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ABSTRACT

With the rapid advancement of industrial systems and the un-
avoidable complications and interconnectedness in systems,
diagnostics of industrial machinery are achieving paramount
importance. Accurate estimation of health condition of in-
dustrial machinery becomes more challenging due to the in-
herent nonlinearity, complexity, and uncertainty of the obser-
vations. Nonlinear dynamic analysis has proven to be a pow-
erful tool for providing information about the health condi-
tion of a system that can be used for diagnostic applications.
The current study particularly focuses on crack depth esti-
mation using phase space analysis. Phase space provides a
topological representation of the dynamics of the system and
is highly informative about the health condition. The infor-
mation suitable for diagnostics is employed by Convolutional
Neural Networks, which are known to be powerful in extract-
ing spatial information from maps. The proposed diagnostic
method is evaluated on a Jeffcott rotor model with transverse
crack in the rotating shaft to estimate the severity of the fault
from the phase space topology as a case study.

1. INTRODUCTION

Predicting the health of machinery is becoming of paramount
importance as the complications and interconnections in sys-
tems is increasing. It is difficult to predict the exact working
condition of the machinery due to the inherent complexity
and the dynamical behavior of the measured outputs.

Detecting cracks in rotating shafts in industrial settings is
exceptionally challenging due to the rapid progression of
the crack, often leading to machine failure with little warn-
ing. This difficulty is due to the nonlinear effects imparted
by opening and closing of the crack (Nelson & Nataraj,
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1986; Shudeifat & Nataraj, 2020; Alzarooni, Al-Shudeifat,
Shiryayev, & Nataraj, 2020). In all rotating systems two
speeds are important: the operating speed and the critical
speed. Changes in the frequencies of 1X, 2X, 3X compo-
nents of the rotating speeds which are in fraction of critical
speed are well known for detecting cracks in rotating sys-
tems (Imam, Azzaro, Bankert, & Scheibel, 1989; Sekhar,
2005; Gasch, 1993). Various time frequency domain meth-
ods like Hilbert Huang Transform (HHT) (Li, Zhang, & He,
2012; D. Guo & Peng, 2007), Wavelet analysis (L. Lin &
Chu, 2012; Gómez, Castejón, & Garcı́a-Prada, 2016), Short
Time Fourier Transform (STFT) (Chandra & Sekhar, 2016)
etc. are used for detecting cracks using transient vibrations
of rotor shaft. Nevertheless, owing to inherent nonlinearities
and varying operating conditions, the task of accurately es-
timating the depth of cracks in a rotating shaft remains an
unresolved issue to this day.

The term ’phase space’ refers to collection of all possible
states of a physical system. These states encompass both the
system’s positions and momenta, which are essential for pre-
dicting its future behavior. Thus the topology of phase space
not only characterizes the system’s dynamics but also pro-
vides a visual depiction of all attainable states that the system
can undergo.

Previously this pictorial representation was given a quanti-
tative form by transforming it into probability density func-
tion to help diagnose the condition of a system (Samadani,
Kwuimy, & Nataraj, 2016; Mohamad & Nataraj, 2020; Mo-
hamad, Nazari, & Nataraj, 2019; Carroll, 2015). Unlike
the previous methods based on phase space topology (PST)
which require hand crafted features, we rely on the machine
learning method, specifically CNNs, to select relevant fea-
tures for mapping the input space to the output space. CNN
have been used for time series classification just by using
1D signals (Abdel-Hamid, Mohamed, Jiang, & Penn, 2012;
Zheng, Liu, Chen, Ge, & Zhao, 2014; Ince, Kiranyaz, Eren,
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Askar, & Gabbouj, 2016; Mohamad, Abbasi, Kim, & Nataraj,
2021; Acharya, Oh, Hagiwara, Tan, & Adeli, 2018) or by
converting the time series to image representations like re-
currence plots (Debayle, Hatami, & Gavet, 2018), spectro-
gram (Khan, Ko, Lim, & Kim, 2019; Raghu, Sriraam, Temel,
Rao, & Kubben, 2020), wavelet maps (Shao, McAleer, Yan,
& Baldi, 2019), Markov Transition Fields, Grammian Angu-
lar Fields (Wang, Oates, et al., 2015; Wang & Oates, 2015)
etc. In rotordynamics orbit shape plays an important role in
determining the operating condition of the system and CNNs
have been used to classify the orbit shapes to determine var-
ious faults such as imbalance, oil whirl, rubbing, misalign-
ment etc. in a rotor system (Caponetto, Rizzo, Russotti, &
Xibilia, 2019; Wu, Feng, Sun, Xu, & Ai, 2019; Jiang, Wang,
Zhao, Xu, & Lin, 2020).

In this paper we have attempted to predict the extent of dam-
age by predicting the crack depth, instead of classifying it,
in a rotating shaft. We employ CNNs to distinguish the phase
portraits of dynamics of a cracked shaft exhibiting parametric
excitation due to crack-induced stiffness variation. Addition-
ally, the Global Average Pooling (GAP) layer is used instead
of fully connected layer at the end of CNN to help in visual-
ization of learned kernels, and identify distinguishing regions
of phase space which can in future studies help to handcraft
robust features for crack depth estimation.

In the following sections the equations of motion are de-
scribed from which phase space images are generated, the
structure of CNN and the procedure to generate activation
maps are described in Section 3. The results obtained from
CNN are presented in Section 4 and finally the discussion on
the regions of phase space to which the CNN gives relative
importance is presented in Section 5.

2. EQUATIONS OF MOTION

We consider a simple two degree of freedom rotor model
as shown in Fig. 1 with the following equations of motion
(Abbasi, Nazari, & Nataraj, 2020; Patel & Darpe, 2008):

mV̈ + cV̇ + kYV + kY ZV = mεω
2 sin(θ +β )

mẄ + cẆ + kZYW + kZW = mεω
2 cos(θ +β )−mg

(1)
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Figure 1. Schematic of the rotor
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Figure 2. Reference axes for the rotor

viscous damping is assumed; 2. Transverse vibrations are
predominant and torsional, axial vibrations are negligible; 3.
depth of crack is constant; and, 4. the zone of operation
is well below yield stress, hence linear elastic mechanics is
valid. Using Eq. 1 and the values of the parameters from
(Patel & Darpe, 2008), the time response is simulated to ob-
tain the phase portraits at varying crack depths.

The effect of crack on the stiffness and cross stiffness terms
is incorporated using an appropriate breathing function in ro-
tating coordinates which can be transformed to fixed coordi-
nates using a coordinate transformation. When a rotor rotates,
the crack opening and closing varies as per the rotation angle
θ(t), thus simultaneously varying the stiffness. This varia-
tion is incorporated using a breathing function for which we
simply follow the model from (Patel & Darpe, 2008). The
effect of weight is assumed to be much higher than unbalance
force. We have used the following Eq. 2 as the breathing func-
tion which is reasonably valid for behaviour of the system for
crack depths up to 0.25D (Gasch, 2008).

F(θ) =
1
2
(1+ cos(θ)) (2)

After rearranging Eq. 1 in matrix form and including the stiff-
ness coupling and model variation in flexibility due to the ac-
tion of the crack, we get the following.[

ky kyz
kzy kz

]
=

[
k0 0
0 k0

]
−F(θ)

[
S11 S12
S21 S22

]
(3)

Here,
[

ky kyz
kzy kz

]
are related to

[
kY kY Z
kZY kZ

]
by standard coor-

dinate transformation matrices. The terms . Also,
[

S11 S12
S21 S22

]
is the stiffness contribution of crack to the rotor. To derive the
stiffness terms of the cracked rotor, Fig. 3 (Abbasi, Nazari, &
Nataraj, 2022) shows the section of the cracked shaft with
details: a, e, D are the crack depth, crack width and shaft
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diameter respectively, while a0 and e0 are their initial values.
The relation between the shaft diameter and the crack depth
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Figure 3. Cross section view of shaft with crack dimensions

can be shown by using a parameter a′ =
√

D2 − (2e)2. Then
the elements of S in Eq. 3 are computed as follows.

S11 =k0 −
ĝy

ĝyĝz − ĝ2
zy
,

S22 =k0 −
ĝy

ĝyĝz − ĝ2
yz
,

S12 =S21 =−
ĝzy

ˆgyyĝzz − ĝ2
zy

(4)

where,

gz =
L3

48EI
+

∫∫ 128L2a′2a
EπD8 F

( a
a′

)2
dade

gy =
L3

48EI
+

∫∫ 512L2e2a
EπD8 F ′

( a
a′

)2
dade

gyz = gzy =
∫∫ 256L2a′2ae

EπD8 F
( a

a′

)
F ′

( a
a′

)
dade

(5)

and,

F
( a

a′

)
=

√(
2a′

πa

)
tan

(
πa
2a′

)
0.923+0.199

[
1− sin( πa

2a′ )
]4

cos( πa
2a′ )

F ′
( a

a′

)
=

√(
2a′

πa

)
tan

(
πa
2a′

)
0.752+2.02

( a
a′
)
+0.37

[
1− sin( πa

2a′ )
]3

cos( πa
2a′ )

(6)

gy, gz, gzy, gyz are the direct and cross coupled flexi-
bility coefficients respectively. When they are integrated
for the depth of the fully open crack we get the terms

ĝy, ĝz, ĝzy, ĝyz, ˆgyy, ĝzz and the corresponding stiffness terms
in Eq. 4 (Patel & Darpe, 2008; Abbasi et al., 2020).

Parameters from (Patel & Darpe, 2008) are used for
simulation and are as follows: L = 0.7 m, D =
45 mm, m = 25 kg, ε = 5 µm, β = 1.5708 rad, c =
972.86 kg/s, mg

k0
= 4.147 × 10−5 m. The appearance of

subharmonic and superharmonic frequencies is a well-known
feature of the output response of a rotating shaft with crack.
Let us consider a parameter λ = ω√

k0/m
to indicate the op-

erating speed with respect to the critical speed. We have
considered the (3/10)th of critical speed (i.e., λ = 0.3), to
obtain the time series data. The frequencies are normalized
with respect to the operating speed ω . The extent of crack
progression is generally specified as percentage of shaft di-
ameter (D). Here we are simulating the system for crack
depths ranging from 2.2% to 32.5% of shaft diameter (D).
Continuous variation of fault here imparts a notion of pro-
gressive increase in its severity. The corresponding phase
portraits of the rotor shaft with increasing crack depths for
noise free signal are shown in Fig. 4.

3. CONV NETS

Following the success of AlexNet (Krizhevsky, Sutskever, &
Hinton, 2017, 2012), deep CNNs gained widespread pop-
ularity for tasks related to image classification. CNNs of-
fer distinct advantages over simple feedforward neural net-
works when processing multidimensional representations, as
they can learn and extract meaningful abstractions without
the need for explicit handcrafted features. The utilization
of CNNs is particularly advantageous for capturing temporal
and spatial correlations (Lecun, Bottou, Bengio, & Haffner,
1998) within a topological structure, providing qualitative in-
sights into dynamical systems. Comparing a feedforward net-
work and a CNN of similar size, the latter exhibits fewer
parameters and connections, making them more trainable.
Although this reduction in parameters may lead to a slight
degradation in overall network accuracy, it remains accept-
able. Figure 5 shows the schematic of the CNN used.

3.1. Visualizing CNN

It is challenging to visualize what a neural network has
learned, especially after the first convolutional layer, due to
the difficulty in inverting the features back to the pixel space.
This challenge is further compounded when there is a fully
connected layer following the convolutional filters. To ad-
dress this issue, Zhou et al. (B. Zhou, Khosla, Lapedriza,
Oliva, & Torralba, 2016) extended the concept of global av-
erage pooling layer introduced by Lin et al. (M. Lin, Chen, &
Yan, 2013) to replace the fully connected layers at the end of
the network. This modification enables accurate discrimina-
tive localization, producing activation maps that highlight the
relative importance of the learned features in the input image
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2.2% 5.59%

8.95% 12.31%

15.68% 19.04%

22.41% 25.77%

29.14% 32.5%

Figure 4. Phase portraits for varying crack depth ratios ex-
pressed as percent of shaft diameter.

for generating a specific output. While Zhou et al. (B. Zhou et
al., 2016) initially applied this technique to CNNs using soft-
max classification, it has been extended for regression layer in
subsequent works (Wang & Yang, 2017; X. Zhou, Jin, Shang,
& Guo, 2020).

In this study, we present a concise methodology for generat-
ing these activation maps in our specific case. For ’N’ feature
maps i.e., n = 1...N, the average activation in the last global
average pooling layer will be,

Φn = ∑
i, j

In(i, j) (7)

ψ̂ =
N

∑
n=1

αnΦn (8)

The output of Eq. 8 is input to the final regression layer to

Figure 5. Structure of network

compute the mean square error to be minimized. Thus, the
activation maps can be formulated as:

An =
N

∑
n=1

αnIn(i, j) (9)

Here αn represents the connection weight from each neuron
of global average pooling layer to the output neuron. As the
final layer is average pooling we can get the weighted sum
of all the filters of penultimate layer i.e., the last convolution
layer to get an activation map as per Eq. 9. This activation
map after upsampling will show the relative importance of
the spatial regions in estimating the required output of the
CNN.

4. METHODOLOGY

Using Bayesian optimization, the structure for the CNN
shown in Fig. 5 and its corresponding hyperparameters were
obtained to achieve the lowest root mean square (RMS) er-
ror on the training set. Prior to training, all input images
were preprocessed by scaling them within the range of 0 to
1. Stochastic gradient descent was employed to update the
weights during the training process. Additionally, batch nor-
malization and ReLU activation functions were applied af-
ter each convolutional layer and before the pooling operation.
The hardware platform with the processor Intel i7-11700 and
graphics card type Nvidia Quadro P620 respectively were
used and MATLAB 2021a DeepLearning Toolbox was em-
ployed as the software package for training and testing of the
network. Although entire multidimensional phase space can
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be used in a CNN we are using only the trajectories lying in
the V ,V̇ plane of the system (Eq. 1) to train the CNN. For
each crack depth ratio, ranging from 2.2% to 32.5%, a total
of 180 phase space images are generated for training dataset,
while 60 images are included in the the validation and testing
dataset. The data distribution corresponding to 10 different
crack depths is presented in Table 1.

Table 1. Data division for CNN

Train data Validation data Test data
1800 600 600

12.31% 15.68%

Figure 6. Phase portraits corresponding to 25dB SNR and the
crack depth to diameter ratio of 12.31% (on left) and 12.68%
(on right) respectively.

After training the network on noise free data, the network was
tested for noisy data by gradually increasing signal to noise
ratio (SNR). The number of samples for noisy test data were
similar to the noise free case as shown in Table 1 and a sample
of the phase portraits of signals corrupted at 25dB SNR are
shown in Fig. 6.

Table 2. RMS Error.

R value RMSE
Without noise 0.9972 0.0169
With 45dB noise 0.9341 0.0153
With 40dB noise 0.8413 0.0157
With 35dB noise 0.5441 0.0190
With 30dB noise -0.2962 0.0309
With 25dB noise -0.3561 0.0465

5. RESULTS AND DISCUSSION

Figures 7 and 8 depicts the activation maps representing the
phase portraits for noise free and noisy signals. It can be
observed from the figures that the relative importance is as-
signed by the preceding convolutions to different regions of
phase space for accurately estimating the crack depth. The
bright regions indicate the most important pixels while the
darker regions are comparatively less important. The bright-
ness patterns i.e., the activations of kernel are of varying in-

2.2% 5.59%

8.95% 12.31%

15.68% 19.04%

22.41% 25.77%

29.14% 32.5%

Figure 7. Activation maps for various phase portraits corre-
sponding to crack depth to diameter ratio as given in Fig. 4
for noise free condition.

Figure 8. Activation maps for phase portraits corresponding
to crack depth to diameter ratio of 12.31% with 25dB added
noise on the right and noise free case on the left.
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tensities along the edges of the phase portraits. Besides edges
activations are always higher in places where the phase por-
trait curves or forms a loop.

Based on experimental observations and the general theory
of nonlinear dynamics, it is well-established that the extent
of a fault is influenced by the diameter of closed loops in the
phase space. Furthermore, the presence of additional harmon-
ics induced by parametric excitation can lead to the forma-
tion of loops in phase portraits (Abbasi et al., 2022; C. Guo
et al., 2013). Taking these observations into account, it can
be inferred that the network aims to extract qualitative spa-
tial information from the phase space of the system, which
is indicative of the changing dynamics induced by the faults.
The RMS error values for estimation of crack depth for the
cases of noise free and noisy signals are documented in Ta-
ble 2. The proposed method performs well for noise free sig-
nal with RMSE 0.0169. However, the performance deterio-
rates slightly with added noise for SNR ranging from 45dB
to 25dB which can be observed by the increasing RMSE val-
ues ranging from 0.0169 to 0.0465. The coefficient of re-
gression (R) value drops considerably after decreasing SNR
below 35dB.

6. CONCLUSION

Machine learning methods continue to evolve and are pro-
gressively being applied to real world systems. In this work
we are proposing a machine learning method to estimate the
crack depth of a rotating shaft. The proposed method uses
CNN trained with images of phase portraits that represents
the varying dynamics of cracked rotor shaft for different crack
depths. The hyperparameters of CNN are optimized using
Bayesian optimization technique. The trained CNN learns
distinguishing features from qualitative representations of a
dynamical system. This is indicated by the activation map
of the phase portrait to estimate the required crack depth.
The regions highlighted not only confirms the previous un-
derstanding from theory and experiments but can possibly
give newer insights about the dynamics of complex nonlin-
ear systems. The proposed method estimates the crack depth
with RMSE of 0.0169 without noise. To represent the real
world situations the proposed method is also tested with noisy
signal for different SNR ranging from 45dB to 25dB. The
method consistently demonstrated better performance with
RMSE ranging from 0.0153 to 0.0465 for different noise ra-
tios. The RMS error reported indicates the robustness of pro-
posed method to estimate the crack depth, highlighting its po-
tential as a valuable tool for detecting crack depths within in-
dustrial applications.
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NOMENCLATURE

a Instantaneous crack depth
c Linear viscous damping
D Shaft diameter
e Embedded dimension
g Acceleration due to gravity
k0 Direct stiffness of uncracked shaft in rotating

frame
kY Direct stiffness of cracked shaft along Y

direction in stationary reference frame
kZ Direct stiffness of cracked shaft along Z

direction in stationary reference frame
kY Z Cross stiffness of cracked shaft along Y

direction in stationary reference frame
kZY Cross stiffness of cracked shaft along Z

direction in stationary reference frame
m Mass of disc and shaft
V Displacement of cracked rotor shaft along Y

direction
e Instantaneous crack width
W Displacement of cracked rotor shaft along Z

direction
β Angle at which unbalance force acts
ε Eccentricity in rotor shaft
λ Ratio of operating speed to first critical speed of

healthy system
θ Instantaneous angular displacement at time t
ω Angular velocity
Φn Output of nth feature map from last conv. layer to

global average pooling layer.
αn connection weight of layer connecting GAP to

output neuron.
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