in Fig. 6, works
as follows. A given data point is tested for novelty by measur-

Figure 6. Working of the LoF Algorithm.

ing its density. Density is the inverse of reachability, which
measures the distance that n. If the data point has a high den-
sity, it means that the k’th nearest neighbor is far away, i.e
we need to travel far to meet the k’th nearest neighbor. On
the other hand, if the point is less dense, then its k-th nearest
neighbor is close-by. In Fig. 6(a), the green circle denotes the
distance between the test point in the middle and its 5th (k)
nearest neighbor. In subfigure (b), similar circles are shown
for the 5 nearest neighbors. The density for the test point is

compared to the average density of its 5 nearest neighbors.
This is equivalent to comparing the circle on the left with a
circle whose radius is the average of the density circles on the
right in Fig. 6.

When the density of the test point is larger than the average
density of of its k-nearest neighbors, the test point is deemed
to be a local outlier. On the other hand, if the density of the
test point is lower than the average of the k-nearest neighbors,
it is consider an inlier.

The open-source machine learning library Scikit-
Learn (Scikit-Learn, n.d.) was used to implement the novelty
detection algorithm for wastewater pumps. The novelty
detection model entails learning an LOF model from the
training data, assuming that there are no outliers. The num-
ber of neighbors, k, was tuned by hand and set to 20 for
the intra-cycle (peak) model and 5 for the inter-cycle model
(off-peak). Automated grid-based tuning of other hyperpa-
rameters of the model is planned as future work.

Additionally, we also tested Isolation Forests, for the novelty
detection model. The overall performance of the LoF algo-
rithm was beter and thus, it was chosen for the pipeline.

5.3. Alerting Logic based on the Health Index

The LoF algorithm described in the previous subsection de-
tects anomalies at a cycle or a sub-cycle level depending on
the time of the day. The predictions themselves are not very
actionable. We synthesize a Health Index (HI) from the in-
dividual predictions to quantify the recency and frequency of
the anomalies.

The HI is computed by scaling a raw score (rs), which is
updated after each invocation of either of the two novelty de-
tection models.

rsi = rsi−1 +

{
−20 i-th prediction is not-novel (inlier)
+10 i-th prediction is novel (outlier).

(1)

Eq. 1 describes the update of the raw score after every predic-
tion. If the current prediction is nominal, then the raw score
is decremented by 20. If the prediction is novel (outlier), then
the raw score is incremented by 10.

The HI is calculated as follows.

HI = 100.
1

3
. log10 [max{rs, 1}+ 0.55] (2)

The function in Eq. 2 plotted in Fig, 7. The HI grows rapidly
for small values in the rs: any anomalies after a prolonged
nominal period lead to a rapid increase in the HI. As the HI
increases to larger values, the growth slows down. The slow
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growth reflects inertia against too many anomalies as they do
not present any new insights about the system.

Figure 7. Scaling raw scores to obtain the HI.

When the system recovers from anomalous behavior, the raw
score is decremented. The impact on the HI depends on the
current value of the index. If the HI is already elevated, the
HI reduces slowly with every decrement of the raw score.
This ensures that the HI does not reduce quickly if there were
many anomalies in the recent past. As time passes, the health
index decelerates faster as it reduces in value. Thus, if the HI
is already low, an intermittent anomaly will cause a small blip
in the HI that will recover back quickly.

The HI can be used to create an alert when a pre-defined
threshold is crossed. The threshold for alerting is meant to
be context-specific but is generally dependent on a couple of
factors: asset criticality and the desired sensitivity. If the as-
set is highly critical, then a relatively low threshold will en-
sure that alerts would be highly responsive to any observed
anomalies. On the other hand, a lower criticality asset can
afford the alerts to be generated at a much higher thresh-
old. The overall sensitivity of the system may be used to set
the specific thresholds for each asset after a commissioning
phase. Subject-matter experts could weigh-in on the process
of setting the thresholds. Finally, the thresholds may be re-
viewed periodically and tuned to maintain the performance
of the overall system.

6. RESULTS

In this section, we describe the experiment conducted at the
Gladstone Regional Council’s wastewater treatment station in
Australia and the results obtained using our cloud to edge so-
lution. The A01 site, which consists of three pumps, was
chosen for the controlled experiment.Nominally, two of the
bigger pumps are turned OFF and a relatively smaller pump
is used to circulate the water from an upstream site, S01, to
downstream sites of the wastewater treatment facility.

A blockage was simulated on the pump at A01 on August 29,

2023. The simulation entailed closing a valve at A01 to block
the flow, thereby mimicking a pump blockage. The valve was
closed gradually in a stepwise fashion at 8:07 am, 8:16 am,
8:28 am, 8:41 am (most severe blockage was attained). The
valve was brought back to Normal at 8:56 am.

The goal was to detect the blockage event using the proposed
pump monitoring system.

The pump monitoring system was commissioned and started
collecting data on August 19, 2023. Data was collected until
November 23, 2023. The data was divided into training and
inference as shown in Fig. 8. The data for the period spanned
in yellow was used to train the anomaly detection models.
The data spanned in blue, between August 27th and August
29th was used to test the pump monitoring system, including
the blockage event.

Figure 8. Time windows used for training and testing the
pump monitoring system.

Fig. 9a illustrates the HI estimated during the test period,
which lasted 3 days. The HI for the blockage event, which
was done on the second day, is shown separately in Fig. 9b.
The threshold for alarming was set at 40 and is shown in red.
Despite intermittent blips in the HI, the threshold was crossed
only during the blockage event. Thus, the proposed system
correctly raised the alarm during the blockage event and no
false alarms were raised.

We describe additional aspects of the HI estimation from
Figs. 9a and 9b. Each prediction from the anomaly detection
models triggers an update to the HI (see the flowchart in 5.
During peak hours, the corresponding model is invoked every
10 mins after the start of a cycle. This leads to the HI being
updated more frequently, as shown by the closely spaced data
points. During off-peak hours, the updates are made at the
end of the cycle, which tend to be longer than 10 mins. The
HI updates are less frequent during these times. The HI was
initially low at the start of the test period. Then the models
detected intermittent anomalies several times during the test
period. These resulted in the blips in the HI shown in Fig. 9a.

We focus on the day of the blockage event in Fig. 9b. The
early hours of day, which are off-peak, had a couple of nom-
inal cycles, as shown in Fig. 9b. The cycle that experienced
the blockage started just after 7 pm. The first few 10-minute
windows were nominal and then peak-model detected succes-
sive anomalies leading to the rise in the HI. The HI crossed
the alarming threshold of 40 during the cycle.
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A detailed look at some of the cycles scored by the peak
model, including the blockage cycle is shown in Fig 10. We
plot the motor amps, flow rate, water level and the pressure
signals throughout the cycle. The initial ramp-up and ramp-
down are also shown, but are not used for feature generation
and scoring. The ten-minute windows are shown by vertical
dotted lines. If a window was scored as nominal by the peak
model, the vertical line at the beginning of the window is col-
ored green. An anomalous window has a red dotted vertical
line at the beginning.

Fig. 10a shows the blockage cycle and the predictions made
by the model. The mock blockage involved closing the valve
slowly starting at 8:00 am. We can see that the window
around 8:15 am, and the subsequent window were called as
anomalous by the model. As the valve further closes, the cor-
relation between the flow rate and the pressure breaks down.
This is picked up by the model, resulting in anomalous win-
dows around 8:45 am. As the controlled experiment ended
and the valve was restored, the system recovers and the cor-
responding windows are labeled as nominal.

(a) HI during the entire test period between August 27th and 29th.

(b) HI during the controlled blockage event.

Figure 9. HI estimated by the pump monitoring system.

Fig. 10b shows the performance of the peak model on a subse-
quent cycle. The cycle starts off with an anomalous window,
which could be explained by the oscillatory behavior of the
flow rate, resembling the hammer effect. Despite not being la-
beled anomalous, we believe that out model correctly scores
and further demonstrates the generalizability of the model.
We also see the hammer effect in a subsequent 10-min win-
dow. At around 13:00 hours, the model predicts an anomaly,
which can be explained by the relatively higher amp values.

The model also predicts potential false positives, as shown
in Figs. 10c-d. All the 10-minute windows of these cycles
seem to be nominal based on visual inspection of the data.
As shown in the figures, our model predicts some of the win-
dows as anomalous. The false positive rate of the models can
be tuned to control the behavior. Specifically, in the Scikit-
Learn implementation of the Local Outlier Factor algorithm,
the score samples() function can be used to measure the
degree to which an input is an inlier. The inlier score is the
opposite of local outlier factor and it can be thresholded to
accept a predefined level of false positivies. This threshold
can even be tuned using an RoC curve. Finally, intermittent
anomalies do not spike the HI beyond the alarming threshold
and therefore the system is robust to infrequent false posi-
tives.

7. CONCLUSIONS AND DIRECTIONS FOR FUTURE
WORK

In this paper, we presented a hybrid cloud-to-edge monitoring
system that goes beyond traditional SCADA systems in en-
abling machine-learning-based predictive maintenance appli-
cations for industrial assets. Our system does not need addi-
tional sensors as it acquires the raw sensor data that is conven-
tionally collected and transmitted over dedicated protocols by
the SCADA system. We applied our system to the monitoring
or wastewater treatment pumps. Blockage is a common prob-
lem for such pumps and we demonstrated that our proposed
system is able to raise relevant alarms in a controlled experi-
ment. The time series anomaly detection pipeline scores off-
peak and peak-time cycles using different models and the pre-
dictions are then synthesized into a health index.

In the future, we will go beyond anomaly detection and train
models for more granular insights. These could entail remain-
ing useful life or degradation patterns based on comparing
an asset with others in a fleet. Federated learning could be
used to train the models on the edge. The feature generation
pipeline will also be enhanced by adding time and frequency-
domain features during the initial ramp-up and ramp-down
periods of the motors.
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