
 

1 

Operational Wheel Flat Detector in Railway Vehicles 

Ibon Erdozain1, Blas Blanco2, Luis Baeza3, and Asier Alonso4 

1 CAF, Beasain, Gipuzkoa, Spain. 

ierdozain@caf.net 
2CAF I+D, Beasain, Gipuzkoa, Spain 

blas.blanco@caf.net 
3I2MB Universitat Politècnica de València, Valencia, Spain 

baeza@mcm.upv.es 
4 CAF I+D, Beasain, Gipuzkoa, Spain & TECNUN (Universidad de Navarra), Donostia, Gipuzkoa, Spain 

asier.alonso@caf.net 
 

 

 
ABSTRACT 

Maintenance of railway systems is shifting from being based 

on scheduled interventions to a continuous regime based on 

the actual status of assets. This change is supported mainly 

on three pillars: the development of new sensors and signal 

processing techniques, the capability to store and analyze all 

the information gathered by this huge amount of new sensors, 

and the capability of modifying dynamically the maintenance 

plans. This paper presents a new wayside system for 

detecting flats whose development has been based on 

combining physical models with Machine Learning 

Techniques. Physical models are used to understand the 

phenomena, define the key indicators to characterize the 

phenomena and generate synthetic data to train Machine 

Learning algorithms. Subsequently, regression models are 

generated to relate the key parameters with the flat severity. 

The last part of the paper is focused on validating the 

proposed methodology in a real environment.  

1. INTRODUCTION 

Maintenance of railway systems is shifting from being based 

on scheduled interventions to maintenance based on the 

actual status of assets. This change is supported mainly on 

three pillars: 

 The development of sensors and signal processing 

techniques that allow measuring variables related to 

the current status of the elements in a reliable and 

non-expensive way. 

 The capability to transmit, store and analyze the 

information acquired by the different sensors. The 

final objective is to have an up-to-date picture of the 

status of all the monitored elements. 

 The dynamic modification of maintenance activities 

taking into account the health status of the elements 

and the characteristics of maintenance facilities. 

Following this trend, several systems have been developed in 

the last years to monitor the health status of different railway 

components (such as brakes, gearboxes, or bearings) to 

perform Condition-Based Maintenance (CBM). 

One of the elements that is more critical from both an 

economic and safety point of view is the wheelset. Railway 

wheelsets are responsible for supporting the mass of the 

vehicle and guiding it across the tracks; also, all the dynamic 

reactions to the vehicle are transmitted through the wheel-rail 

contact. The inspection of the wheelset encompasses several 

features such as wheel profile measurement, crack detections, 

out-of-roundness, ovalization and flats.  

The flats are local wheel tread imperfections with a 

circumference chord shape. They generally result from 

excessive braking that locks the wheel and makes it to slide 

along the rail. The presence of external elements such as 

leaves, grease or snow reduces the adhesion and increases the 

likelihood of problems in the wheel sliding protection 

system. In the sliding process, part of the wheel material, 

whose hardness is usually lower than that of the rail, is 

deformed and even torn away, creating the wheel flat. 

Friction between wheel and rail also raises the temperature at 

the contact point, although it rapidly cools down when the 

wheel starts rolling again, leading to martensite formation. 

The resulting residual stresses and the brittle nature of the 

martensitic structure, combined with the periodic impacts 
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against the rail, lead to cracks that may evolve into the 

spalling problem (Jergéus 1998).  

However, the problems that wheel defects generate do not 

just restrict to the wheel condition and maintenance. Flats 

produce an impact on the rail every wheel turn and can cause 

serious damage to the track, shortening the life of the rail 

(Nielsen, Ringsberg, and Baeza 2005). Apart from that, these 

impacts cause noise and vibration problems that affect the 

comfort of passengers. Therefore, it is necessary to detect 

these defects and solve them as promptly as possible. 

Traditionally, these defects were detected in thorough 

workshop inspections, so defective wheels were usually in 

service for a considerable amount of time before they were 

corrected. However, as previously stated, technological 

advances in recent years have enabled the transition towards 

a CBM approach. Research in this field is mostly focused on 

wayside systems (Alemi et al. 2019; Gao et al. 2020; Mosleh 

et al. 2021, 2023; Stratman, Liu, and Mahadevan 2007). 

Moreover, commercial solutions are also currently available 

(LBFoster s. f.; Schenck process s. f.; voestalpine s. f.). Both 

research work and commercial solutions are based on 

different sorts of sensors. According to (Iwnicki, Nielsen, and 

Tao 2023), the employed technologies are strain gauges, load 

cells, optic fibers and accelerometers. 

Systems based on acceleration signals measured in the rail 

are a non-invasive and low-cost choice. Despite, wheel flats 

can be detected by rail accelerations, they lack quantitative 

information about the impact load (Iwnicki, Nielsen, and Tao 

2023). This causes the maintenance is usually based on an 

indirect measurement (acceleration) instead of the impact 

force that the flat is producing. The relationship between 

accelerations and forces is not straightforward as it depends 

on multiple factors (relative position of the impact with 

respect to the accelerometer, vehicle load, speed flat shape…) 

The objective of this paper is to develop a methodology that 

allows determining the force created by an impact as a 

function of acceleration measurements. For that, in the first 

stages a physical model of the phenomena will be created to: 

 Analyze in detail the problem and how the different 

factors affect the measurements.  

 Define key parameters that allow characterizing the 

phenomena and required signal analysis. 

With these results, a methodology that allows estimating the 

impact force will be created using Machine Learning (ML) 

techniques. As it is expected, very few experimental signals 

with flats are available to train the model. Therefore, 

synthetic signals obtained with the physical model will be 

employed to train the ML model.  

Finally, the methodology will be tested on a real track. For 

that, a prototype of the wheel detector algorithm is installed 

in a Metro Line and the results of the system are checked 

analyzing the repeatability and accuracy of the predictions. 

2. DIGITAL TWIN DEVELOPMENT 

2.1. Vehicle Track Interaction Model 

In order to study the dynamic wheel-rail interaction (WRI), a 

numerical model based on the finite element method is 

formulated (Figure 1). The model uses the Timoshenko beam 

theory for the rail modelling, which considers the shear 

strength and rotatory inertia of the rail section and is able to 

represent accurately the vertical dynamics of the track in a 

wider range of frequencies than the Euler-Bernoulli beam 

theory. As the main variable of interest of the dynamic 

simulations is the wayside accelerations, it is necessary to 

avoid the non-physical response of the standard Timoshenko 

finite element with moving when the contact is transferred 

from one Timoshenko element to the next one. This is done 

by implementing the solution proposed by (Blanco et al. 

2019). The model also introduces the improvements 

presented in (Blanco et al. 2022) to represent accurately the 

finite dimensions of the pads, which is important to calculate 

accurately the track resonances.  

 

Figure 1 Model diagram 

This study is focused on the WRI, so the vehicle has been 

simplified to its unsprung mass (half of the wheelset mass) 

with the pre-load of the primary suspension applied to it 

(considering in this way the mass of the eighth part of the 

coach). This simplification is justified on the basis that 

vehicle suspension affects mainly the low-frequency range of 

the response, whereas the defects on the wheel treads, 

especially the wheel flats, concern the high-frequency range. 

This is so because the contact stiffness is some orders of 

magnitude larger than the primary suspension stiffness.  

A Hertzian non-linear contact is used to define the normal 

WRI and determine the normal contact force. This model 

allows relating the relative displacement of the bodies in 

contact with the local deformations and the force transmitted 

through the wheel rail contact. 
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2.2. Model Validation 

In order to assure that the simulation model represents 

correctly the train track interaction when flats are simulated 

two different approaches have been followed: on the one 

hand the theoretical impact force results provided by the 

model have been compared with results found in the 

bibliography; on the other hand, experimental results of 

wayside accelerations (WA) have been compared with the 

model predictions. 

2.2.1. Impact Force Validation 

The results obtained with the model have been compared with 

the results published by Mazilu in [3]. For that, the WRI in 

the presence of a 60mm long and 0.35mm deep flat (L=60mm 

and d=0.35mm) at a rolling speed of 24m/s has been 

simulated. The contact force evolution for an impact of the 

flat on the mid-span is shown in Figure 2a and on the mid-

support in Figure 2b. These curves seem very similar to the 

ones shown in (Mazilu 2007) and the maximum values 

confirm the idea: 197kN and 211.9kN compared to the 

196.5kN and 211kN for the mid-span and mid-support 

impacts, respectively. 

 

Figure 2. Contact forces when a 𝑳 = 𝟔𝟎 mm and 𝒅 = 𝟎. 𝟑𝟓 

mm flat impacts on a) mid-span, and b) mid-support. 

 

2.2.2. Wayside acceleration validation 

The accuracy of the model in predicting rail accelerations 

caused by flats is validated in relation to measured rail 

accelerations. Figure 3 shows the measured response due to a 

flat and the simulated response. The flat dimensions were 

adjusted to match the obtained response, leading to a slightly 

worn flat with a length of 35 mm and 7 𝜇m of depth, which 

lies within the common flat sizes (Maglio et al. 2021). There 

is a high agreement between both responses, in both peak 

values and frequency content. Nevertheless, dissipation 

seems to be higher in the simulated response. 

2.2.3. Discussion 

In conclusion, it can be said that the model allows 

reproducing accurately the behavior of the WRI when the 

wheel has a flat. Due to that, simulated responses can be used 

to find the dominant features affecting the response due to 

flat impact, determine the signal analysis, the important 

parameters that comprise the information related to a flat 

impact and to create labeled simulations to train Machine 

Learning Models.  

 

Figure 3. Comparison of measured and simulated WA due 

to a flat impact. 

3. ANALYSIS OF SIMULATED FLAT IMPACT SIGNALS  

3.1. Simulation of WA due to different flat profiles 

The shape of a flat evolves with time from its original shape 

when it originates. Originally, the flat has a circumference 

chord shape with sharp transitions from a circular profile to a 

straight flat profile. With time, wear smoothens the flat shape 

leading to a rounded profile, despite not being circular. Figure 

4¡Error! No se encuentra el origen de la referencia. shows 

the simulated rail acceleration at a stationary point due to an 

impact at three different stages of its evolution. Newly 

formed flats cause high peak values of the rail acceleration, 

which progressively diminishes as the flat gets worn. 

However, the frequency content does not seem to change 

significantly. 

 

Figure 4. WA due to flats at different stages of its 

evolution. 
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3.2. Influence of vehicle speed and impact position in 

simulated WA 

The role of different operational conditions (vehicle mass, 

speed and position of the impact) in the resulting WA was 

studied Figure 5 and Figure 6 show the impact of vehicle 

speed and impact position, respectively (it has been checked 

that the influence of the vehicle mass is much lower). The 

higher the speed the higher the peak magnitude due to the 

impact is. The impact position also influences the peak 

magnitude, being the highest value associated with impacts 

occurring at the position where the accelerometer is located. 

In general, peak magnitude is higher when impact occurs 

between supports, and lower when it takes place above a 

support. The influence of these operational conditions should 

be considered when defining the features for the detection 

and analysis of flats. 

 

Figure 5. WA change due to the vehicle speed. 

 

 

 

Figure 6. WA change due to the impact position. 

 

4. FEATURES FOR DETECTION AND ANALYSIS OF FLATS 

By using the simulated WA signals, features for the detection 

and analysis of flats were defined. Some of the signal features 

that present a significant dependency on flat characteristics, 

like depth and evolution stage, are: 

 WA peak value  

 WA root-mean-square (RMS) value  

 RMS value of the WA band-pass filtered around the 

first pinned-pinned frequency (from now on denoted 

as RMS1pp). 

 RMS value of the WA band-pass filtered around the 

second pinned-pinned frequency.  

Pinned-pinned frequencies are characteristic features of the 

track caused by the support periodicity. The values of the 1st 

and 2nd pinned-pinned frequencies are determined by the 

frequencies for which the rail vibrates with wavelengths that 

are twice the distance support and the distance support, 

respectively. In Figure 7 a qualitative representation of the 

modal shape of these resonances is presented. 

 

Figure 7. Qualitative representation of the first and second 

pinned-pinned resonances. 

 

 

As an example of the features dependency on the flat shape, 

Figure 8 shows RMS1pp  versus the impact position for 

impacts with different flat depths. The influence of the flat 

shape, in this case, its depth, is clear with higher magnitude 

of this feature as the depth increases. Nevertheless, the impact 

position has also a dominant role. Strong dependencies 

between the features and vehicle speed are also detected. This 

makes necessary a normalization of the features to subtract 

the effect of these operational conditions.  
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Correction functions remove the dominant role of operational 

parameters. Following, the normalization of RMS1pp  in 

relation to the impact position is detailed. The correction 

function is obtained by normalizing curves in Figure 8 to 

make the energy of each curve unitary, which results in the 

curves presented in Figure 9. The resulting curves are very 

similar, therefore, their shape is independent of flat depth. It 

was proved that these curves are weakly coupled with flat 

shapes and vehicle speeds. This fact can be used to define a 

function that determines a correction factor for the impact 

position. The resulting correction function for RMS1pp  vs. 

impact position is shown in Figure 10. This function is scaled 

to make its minimum value, which in this case is at 0 m, equal 

to one. Figure 10 also shows the correction functions for two 

very different flat profiles, from which it is noticed that the 

correction functions do not differ significantly. This function 

is used by dividing the raw value of RMS1pp by the function 

value at the position where the impact occurs.  

For the sake of clarity, correction functions for the other three 

features defined in this section are not shown here but they 

are calculated following a similar procedure. Moreover, the 

correction functions for the speed and the vehicle load are 

also obtained.  

 

 

 

 

Once the features are corrected, a severity parameter is 

defined as their weighted sum. In this work, weights are 

adjusted after the first series of field measurements. The 

value of each weight will depend on different factors, like the 

distance between track supports and it is based mainly on the 

operator requirements (severity parameter is related to 

maintenance needs). The severity parameter does not refer, 

therefore, to any physical magnitude. 

However, the theoretical model also provides the contact 

force response. The monitoring strategy can take advantage 

of it by labelling the impacts with the predicted maximum 

contact force, 𝐹ma𝑥, of each flat. In this case, the label is the 

load ratio, 𝐹ma𝑥/𝐹sta , where 𝐹sta is the static contact force. 

By using the corrected features of the WA and the labeled 

data, ML regression models can be trained for prediction of 

𝐹ma𝑥/𝐹sta.  

Several ML models were trained by using simulated data 

encompassing a wide range of flat profiles and operational 

conditions. The Gaussian Process Regression algorithm is the 

one resulting in the lowest root-mean-squared error for the 

estimation of 𝐹ma𝑥/𝐹sta , 0.043. Figure 14 shows the 

predicted response vs. the true response of the 𝐹ma𝑥/𝐹sta for 

the mentioned ML regressor.  

Figure 8. 𝐑𝐌𝐒𝟏𝐩𝐩 versus the impact position and for 

different flat depths. 

Figure 9. Normalized 𝐑𝐌𝐒𝟏𝐩𝐩versus the impact 

position and for different flat depths. 

Figure 10. Correction function for 𝐑𝐌𝐒𝟏𝐩𝐩 of the impact 

position. 
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Figure 11. Predicted load ratio values versus the true one. 

5. SYSTEM VALIDATION IN A REAL ENVIRONMENT. 

A wayside system has been installed in a real track with the 

objective of validating the proposed methodology to detect 

flats. ¡Error! No se encuentra el origen de la referencia. 

shows a layout of the wayside measurement site: it consists 

of three accelerometers per rail located in consecutive spans. 

   

  

Figure 12. Layout of the wayside measurement site 

 

For the methodology validation, a vehicle with a small flat 

has circulated over the wayside system several times. It has 

been checked that the developed algorithm has always 

detected the flat. Additionally, it has been seen that if the 

severity of the flat is just obtained with the acceleration peak 

very different results are obtained for each passage. Figure 13 

shows the peak value of the acceleration measured in the first 

20 passages. It can be checked that this parameter has a large 

variability: it goes from around 60m/s2 to 120m/s2. The 

differences can be found in the fact that each passage has a 

different speed, different payload and the impact is produced 

in different points.Figure 13Figure 13 

 

Figure 13. Peak acceleration values caused by the flat over 

different passages. 

In order to get more stable results, the severity parameter 

introduced in the previous section is calculated. As explained 

this severity parameters consider not only the peak value but 

the RMS in the whole frequency range and the signal energy 

around the peak resonances. Figure 14 includes the severity 

results obtained for the previous flat (blue crosses). The 

results now are more stable than when considering just the 

peak value. Finally, the correction factors have been applied 

for all the variables that can modify the phenomena (impact 

point, speed…) and the severity factor is calculated with 

these corrected values (Figure 14, red squares).  

When the correction is applied, the impact position 

dependence becomes considerably lower, and the variability 

is largely diminished (due to the speed and load corrections). 

There is still some variability caused by different reasons, 

such as the wear of the flat in time, measurement and 

discretisation errors or not totally accurate severity parameter 

corrector functions.  

 

Figure 14. Measured severity parameter calculated 

combining the peak, the RMS and the RMS for a flat. 

 

Finally, an estimation of the impact force caused by the flat 

is obtained by applying the developed Machine Learning 
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model. Figure 15 shows the peak force estimation in the 

different passages as a function of the impact point. The 

following considerations can be done: 

 The peak force estimation is quite constant for the 

different passages being a minimum of around 1.00 

and a maximum of around 1.03. 

 The analyzed flat is extremely small. It only causes 

an increase of around 2% of the nominal force. This 

indicates the high sensibility of the developed 

methodology. 

 The estimation of the peak force gives a valuable 

indicator of the severity of the flat easing the 

maintenance decision-making. 

 

Figure 15. Estimation of peak force with respect to the 

nominal one. 

 

6. CONCLUSIONS. 

This work presents the design and validation of a new 

wayside detection system for wheel defects. More generally, 

the aim is to show that the combined use of the wealth of 

existing knowledge on physics-based models of complex 

phenomena can be efficiently combined with new machine 

learning techniques. 

This combination of physical modelling and data-based 

techniques has to be done in a particular way in order to 

benefit from the best of both approaches. In this particular 

work:  

 Physical models and a deep understanding of the 

phenomena allow defining optimized sensor 

systems to develop HMS and guarantee the 

interpretability of the results.  

 Results indicate RMS value of the WA band-pass 

filtered around the first pinned-pinned frequency is 

an important feature in assessing impact severity.  

 Features of acceleration measurements are highly 

influenced by speed and impact position. Correction 

functions obtained via numerical model enable the 

standariazaiton of the features.  

 The use of key parameters and correction functions 

for the contour variables (mass, speed …) allow 

obtaining an estimation of defect severity 

independent of the operational conditions. 

 Machine Learning algorithms are key to adjusting 

the correction parameters in a very efficient way: 

considering the high complexity of the relationships 

between magnitudes, machine learning techniques 

offer a way to reach optimum results. 

 Stable prediction of the contact force peak value due 

to wheel flats is enabled by ML algorithms in 

combination with defined corrected features of the 

rail accelerations. Theoretical results point out a 

RMSE of less than 5%. 

 The complete methodology has been checked in a 

real environment (metro track) giving promising 

results. 

The main limitation of the given approach is that the wayside 

flat detection algorithm should be tuned for each different 

track it is installed. Future work will dive into the 

experimental validation of the impact force estimation 

performed via ML algorithms using rail accelerations. 
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