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ABSTRACT

A primary challenge in hydropower industry is the ability
to maintain cost-competitiveness, reliability, and security of
hydropower assets through evolving power system contexts
and aging of the fleet. Maintaining cost-effective and reli-
able operations under these conditions is expected to require
new modernization and maintenance paradigms for chang-
ing contexts. Changes in existing practices for O&M will
require an understanding of the current state and health of hy-
dropower assets, and the impact of changing paradigms on as-
set health and reliability. The Hydropower Fleet Intelligence
project is developing and evaluating standardized methodolo-
gies and analysis tools for data-driven asset reliability and
management technologies for hydropower, leading to even-
tual predictive maintenance planning, repair/replacement de-
cision making, and asset-reliability and cost-optimized oper-
ations. A key question is the feasibility of using existing data
sets at hydropower facilities to perform assessments of asset
reliability. This document uses data from hydropower facili-
ties to assess the potential for using available analytics meth-
ods for asset reliability estimates. In addition to reliability
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assessments, the feasibility of using existing analytics tech-
niques for several other potential applications is discussed.
Finally, a case study that a data-driven model is trained to
learn nominal operations via vibration data from an asset of
a certain plant, and then utilized to identify anomalies on a
similar asset from a different plant, highlighting the generic
use of proposed Prognostics and Health Management (PHM)
approaches.

1. INTRODUCTION

A challenge in hydropower operations is the ability to main-
tain cost-competitiveness and reliability of hydropower as-
sets in evolving power system contexts and aging of the
fleet. Recent analyses indicate that operations and mainte-
nance (O&M) costs are higher for older units, and there is
an increasing trend in O&M costs for older hydropower fa-
cilities over the last decade or more (Martinez et al., 2021).
At the same time, O&M costs for competing sources of gen-
eration (i.e. wind and solar energy) are expected to trend
down over the next several years (Stehly & Duffy, 2022; Ra-
masamy et al., 2022). This challenge with an aging fleet
comes at the same time as the level of variability in oper-
ations is on the increase, with more intermittent generation
and increased hydropower participation in the ancillary ser-
vices market. Collectively, these factors can have a negative
impact on hydropower asset condition and availability and re-
quire new approaches for O&M.

Maintaining cost-effective and reliable operations under these
conditions is expected to require modernization of mainte-
nance paradigms (“Water Power Technologies Office: Multi-
Year Program Plan”, 2022). One possible approach to mod-
ernization of maintenance paradigms is to leverage available
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data sources and standardize processes to make data-driven
O&M decisions. Data for this purpose might be at the unit,
plant, or national scale, with the changes in contexts being
driven by external or internal factors (for instance, an increase
in the intensity of variable dispatch, participation in ancillary
services, or aging of a powertrain component, etc.).

The proposed process for data-driven O&M decision making
is shown in Figure 1. Each facility is expected to be interested
in answers to a set of questions specific to that facility. These
facility-specific questions (for instance, remaining life of an
asset, optimal replacement times for assets, or other O&M
decision making) drive a data sufficiency assessment to iden-
tify whether the data available from the facility are sufficient
for this purpose. The data is then used as part of a standard
process to support decision-making by providing the neces-
sary insights on asset condition, predicted reliability, risk, and
cost.

The analysis methodology being developed and evaluated fo-
cuses on hydropower assets within the powerhouse, espe-
cially powertrain components. One challenge in developing
such a data-driven approach is the need to integrate multiple
sources of data. Figure 2 summarizes the data workflow, us-
ing a variety of data sources to perform asset reliability, dis-
patch variability, consequence/risk, and cost analyses. These
data sets are correlated and integrated to allow different anal-
yses methods to be applied for extracting information on hy-
dro asset performance, health and reliability, and quantified
with metrics such as asset mileage, failure rates, health state,
etc. The analyses methods account for evolving power sys-
tem and hydrology contexts, for instance due to variable dis-
patch, and provide an estimate of the metrics in context (for
instance, changes in asset reliability and availability due to
increases in flexible operation). The results of these analy-
ses may be applied to risk and cost models to quantify the
impact of these evolving contexts on hydropower availability,
reliability, and O&M costs, thereby providing the necessary
input to stakeholders for use in O&M and investment decision
making.

In the recent literature researchers mostly utilize Machine
Learning methodologies to optimize the energy generation.
Tubeuf et al. (2023) study the potentials of Reinforcement
Learning algorithm to control the blow-out process of a hy-
draulic machine during pump start-up and when operating
in synchronous condenser mode. Sapitang et al. (2020)
investigates multiple Machine Learning models, such as
Boosted Decision Tree Regression, Decision Forest Regres-
sion, Bayesian Linear Regression and Neural Network Re-
gression, to forecast reservoir water level for the purpose of
enabling optimized operations. Review paper by Bordin et al.
(2020) also discusses the current and future role of Machine
Learning within the hydropower sector, and provides a big
picture for the potential benefits for hydropower scheduling.

In this paper, we focus on two elements of this general
methodology - reliability modeling and prognostic health
management (PHM). These two elements are two sides of the
same coin, helping determine the current state of a compo-
nent based on historical maintenance and outage records, and
the future condition of an asset based on condition monitor-
ing data. Note that these two aspects of assessing asset health
rely on different types of data and data with different levels
of granularity.

2. DATA SOURCES

Preferred data sets for these analyses include data generally
collected by hydropower operators and include design and ca-
pability data, unit and facility level availability and outage
data (such as the North American Electric Reliability Corpo-
ration (NERC) Generating Data Availability System (GADS)
data), component, asset and unit level time-series data (Su-
pervisory control and data acquisition (SCADA) data), main-
tenance work orders and asset maintenance/repair histories,
and operations and maintenance cost data (in the event that
cost analysis is necessary). Other information, such as hy-
drological and power system data, are useful to place the re-
sults of the analysis in context and provide insights into how
these results may change with operations practices that adapt
to changing contexts. The methodology itself is applicable to
other assets (such as those in the balance of plant/switchyard
or those comprising the dam and related structural compo-
nents), though the data sets needed for assessing the condition
and reliability of these assets will be different.

Data levels used in this work are those maintained at a facil-
ity and containing information from O&M activities. While
other publicly available data sets (such as the HydroSource
data (B. T. Smith et al., 2019) or USGS Streamflow data
(Lins, 2012)) are relevant and can be integrated, at present
these types of data are only used to provide context to the
O&M findings and are not the focus of the research discussed
in this paper.

While the focus of the research described in this paper is the
application of PHM to a single facility, the methods them-
selves are likely useful to most facilities and may be used for
performance benchmarking and comparative analyses across
similar units and multiple facilities. Benchmarking activi-
ties will require access to aggregated O&M-related data from
multiple facilities with similar units and may be able to lever-
age industry-led fleet-level data consolidation efforts.

The specific data used in the research discussed in this pa-
per includes data from two utilities covering conventional and
pumped storage hydropower facilites as well as data from a
consolidated hydropower data repository. Facility data from
utilities included data covering a reasonably long duration (∼
15 years or more for most data types). Variations in data
verification practices at the different facilities meant that not
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Figure 1. Overall process for a standardized approach to data-driven hydropower O&M decision making.

Figure 2. Workflow for data-driven analysis methodology for O&M decision making.

all data sets available to the research team covered the en-
tire duration. While some types of information were missing
from one or more facilities (for instance, complete condition
reports, or maintenance histories), some of this information
was able to be inferred from other data elements, and the rest
were determined to not be essential for this research. Fleet-
level aggregated time-series data from a consolidated reposi-
tory was also evaluated used for a portion of this research.

3. PHM FOR HYDROPOWER ASSETS

PHM integrates advanced monitoring technologies, data an-
alytics, and predictive modeling to assess the health and per-
formance of hydropower components and systems. By en-
abling condition-based maintenance, PHM optimizes mainte-
nance activities, reduces costs, and can help minimize down-

time. It also extends the lifespan of assets by detecting
early signs of degradation or catastrophic anomalies, and im-
plementing proactive maintenance strategies. Despite chal-
lenges, advancements in technology have paved the way for
robust PHM solutions, offering improved efficiency, reliabil-
ity, and sustainability in hydropower operations.

Anomaly detection is a specific element of PHM and usu-
ally focuses on identifying deviations from nominal behavior
using time-series data (Ruff et al., 2021). Anomaly detec-
tion therefore requires an understanding of nominal behav-
ior, which is usually represented using a model derived from
operating data. In most applications, the model uses a vari-
ety of inputs to estimate an expected output (for instance, a
measurement of temperature or vibration or other quantity)
assuming nominal conditions. This estimated value may be
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compared against the actual measurement, with a large de-
viation indicative of an anomaly. The comparison may be
performed by applying a simple threshold to the difference
between the model estimate and the measurement, or through
a statistical test.

Since anomaly detection algorithms detect changes or devia-
tions from nominal, they can be applied to detect fault con-
ditions in hydropower assets. For example, bearing vibration
data may be used to detect the onset of excessive vibration
conditions that may indicate bearing failure or other condi-
tions (for instance, mechanical imbalance or misalignment,
cracked blades or shaft, or improper lubrication) (Mohanta et
al., 2017). Anomaly detection may also be useful for detect-
ing changes in stator winding temperature (B. Smith et al.,
2022) that may indicate a developing fault condition in the
stator.

3.1. PHM Methods

In the context of PHM applied to hydropower assets, data-
driven approaches offer great opportunities to leverage his-
torical operational, maintenance, and failure data. In this pa-
per we will focus on the uni-variate anomaly detection prob-
lem for specific rotating equipment of hydropower units. The
main goal is to adopt a data-driven approach to model normal
operation with an ability to flag deviations pass a predeter-
mined threshold as an anomaly before catastrophic failure.
Here we describe three distinct machine learning models of-
ten used for anomaly detection and justify our selection.

Variational Autoencoders (VAEs) (Sun et al., 2018) are ef-
fective machine learning tools to extract relevant features of
input data, explore nonlinear relations among input variables,
and decode into latent space in the form of a distribution. En-
coded variables are then sampled from the latent space and
decoded to reconstruct the input data and the reconstruction
error is minimized for an accurate VAE model. This model
is pretrained with known normal operation then used on test
data, where normal operation is expected to yield to low er-
ror, and any input that inherit anomalous data would fail to
reconstruct, and ultimately flagged.

Recurrent Neural Networks (RNNs) (Goodfellow et al.,
2016) are special type of neural networks designed to model
sequential data. State transition is carried out through a re-
peated cell that takes temporal data as input vector and uti-
lizes a hidden state to learn transition from one time step to
the next. Researchers tailored the RNN cell to mitigate van-
ishing gradient problem in long sequences (i.e. missing out
long-term dependencies in the time series data), and intro-
duced designs such as Long-short Term Memory (LSTM) cell
with forget and input gates, and Gated Recurrent Unit (GRU)
with update and reset gates. RNNs can be trained with nomi-
nal operational data to predict the variable in consecutive time
steps, which enables monitoring and identifying any devia-

tion.

Convolutional LSTMs (ConvLSTMs) (Petersen et al.,
2019) combine convolutional layers and LSTMs to extract
spatio-temporal relationships inherit in time series data and
enable learning for multi-variate multi-step problems. Even
though ConvLSTMs are conventionally used for image se-
quences such as video processing, researchers modified 1-
D time series data into batches of short-term time periods
through sliding window, which allows the model to explore
short-term trends and seasonality effects from long-sequence
time series data for accurate predictive performance.

Figure 3. ConvLSTM architecture.

4. HEALTH MANAGEMENT FOR HYDROPOWER ASSETS

4.1. Asset Reliability Assessment

The previous section discussed various algorithms that may
be applicable to deriving insights about hydropower asset
conditions and other factors using existing data. A particular
need is the analysis of these types of data to determine the re-
liability of assets. In this section, we consider whether avail-
able data sets at typical hydropower facilities may be used to
derive estimates of reliability of assets. In this document, re-
liability is defined as probability that the components or units
could perform its function adequately for a specified period of
time without outages (Kuo & Zuo, 2003; Reid & Cox, 2018).

Key to most reliability analyses is the availability of failure
data. Reliability analysis in the example discussed here uses
unit availability data from NERC GADS for a specific facil-
ity. Data on outages from a sample unit are used in this study,
with information on the timing and duration of maintenance
and forced outages used in the analysis.

The reliability model used is at a higher-level in asset tax-
onomy models typically used in hydropower. Specifically,
the examples in this section assume models at the level of a
generator, turbine, or electrical system. Each of these asset
classes includes multiple components, with a failure in any of
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the components within this asset class assumed to cause the
asset to be in an outage. Note that reliability models of the
lower level asset classes are not considered in this study, and
the research demonstrates the potential for using outage data
for estimating the reliability of hydropower assets.

NERC GADS outage information data over a 30 year time-
frame were obtained and examined to identify maintenance
outage (MO) and unplanned/forced outage (U1) events cor-
responding to components associated with any of the three
asset classes described above. Included summary informa-
tion on the activities performed and the components impacted
were used to group components into higher level asset classes
(for instance, the outage records of generator bearings, filters,
rotors, etc., were grouped into a Generator category). Such
grouping also addressed the limited data on specific compo-
nents, increasing the total available data for the higher-level
asset classes.

Figure 4 shows an example of the number of MO and U1
records for one unit in each year. If the assumption is that
each of the U1 outages corresponds to a “failure” of the asset
(i.e., asset being unable to perform its function), the timing
of these outages may be used to estimate the reliability (or
equivalently, the failure rate) of the assets in this initial anal-
ysis. Note that year information in these plots are omitted for
proprietary confidentiality.

Note that this estimate of the reliability is not, strictly speak-
ing, complete as data on planned outages is excluded from
this analysis. As a result, repairs conducted during one or
more planned outages between two maintenance/forced out-
ages and which improve the asset condition are not accounted
for. As a result, quantities such as Mean Time Between Fail-
ures (MTBF) that are computed from the reliability models
need to be viewed with a grain of salt. Improved modeling
through the inclusion of repair/maintenance information in
the models (sometimes referred to as reliability modeling of
repairable assets) can help address this issue and is planned
as future work.

Key to reliability analysis is the assumed lifetime or failure
rate distribution model. While a number of possible proba-
bility distributions can be used, the analysis discussed in this
report used the Weibull distribution (Kuo & Zuo, 2003). This
distribution is widely used in reliability engineering as it can
represent a range of scenarios using a small set of parameters.
While there are different versions of the Weibull distribution
based on the number of free parameters, this study used the
three-parameter version which is the most general form of the
distribution. The three-parameter Weibull probability density
function is given by (Martz, 2003):

f(T ) =
β

α
(
T − γ

α
)β−1 · e−(T−γ

α )β (1)

with the failure rate or hazard function defined by

(a) Maintenance outages.

(b) Forced outages.

Figure 4. Number of outage records for maintenance outages
and forced outages for a sample unit in a pumped storage fa-
cility.

λ(T ) =
β

α
(
T − γ

α
)β−1 (2)

Here, T is the time, β is the shape (Weibull slope) parameter
which equal to the slope of the line in a probability plot, α is
the scale parameter and γ is the location parameter.

4.2. Reliability modeling results

The available data from NERC GADS was processed to com-
pute the time-to-failure for each occurrence of a maintenance
or forced outage. These time-to-failure estimates essentially
computed the time between two successive outages and in-
cluded the outage duration. Figure 5 shows an example of the
outage instances for the Generator asset class for one unit at
this facility; the duration and occurrence time of the outage
are presented. It is easy to see that most maintenance and
forced outages are relatively short in duration. Once again
year information is censored for confidentiality purposes.

The reliability analysis was performed using 10- and 15-year
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Figure 5. Maintenance outages time stamp and duration of “Generator” category in pumped storage facility for sample unit.

sliding windows, and the Weibull parameters computed. Fig-
ure 6 shows the Weibull β parameter estimated from the 10
year and 15 year windows and indicates a value that is gener-
ally low (less than 1). The low value of β indicates a failure
rate that is decreasing over time in general. However, a care-
ful examination of the data indicates an initial increase in the
failure rate for the unit, followed by a slow decrease. This
is likely due to two factors: the removal of planned and pe-
riodic maintenance actions that help maintain the assets in
reasonable condition, significant refurbishment/replacement
activities that took place around the time the failure rate flat-
tens out, and the possibility that the asset (generators in the
unit studied here) are past any initial failures and have not yet
reached the wear-out failure stage of the reliability curve.

A similar result for turbines and electrical equipment (not pre-
sented) seems to indicate a generally healthy set of assets de-
spite a slight uptick towards the end of the time period being
studied.

It should be noted that Weibull analysis for hydropower re-
liability assessment has a long history, though much of the
analyses to date have been focused on failure data from one
or more asset classes across the fleet. Most of these analy-
ses are unpublished in the public literature, and have gener-
ally been used by hydropower owners/operators for internal
use. The preliminary analyses presented above are intended
to determine the applicability of standard reliability analysis
methods using failure data from a single unit.

Given the results, it appears that with long term failure data,
as is typically maintained at a facility, Weibull analyses can
be applied to determine potential changes in asset reliability
parameters over time. However, as indicated above, changes
in asset reliability due to planned maintenance are difficult to
quantify and therefore the windowed analysis approach needs
further evaluation before it can be deployed for routine use.

4.3. PHM Case Study: Anomaly Detection on Generator
Guide Bearing

While reliability modeling is helpful and provides an estimate
of the failure rates, the information is largely based on past
operational histories and difficult to use for near term main-
tenance scheduling. The use of PHM methods provides an
alternate approach to quantifying the condition of assets and
provides early warning of impending failures, allowing for
near term scheduling. One example of such an approach is
shown here, which utilizes vibration data. While the use of
vibration to predict anomalies in rotating machinery is not
novel, there appear to be few studies applying these tech-
niques to hydropower equipment. Such a study is therefore
worthwhile and helps identify specific challenges associated
with these machines. In addition, in this study, we focus on
the generalizability of vibration models, and show that, at
least for the data sets studied, data from fleet-wide reposi-
tories may be helpful in developing robust models that are
applicable to other similar units.

4.4. Site and Equipment

In this paper, we will use single axis vibration data obtained
from generator guide bearing of a unit located in one site (Site
A) to train our anomaly detection model. The main goal is to
teach the model the trends and variations of nominal opera-
tional conditions. After a successful training session, model
is expected to predict normal operation, and ideally unable
to predict the variable accurately during any anomalous event
affecting the bearing vibration, thus can be flagged using the
deviation between prediction and true data prior to any catas-
trophic failure.

In the second part of the analysis, we will use the trained
model to predict the vibration of a generator guide bearing
of a different unit from a different site (Site B). Goal of this
study is to present an efficient way to translate ML-based
anomaly detection models across different sites.

Smith et al. (B. Smith et al., 2022) categorizes the compari-
son of multiple hydropower assets in three categories concept
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Figure 6. Estimated Weibull parameter and failure rate changes for assets assigned to the “Generator” category. Top to bottom:
β using 10 year time windows for aggregating major maintenance activities, β using 15 year time windows, failure rate estimates
using 15 year windows, failure rate percentage change between two 15-year range.

of similarity. When two or more hydropower assets share the
exact same specifications and characteristics, these assets can
be considered as identical. In the case where one asset is
the scaled version of another asset, but otherwise identical, in
terms of context or design, we can call these assets are homol-
ogous. Finally, when two or more assets have certain prox-
imity in some of their characteristics, these assets are deemed
to be similar. According to this taxonomy, we classify two
assets from Site A and B as similar.

4.5. Vibration Data

Our source data, as we cite as Site A, is obtained from a con-
solidated data repository. We consider vibration data with 5-
minute resolution covering approximately 2,016 generating
hours, where no vibration-related forced outage is recorded.
We will divide this data into training and validation sets, and
test the sensitivitiy of the model performance on division, by
evaluating 70/30%, 80/20%, and 90/10% training and valida-
tion data points respectively.

From our target plant, cited as Site B, we take two long time
periods: first one with normal operations without vibration

failure (Figure 7a), second one with a forced outage caused by
excessive generator bearing vibration (Figure 7b). We also il-
lustrate the power generation during these periods to point out
similar operational patterns, despite the impending anomaly
in the Figure 7b. Note that all data are normalized between 0
and 1 to preserve anonymity of the sites and operators.

In order to feed the data into model in batches, we restruc-
ture data set by creating subsets where certain amount of data
points from past is used to predict the next time step through
a sliding window. We also analyze the effect of the window
size on model performance by testing 60, 30, 15, and 5 data
points as our sliding window of the past.

4.6. ConvLSTM Model and Training Parameters

We choose the ConvLSTM framework as the vibration model
(described in Section 3.1), since our data includes both
short term (start-stop) and long term (seasonality) trends
and ConvLSTM models have proven track record with such
datasets (Petersen et al., 2019). Another reason that we opt in
for ConvLSTM is also ability to scale up the input (and output
if necessary) parameter space without causing computational
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(a) Vibration data with nominal operation.

(b) Vibration data with anomaly.

Figure 7. Data from Site B

overload as much as other methods that utilize covariance ma-
trix such as Gaussian Process. There are multiple applications
in the literature that use ConvLSTM for multi-variate time-
series prediction (Xiao et al., 2021; Mu et al., 2019; Tayeh et
al., 2022). In the future, we are aiming to include many other
relevant sensor variables (temperature, current, etc.) to en-
hance our predictive model. Summary of the design of model
architecture and number of trainable parameters is given in
Table 1.

Model training is executed with 500 epochs, with a batch size
of 256, and 20 steps per epoch. Adam optimizer is cho-
sen with an initial learning rate of 0.001 to minimize Mean
Squared Error (MSE) loss function. Additionally, Reduce
Learning Rate on Plateau callback is utilized to ensure con-
vergence, with a factor of 0.85 and patience of 50 epochs.

5. RESULTS AND DISCUSSION

First, we report the results of our window size sensitivity anal-
ysis on Table 2. We evaluate our ConvLSTM model’s perfor-

Layer # parameter
Batch Normalization 4

ConvLSTM2D 8,768
Dropout 0

Batch Normalization 64
Flatten 0

Repeat Vector 0
Reshape 0

ConvLSTM2D 10,304
Dropout 0

Time Distributed 17
Dense 2

Total parameters 19,159

Table 1. ConvLSTM Architecture

mance on both training and validation sets for different win-
dow sizes used to structure the data and normalized root mean
squared error (RMSE) metrics are reported. The results indi-
cate that there is marginal difference in changing the window
size on the model performance. Even though window size of
60 has slightly better (lower) normalized RMSE on training
set, we consider the performance on the validation set (which
is in the future and was not seen by the model) as our selec-
tion criterion, at which window size 30 performs marginally
better.

Window Norm. RMSE
(Training)

Norm. RMSE
(Validation)

60 0.02891 0.04333
30 0.02897 0.04326
15 0.02919 0.04367
5 0.02980 0.04419

Table 2. Window size analysis. 80/20% split between training
and validation sets used.

After freezing the window size, we evaluate the effect of
training and validation data split on our model on Table 3. We
use three different splitting ratio between training and valida-
tion sets, and train the model from scratch. Note that we al-
ways keep the chronological difference between training and
validation same, i.e. train using the past data and validate us-
ing future data. Shown in Table 3, 80/20% split gives us the
optimum model performance on the validation data. We also
observe that larger the data we feed in to the model does not
always yield to better performance.

Trg/Val Split Norm. RMSE
(Training)

Norm. RMSE
(Validation)

90/10% 0.02910 0.09765
80/20% 0.02897 0.04326
70/30% 0.02847 0.04454

Table 3. Training and validation set split analysis. Window
size of 30 is used.

Learning curve of the ConvLSTM model detailed in Table 1
is given in Figure 8. While we observe large fluctuations in
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training loss, the model is clearly converging with a stable
trend. The fact that this convergence aligns with the vali-
dation loss indicates a favorable training session, where the
model is able to prevent overfitting and generalize the data.

Figure 8. Learning curve.

Figures 9a and 9b illustrate the model vibration prediction on
training and validation data sets. In these plots, each point
correspond to a vibration value at a single time step. While
X-axis is the actual measured vibration, Y-axis is the model
prediction for the same time step. Ideally we would like the
data to be consolidated at 45 degree line. Figure 9a shows
that data aligns with the 45 degree line, even though there
is variation. This can be explained by noisy data, however
the model predictions tend to follow general trend of the time
series; hence the variation. Similar deduction can be made
for the validation data from Figure 9b.

In Figure 10, we can observe the prediction error over training
and validation sets extracted from Site A. Note that a moving
average of 60 time steps is calculated to discard point-wise
major variations and capture longer time-scale trends. This
graphic confirms our deduction that model is able to follow
the general time series trend and successfully predict the vi-
bration using past data both for training and validation sets
with a maximum prediction error of =̃ 5%. With this validated
model prediction performance, now we can test the model on
Site B.

Figures 11 and 12 respectively show the model vibration pre-
diction on two distinct, the former with nominal operation
and the latter with an anomaly. In Figure 11 we clearly ob-
serve that predictions follow the general trend of the actual
vibration time series data. One can also easily infer that the
variations seen in Figure 9 is caused by measurement vari-
ation that does not reflect the actual time series history. We
can conclude that the model trained on data from different site
with similar unit can be successfully used on different site to
model nominal operational vibration of generator guide bear-

(a) Prediction performance on training set.

(b) Prediction performance on validation set.

Figure 9. Point-wise model performance on training and val-
idation sets on Site A.

Figure 10. Model performance on training and validation sets
on Site A.

ing. In Figure 12, we see similar results in the first three
quarters of the time series. However, towards the end of this
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time period, the model is unable to pick up the unexpectedly
increasing trend of vibration. This ’failure’ of the model is
exactly what we were aiming for. Now we can utilize the
prediction error as a tool to flag the anomaly.

Figure 13 depicts the prediction error in both time periods.
Just as the source data results, top figure proves decent pre-
dictive performance on nominal operation. The maximum
prediction error is found to be =̃ 5%. However in the bottom
figure, enhances the gradual increase of the prediction error,
where the failure is imminent. One can simply set a threshold
of 10% to this metric and raise a flag for the anomaly before
the fault occurs and potentially leading to a catastrophic fail-
ure.

(a) Whole time series.

(b) Zoomed in to illustrate predictive performance on the begin-
ning of the time series.

Figure 11. Prediction performance on Site B, of time period
where there is no vibration related forced outages.

6. CONCLUSION

This paper discusses the application of predictive analytics
and health management techniques for hydropower fleet. We
lead by emphasizing the importance of data sources, includ-

(a) Whole time series.

(b) Zoomed in to illustrate predictive performance on the begin-
ning of the time series.

Figure 12. Model performance on Site B.

Figure 13. Prediction error over Site B for both years.

ing design sheets, availability and outage records, operational
time-series, and historical maintenance data. We also discuss
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the methodologies that can be applied across different facil-
ities for performance benchmarking and comparative analy-
ses. Then we explore the use of PHM for hydropower assets,
highlighting the benefits in optimizing maintenance activities,
reducing costs, extending asset lifespan, and detecting early
signs of degradation or anomalies. Additionally, we dive into
asset reliability assessment and the use of existing reliability
modeling techniques to estimate the reliability of hydropower
assets based on failure data. We carry out an example anal-
ysis using NERC GADS outage data, demonstrating the po-
tential for estimating asset reliability. Finally, we present a
case study on anomaly detection for a generator guide bearing
using vibration data. We showcase the efectiveness of ma-
chine learning-based models in predicting normal operation
and identifying anomalies, across similar assets of different
sites. Our results indicate the ConvLSTM model trained on
a different site can predict an anomaly on a similar unit in-
stalled on another site, hence potentially enabling near-term
maintenance scheduling, ultimately enhancing the efficiency,
reliability, and sustainability of hydropower operations.

In the future, we aim to extend this work by exploring:

• PHM potentials on other hydropower assets, such as tur-
bines, stators, etc.

• Uncertainty quantification components for the data-
driven models, to provide prediction confidence.

• Building back-to-back predictive analytics workflow for
hydropower plants, connecting asset-specific prognostics
to fleet-level reliability analysis, and ultimately provid-
ing cost effect on operations.
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