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ABSTRACT 

Performance of a Prognostics and Health Management 
(PHM) system in a fielded application depends on 

observability from existing monitoring equipment and 

sensing, which get determined at the design phase. Although 

various technologies have been proposed in the literature, 

there is currently a lack of known generic tools specifically 

designed for performing design stage sensor placement 

analyses from a PHM perspective. This leads to PHM 

observability being an afterthought and resulting PHM 

designs being sub-optimal. This paper describes a new 

Optimal Sensor Placement (OSP) framework, its 

implementation as a toolkit and the experience with applying 

it to a new product design in the context of a Small Modular 
Reactor (SMR). The formulation adds multiple important 

features that are critical to PHM applications. Firstly, it 

establishes a direct link to PHM performance requirements 

with intent to reduce operational and maintenance costs. 

Moreover, it acknowledges and accounts for the costs and 

risks of errors that PHM system will incur, and 

simultaneously considers operational requirements on 

sensing for performance, control and/or regulatory 

requirements. The toolkit described here implements 

formulations of a large number of requirements scenarios 

applicable in a generic industrial product development 

setting.  

1. INTRODUCTION 

The design and performance of PHM systems heavily depend 

on the observability provided by monitoring equipment and 

sensing capabilities. Typically, these considerations are 

addressed during the design phase of a product or system. 

However, product design teams often face time and cost 

limitations that hinder their ability to thoroughly analyze 

PHM requirements and incorporate them into the design. As 

a result, PHM considerations are often deferred to a later 

stage, or in many cases, become an afterthought. 

Selecting the right sensor suite is a critical task in PHM 

design. However, it can be challenging due to several 
reasons: 

1. System Complexity: Complex systems with 

interconnected components require in-depth 

understanding of design, operation, and failure modes to 

assess their impact on health and performance.  

2. Lack of Standardization: There is no one-size-fits-all 
solution when it comes to sensor selection for PHM. 

Different assets and industries have unique requirements 

and specifications.  

3. Multitude of Sensor Options: Evaluating diverse sensor 

technologies in terms of performance, accuracy, 

reliability, and cost-effectiveness is time-consuming. 

4. Data Requirements and Processing: Selecting sensors 

providing accurate, high-quality data at the desired 

frequency, resolution, and reliability can be complex, 

considering compatibility with data acquisition and 

processing infrastructure. 

5. Cost Considerations: Balancing upfront costs, 

installation, and maintenance expenses with potential 

benefits requires careful consideration, especially when 

cost constraints are significant. 

6. Trade-offs and Prioritization: Prioritizing critical 

parameters impacting asset health and performance due 

to infeasibility or cost-effectiveness of monitoring all 

parameters is often necessary.  Therefore, trade-offs with 

careful consideration of specific goals and constraints 

are often needed. 

7. Limited Data and Experience: Insufficient historical 

data, absence of established best practices, and lack of 
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PHM expertise pose challenges in making informed 

decisions during sensor selection. 

Overcoming these challenges requires a multidisciplinary 

approach involving domain experts, sensor manufacturers, 

data analysts, and PHM specialists. Collaboration, 

continuous learning, and iterative improvement are key to 

navigating the complexity of sensor selection and optimizing 

the effectiveness of PHM systems, which are often difficult 

to overcome, especially in large organizations. Lack of a 

standardized toolset for sensor selection and difficulty in 

putting together an effective multi-disciplinary team are key 
challenges to incorporating PHM into a product from its 

design phase. 

Optimal sensor placement has been studied extensively over 

the past two decades, with researchers addressing various 

aspects of this topic. Starting with system analysis and 

specific operator requirements, Jones et al. (2018) considered 

performance, environmental constraints, and economic 

factors in selecting candidate sensors. Schmidt and 

Laerhoven (2001) identified context-discriminating variables 

and sensors selection based on accuracy and cost 

considerations. Tjen et al. (2020) employed an entropy-based 
sensor selection algorithm for structural damage detection. 

Shieh et al. (2001) provided an overview of sensor 

performance, showcasing sensors best suited for specific 

tasks. Kertiou et al. (2018) proposed a method applicable to 

different IoT middleware for designing accurate solutions 

with minimized search and selection time. Zhang and 

Vachtsevanos (2007) quantified fault detectability and 

optimized cost using particle swarm optimization. Riedel et 

al. (2015) presented a concept based on plant description and 

semantic models as well as integration into plant workflow. 

Kulkarni et al. (2021) provided a literature review and 

proposed an ordered fuzzy clustering approach to sensor 
selection. The Design-for-PHM concept has also been 

promoted in several published works (Kurtoglu et al., 2008; 

Bodden et al., 2005). 

This paper introduces a new OSP process and formulation 

that integrates multiple important features to tackle some 

neglected aspects in PHM designs. Firstly, it establishes a 

direct link to PHM requirements, such as fault detection and 

isolation coverages, within the optimization framework. 
Secondly, unlike conventional methods that evaluate sensors 

separately, our approach incorporates the concept of Virtual 

Sensor, which combines sensor measurements using sensor 

fusion to improve overall performance. Thirdly, with the 

introduction of “sensor grouping” and associated constraints, 

a comprehensive set of “what-if” scenarios can be easily 

analyzed. Lastly, a vital connection is established in the OSP 

process to interact with cost-benefit models derived from cost 

analysis of maintenance burden data. Cost-benefit analysis is 

a crucial aspect which legacy approaches often fail to address 

adequately. The outcome of this work is a generic OSP toolkit 

that can be utilized in early system design phase to guide the 

selection and placement of sensors effectively. 

The rest of the paper is organized as follows. First, a cost-

aware, value-driven OSP process is presented in the next 

section. Major functions and supporting algorithms that 

enable the aforementioned key features are explained in 

detail. The development of a generic toolkit named OSPtk 

and its application to an SMR design are presented. The paper 

concludes with some further design considerations and 

remarks on future development directions.    

2. A VALUE-DRIVEN OSP PROCESS 

The success of a PHM application hinges on effectively 
justifying and communicating the costs versus benefits 

throughout the life cycle of the product or system. The sensor 

selection and placement process therefore need to be cost-

aware and value-driven.  In support of the Design-for-PHM 

concept, we propose an Optimal Sensor Placement (OSP) 

process as shown in Figure 1.  

Figure 1. A value-driven OSP process 
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The process starts with analyzing system failure modes, 

effect, and criticality analysis (FMECA) information, and 

Probabilistic Risk Assessment (PRA) output. This analysis 

generates a list of fault scenarios that the PHM system will 

be designed to “cover” by observing fault symptoms with 
sensors. Note that in this paper, we will use the terms 

“failure” and “fault” interchangeably in the context of OSP. 

The authors acknowledge the differences in these terms when 

it comes to a broader PHM context.   

The next step in this process is to analyze the symptoms of 

the faults and start considering candidate sensors to monitor 

them. This can be done through simulations (if available) or 

by analyzing actual data from the system (or similar systems). 

This analysis will generate fault observability measures, 

which quantify the level of confidence in detecting the faults 

using the candidate sensors. It is anticipated a large set of 

candidate sensors will be included in the initial candidate 

sensor suites. 

The initial candidate sensor suites will undergo a thorough 

review by subject matter experts to assess their technical 

soundness. Additionally, important "meta" data, such as fault 

criticality, failure rate, and other relevant factors, will be 

incorporated. Mandatory sensors, necessary for controls, 

certification, or regulatory requirements, will also be 

included to determine if they contribute to the overall 

effectiveness of PHM.  

The initial candidate sensors, fault modes, and cost 

considerations outlined in the Cost Impact Analysis are 
provided to the generic OSP tool as a configuration file for 

optimization. The resulting optimal sensor configuration, 

along with key PHM performance metrics (such as fault 

coverage, false alert rate, true detection rate, etc.), are then 

utilized in the Cost Impact Analysis process to ensure that 

cost impact goals are met. Finally, a comprehensive cost-

benefit report will be generated for management review, 

summarizing the outcomes and benefits of the sensor 

placement optimization.  

To support this process, a generic toolkit called OSPtk has 

been developed. OSPtk allows designers to explore and test 

multiple what-if scenarios at a fast speed to iterate between 
options. Contrary to traditional processes where sensing is 

designed primarily for process control and operations, OSPtk 

facilitates advocacy of PHM centric needs and value 

proposition early into the design process. Trade-offs arising 

from quality, cost, and number of sensors to provide fault 

coverage prioritized by respective maintenance cost burdens 

can be analyzed quickly and outcomes can be incorporated in 

design decisions. 

OSPtk also provides flexibility to express constraints or 

design preferences, incorporates cost and budget information, 

and eliminates the need for designers to possess expertise in 
formulating and solving optimization problems or even an in-

depth PHM experience. Most importantly, it allows to 

establish a connection between performance requirements 

from a PHM system (presumably established from 

maintenance burden analysis from historical data) to capital 

costs of optimizing sensing for maximum fault coverage.      

3. TECHNICAL APPROACH 

Optimal sensor placement can be formulated as a constrained 

combinatorial optimization problem as follows. Given a 

sensor suite consisting of m candidate sensors, let S be a 

binary decision vector 

  𝑆 = [𝑠1, … , 𝑠𝑚],  𝑠𝑖 ∈ {0,1}  
 

(1) 

where 1 indicates a sensor being selected, and 0 being not 

selected. The goal of OSP is to select a subset of sensors to 

optimize PHM design objectives, subject to requirements and 

budget constraints, i.e., 

 

min   f(P(s), C(s)) 

s.t.    g(P(s), C(s))≤0 

        U(s)=0 

        V(s) ≤0 

(2) 

where f, g, U and V are the objective, inequality constraint 

and equality constraint functions respectively. P(s) represents 

overall PHM performance (such as detection or isolation 

coverages) as a function of selected sensors. C(s) represents 

the overall costs associated with selected sensors including 

not only sensor hardware, installation, and maintenance 

costs, but also the costs for implementing the associated PHM 

functionalities. Function g is an inequality constraint based 

on PHM performance and costs. U(s) and V(s) represent the 

inequality and equality sensor grouping constraints that can 
be used to conduct various trade studies (as detailed in 

Section 3.3).  

Note that all the functions (f, g, U and V) can be defined as 

vector-valued functions. Specifically, when f is defined as a 

vector-valued objective function, OSP takes the form of a 

multi-objective (or Pareto) optimization problem. However, 

linearly combining multiple objectives with weighting 

factors appears to be a practical alternative for balancing 

performance and cost considerations. Examples of f and g 

functions are shown in the use cases in Section 3.4.   

The PHM performance metrics P(s) can be defined in various 

ways. We will introduce herein a method to calculate fault 
detection and fault isolation coverages using the Dependency 

Matrix (D-Matrix) as the underlying sensor/fault correlation 

model. This formulation allows a direct connection to PHM 

requirements in the OSP process.  

3.1. The Dependency Matrix (D-Matrix) 

The Dependency Matrix (D-Matrix) is a tool used in 

Testability Analysis to identify dependencies between system 

components and determine the best locations to place sensors 

for test purposes (MIL-STD-2165, 1985; Singh et al., 2010).  

The D-Matrix can be created in a number of different ways, 
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for example, by subject matter experts, through simulation 

studies, direct inference from actual system data where 

available, or a combination of these. Once the D-Matrix is 

created, it can be used to analyze critical components and 

their fault modes in the system and determine the optimal 
locations to place sensors to detect and isolate them 

(Thombare and Dole, 2015). In earlier applications, the 

elements in D-Matrix are utilized to denote the 

correlation/dependency between a fault state (mode) and a 

test and are binary by definition. The interpretation of D-

Matrix elements was later extended to represent a probability 

of detection, or a confidence value between 0 and 1 (Kulkarni 

et al., 2021).  

In this work, the D-Matrix represents fault modes as rows and 

sensors as columns. Each element of the D-Matrix signifies a 

confidence measure (or score) that reflects how effectively 

the sensor can detect the fault symptoms. There are also meta 
data, such as fault criticality, failure rates, and costs, 

associated with faults and sensors defined as a part of the D-

Matrix as shown in Figure 2. The design of a PHM system 

may necessitate distinct requirements for the coverage of 

critical and non-critical faults, which should be evaluated 

separately. Moreover, mandatory sensors also need to be 

included in the OSP process (with the option of zero or 

discounted costs) if they contribute to PHM.  

 

Figure 2. D-Matrix and associated meta data 

It is noteworthy that the form of the D-Matrix can evolve 

during different stages of development as additional 

information becomes available. The OSPtk allows to iterate 

through these scenarios quickly as they progressively evolve.  
As illustrated in Figure 3, binary values were initially 

assigned by subject matter experts at an early stage. These 

values were later refined to represent fault detection 

confidence when simulation studies could be performed. The 

OSP framework's ability to accommodate diverse forms, 

preferably a mixture of them coexisting in the same D-

Matrix, is crucial because knowledge of different subsystems 

may not be acquired at the same time. Multiple iterations of 

the OSP process are expected throughout the development 

cycle.    

 

Figure 3. The evolution of a D-Matrix 

3.1.1. Gaussian Naïve Bayes Method for Constructing D-

Matrix 

While there are multiple ways to construct a D-Matrix and 

interpret it accordingly, this paper illustrates a simplistic yet 

systematic method that utilizes simulation data to provide a 

D-matrix score reflecting individual sensor’s ability to detect 

faults using Gaussian Discriminant Analysis. This scoring 
methodology is then extended using Gaussian Naïve Bayes 

and multi-feature classification algorithms to provide scores 

for multiple sensors. This approach allows a rapid, 

preliminary assessment of the sensor’s ability to observe a 

fault without conducting an extensive study. 

The concept is shown in Figure 4, where two sensors, s1 and 

s2 are considered. The marginal distributions are shown with 

respect to their ability to detect a given fault (indicated by 

orange points and label = 1). It should be noted that the sensor 

data used in the analysis may not necessarily be raw data but 

can also include normalized or calculated features derived 

from the raw sensor data.   

 

Figure 4. Sensors 1 and 2 scatterplot for health (blue) and 

faulty (orange) data 

In this example, neither s1 nor s2 alone could provide 

satisfactory fault detection performance due to the overlap of 
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distributions evident in the plot. However, if s1 and s2 are 

considered collectively, a Naïve Bayes classifier can be 

trained using labelled training data. Figure 5 below shows the 

Receiver Operating Characteristic (ROC) curves for fault 

detection methods based on s1, s2 and “s1 & s2”. The fusion 
has clearly improved fault detection performance. This 

example also illustrates a scenario where individual sensors 

may not provide sufficient detection capability while the 

fused “Virtual Sensor”, in this case the Naïve Bayes 

classifier, can offer required fault detection performance.  

 

Figure 5. ROC curves for individual and group of sensors 

When considering the ROC curve, the Area Under the Curve 

(AUC) provides a comprehensive evaluation of a sensor's 

capability to differentiate between fault and normal 

conditions. Since an AUC of 0.5 indicates a random guess, a 

reasonable way to define D-Matrix score can be,  

𝑆𝑐𝑜𝑟𝑒 = 2 × (𝐴𝑈𝐶 − 0.5)                                (3) 

Alternatively, it can also be defined as the True Positive Rate 

at a particular False Positive Rate (e.g., 0.05) on the ROC 

curve.  

Once the D-Matrix is constructed, PHM performance metrics 

can be evaluated based on D-Matrix values and relevant 
faults/sensor attributes. As an example, we will show how 

fault detection coverage (FDC) can be calculated. It is, 

however, possible to expand the D-Matrix form to tackle fault 

isolation coverage (FIC) and other PHM performance 

metrics.    

3.1.2. Fault Detection Coverage 

Given a candidate sensor suite and the decision variable S as 

shown in Eq. (1), the fault detection confidence for fault 

mode 𝐹𝑖 can be defined as,  

𝑃(𝐹𝑖) = max (𝑃𝑖1 ∙ 𝑠1, … , 𝑃𝑖𝑚 ∙ 𝑠𝑚)      (4) 

At the requirement level, a fault mode 𝐹𝑖  is considered 

“covered” when its detection confidence 𝑃(𝐹𝑖) is above a 

user defined threshold (e.g., 0.95). System overall fault 

detection coverage (FDC) is defined as the percentage of 

covered fault modes, i.e., 

 𝐹𝐷𝐶 =  
𝐹𝐶

𝐹𝑇
∗ 100%                                           (5) 

where 𝐹𝐶  is the number of covered faults, and 𝐹𝑇  is the total 
number of faults. Note that fault criticality can be factored 

into the above equation to weight more heavily on critical 

faults. 

3.2. Virtual Sensor 

Naïve Bayes based virtual sensor construction is already 

described in Section 3.1.1. Virtual sensors are added to the 

D-Matrix as additional columns and are treated by the 

optimization algorithm the same way as physical sensors with 

the following exceptions:  

1. When the binary decision variable  𝑠𝑖 for a virtual sensor 

is set, the decision variables for all physical sensors (that 

are used by this virtual sensor) are automatically set.  

2. Sensor hardware related costs are only counted for 

physical sensors.  

The Naïve Bayes based approach can (theoretically) be 

applied to all sensor combinations to explore sensor fusion 

benefits, but a heuristic approach that considers a subset of 

higher potential combinations are often more practical.  

3.3. Sensor Grouping & Constraints 

Sensor grouping is a new concept introduced to allow various 

trade studies such as: 

• sensors placed at different locations  

• high accuracy/cost vs. low accuracy/cost sensors 

• a high-cost sensor vs. multiple low-cost sensors 

For example, if a temperature sensor can be placed at three 

different locations, each with its pros and cons in terms of 

performance and costs, then a sensor group can be defined for 

these three locations, e.g. group 9, and an equality constraints 

can be formulated as,   

𝑈(𝑠, 9)−1=0                                                   (6) 

where function U(s,9) returns the number of sensors in 

decision variable s that belong to “Sensor Group 9”. If a 

sensor group is defined by a masking vector, i.e.,   

  𝑍𝑖 = [𝑧i,1, … , 𝑧𝑖,𝑚],  𝑧𝑖,𝑗 ∈ {0,1}  (7) 

where 𝑧𝑖,𝑚 = 1 indicates sensor 𝑠𝑚 belongs to sensor group 

i, then the sensor grouping constraint in Eq. (6) can be 

rewritten using a dot product formula:  

    𝑆 ∙ 𝑍9 = 1    (8) 

User can try to define the equality and inequality constraint 
functions (U and V) for various “what-if” scenarios, e.g., 
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“pick one sensor from Group 1 and at least 2 sensors from 

Group 2”1.   

3.4. Use Cases for Optimization Objectives, Constraints 

and Trade Studies 

While most legacy approaches define their own specific 
objective functions and constraints, this new approach leaves 

that flexibility to the end user. As a result, PHM system 

designers can formulate the optimization process based on 

their own specific program needs. Table 1 below shows 

several use cases with the corresponding objective and 

constraints functions.  

Table 1. User-defined optimization objective and constraint 

functions. 

Use case Formulation 

Optimize cost efficiency 
while maintaining fault 
detection and isolation 
coverages above 95% 

min   𝐶(𝑠) 
 

s. t.   
𝐹𝐷𝐶(𝑠) ≥ 95%
𝐹𝐼𝐶(𝑠) ≥ 95%

 

Achieve maximum 
average fault detection and 
isolation coverages while 
adhering to a budget limit 

of $1M, ensuring 
detectability of all critical 
faults 

min  −𝐹𝐷𝐶(𝑠) − 𝐹𝐼𝐶(𝑠) 
 

s. t.   
𝐶(𝑠) ≤ $1𝑀                   
𝐹𝐷𝐶𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 (𝑠) = 100%

 

Optimize the weighted 
average of cost, FDC and 
FIC 

min  𝐶(𝑠) − 𝐹𝐷𝐶(𝑠) − 𝐹𝐼𝐶(𝑠) 

These mathematical formulae can be conveniently described 

using a human-readable data object file format, such as JSON 

(JavaScript Object Notation). For example, the third use case 

above can be described as shown in Figure 6. In this case, if 

the unit for cost is $1M, FDC and FIC are in percent, then the 

formula reflects the trade-off that 1% improvement in FDC 

or FIC is equivalent to $1M savings in maintenance over a 

certain defined operation period.  

"Objective": [ { “ID": "O1", 

                 "Metric": “FDC", 

                   "Type": "Overall", 

                  "Weight": -1    }, 

        { “ID": "O2", 

                  "Metric": “FIC", 

                     "Type": "Overall", 

                    "Weight": -1    }, 

             { "ID": "O3", 

                   "Metric": "Cost", 

               "Type": "NA", 

                      "Weight": 1  }    ] 

Figure 6. Objective function in JSON format 

 
1  A possible formulation is: 𝑆 ∙ 𝑍1 − 1 = 0  and 𝑆 ∙ 𝑍2 − 2 ≥ 0 , 

where 𝑍1 and 𝑍2 are the masking vectors that define sensor groups 
1 and 2 respectively.  

Similarly, various trade studies can be conducted using 

sensor group constraints and sensor meta data specifications. 

A few examples are illustrated in Table 2 in Appendix using 

JSON format.  

3.5. Optimization Algorithm 

The problem setting presents several challenges that need to 

be addressed in the development of the optimization 

algorithm. Firstly, the algorithm must accommodate a 

generic objective function that is not pre-established, as 

objectives are often different across different industry use 

cases. Moreover, the utilization of undifferentiable functions, 

such as the max operator and thresholding in the computation 

of certain performance metrics like fault detection coverage, 

adds further complexity to the optimization process. 

Exhaustive search is a viable option for achieving a global 

optimal solution when dealing with a small problem space. 

However, as the search space expands, the "curse of 
dimensionality" makes the brute force method impractical. In 

such cases, many metaheuristic algorithms such as ant colony 

optimization, genetic and evolutionary algorithms, iterated 

local search, simulated annealing and tabu search can be 

applied (Blum et al., 2011). The toolkit aims to offer a variety 

of algorithmic options. So far, the Genetic Algorithms (GA) 

(Mitchell, 1996) have been implemented and thoroughly 

tested. The individuals of the initial population can be 

randomized uniformly with a value between 0 and 2𝑚 − 1 

and be treated as a binary vector. Mutation and crossover 
operations are applied to the binary vector thereafter 

following standard GA method. A select few elite individuals 

are preserved from one generation to the next. Penalty 

functions are employed to discourage and penalize 

combinations that violate the constraints. The exit criteria can 

be based on the convergence of the objective function, total 

number of generations, total computing time, or any 

combinations of these conditions as specified by the designer. 

Standard GA software libraries can be utilized to implement 

this algorithm, and our particular implementation, therefore, 

is not described here any further. 

3.6. Cost-Benefit Model 

While the OSP problem can be solved to maximize predictive 

analytics performance without additional constraints, we 

strongly advocate for a solution that is guided by the 

necessary real-world requirements of predictive performance 

for the specific failure modes of interest. This approach 

ensures a more accurate and focused solution. Such necessary 

performance requirements are generated by leveraging a cost-

benefit model built to account for the utility of the overall 

PHM system: costs required to develop, operate, and sustain 
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the system as well as the benefits incurred from the generated 

predictions. This accounting is expected to result in net 

positive savings, which would then justify investment in the 

development of a PHM system. We believe that such a cost-

benefit analysis will only permit true insights about the value 
of the PHM system if it also takes into account the costs 

incurred due to model errors (i.e., false alarms, false 

negatives). 

Cost-benefit analysis can be done at the level of the overall 

system/asset or for individual failure modes. This is done by 

making use of available historical cost data that shows the 

overall costs incurred by the application of existing 

paradigms when not utilizing predictive analytics or PHM. 

When cost-benefit analysis is done at the level of individual 

failure modes, it will make use of historical data to not only 

identify which failures to target for OSP, but it will also 

create minimum requirements on the predictive performance 
of the PHM models, in order for the expected savings to 

materialize, even in the presence of model errors. These 

performance requirements now provide OSP with additional 

constraints to address in the design of the optimal sensing 

system. Since the minimum performance requirements are 

driven by real-world analysis of expected savings, it provides 

the OSP solution with the option to be no better than those 

minimum requirements, thus allowing OSP to exercise better 

cost tradeoffs as dictated by the real application. 

In our application of OSPtk to SMR use case, we have been 

leveraging such a cost-benefit model to derive required PHM 
performance given operations and maintenance (O&M) cost 

reduction targets. Historical maintenance burden data from 

existing nuclear plant fleets was used to derive PHM 

performance targets towards specific O&M cost reduction 

goals. This allows for determining whether desired cost 

reductions can be achieved, and if yes, what would it take to 

implement such a design. 

4. OSPTK SOFTWARE DEVELOPMENT 

As shown in Figure 7, the OSPtk software package consists 

of a graphical user interface (GUI) and an optimizer. The GUI 

provides a user-friendly interface for various tasks, including 

creating and managing OSP projects, visualizing system 
topology, defining sensor and fault mode metadata, accessing 

and modifying the D-Matrix, managing virtual sensors, 

setting optimization objectives and constraints, selecting 

optimization algorithms, configuring optimization 

parameters, submitting OSP jobs, and reviewing results, 

among other functionalities. The GUI produces an OSP 

project file in JSON format and passes it to the optimizer.  

 
2 Image courtesy of GE Hitachi. Source: 

https://nuclear.gepower.com/build-a-plant/products/nuclear-

power-plants-overview/bwrx-300 

 

Figure 7. The OSP software package 

The optimizer comes in two versions: a cloud-based version 
that harnesses the power of parallel computing to tackle 

large-scale problems, and a desktop version designed for 

small-scale applications. When the cloud-based version is 

utilized, an OSP job can be submitted with a JSON project 

file.  

5. APPLICATION 

OSPtk is being evaluated for sensor placement in the BWRX-

300 small modular reactor for PHM design. The BWRX-300, 

as shown in Figure 8, is a 300 MWe water-cooled, natural 

circulation SMR with passive safety systems.  

These small modular reactors will be generated from a 

distributed fleet of smaller reactors where units can be 
brought online or offline as needed. Due to its considerable 

operational and maintenance costs a distributed fleet will put 

additional cost burden if remote monitoring is not enabled. 

This requires prognostics and health management capabilities 

such as early warning, diagnostics, and prognostics to enable 

predictive maintenance with high accuracy. Which in turn 

requires careful selection of sensors and determine their 

optimal placement.  

 

 

Figure 8. The BWRX-300 Small Modular Reactor2 

For the OSPtk demonstration, the condenser system was 
selected as the focal subsystem. In a nuclear reactor such as 

BWRX-300, the condenser is a large heat exchanger designed 

to cool exhaust steam from a turbine so that it can be returned 

to the heat source as water. A circulating water system takes 

OSP Service in 
Cloud 

Submit a job (JSON) 

Retrieve results 

GUI 
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the heat from the condenser and releases it into the 

surroundings. Figure 9 shows a top-level diagram of a 

representative condenser system in the OSPtk GUI. 

A list of failure modes was considered for this study 

including condenser fouling and pipe blockage at various 
degrees of degradation. Condenser system software 

simulations (outside OSPtk) were conducted to simulate 

nominal conditions, as well as different faulty scenarios at 

varying severity levels and different environmental 

conditions. Additionally, nominal levels of noise, as 

determined from past experience, were introduced in the 

simulation runs. Both healthy and faulty data were collected, 

and the Naïve Bayes method described in Section 3.1.1 was 

applied to construct the D-Matrix. To create balanced healthy 

and faulty data, a Design of Experiments (DoE) method was 

applied to design the simulation conditions as shown in Table 

3 using condenser fouling as an example. Environmental 
conditions (such as lake water temperatures) were simulated 

based on historical data from selected reactor sites.  

 

Figure 9. The BWRX condenser system in OSPtk GUI 

Table 3. Condenser fouling experiment design example 

Run Combination 

Factors 

Health Lake water 
Temperatures 

1 Normal-1C Normal 1 °C 

2 Fouling5%-1C Fouling 5% 1 °C 

… … … … 

39 Normal-24C Normal 24 °C 

40 Fouling40%-24C Fouling 40% 24 °C 

Additional sensors and sensor locations were identified 

through the condenser system simulation program, 

expanding the candidate sensor suite to encompass 111 

sensors. This represents an order of magnitude increase 

compared to the original number of sensors in the initial 
design. By implementing an automated process, an extensive 

exploration of sensor combinations was conducted, resulting 

in the discovery and integration of 11 additional virtual 

sensors into the candidate sensor suite.  Figure 10 in 

Appendix displays the D-Matrix values, represented with a 

color code where darker shades indicate higher values, for 
four levels of condenser fouling faults (5%, 10%, 20%, and 

40%). It can be observed that several different combinations 

of sensors (such as VS_S53_15_51) provided improved fault 

detection coverage for 40% fouling (FL40). These candidates 

are provided to the design team for considerations and 

iterated as needed. The sensor combinations (virtual sensors) 

identified in this study also provided valuable insights for the 

development of advanced PHM analytics. While we are 

continuing to iterate on existing and new scenarios as part of 

development and testing of this tool, the main intent is to 

mature this tool and hand over to the design teams where they 

can exercise analyses throughout their design and 
development cycle as consistent with their respective 

schedules. 

In term of computation speed, with a limited number of 

failure modes, the GA optimization found optimal solutions 

within 300 generations in less than 1 minute using an x64-

based laptop equipped with an Intel Xeon 3.2 GHz CPU with 

6 cores. The evaluation of the toolkit for high-dimensional 

problems is currently underway.   

6. CONCLUSION & FUTURE WORK 

The concept of Design-for-PHM represents a significant 

advancement in system design, emphasizing the need for the 
early integration of PHM considerations during the design 

phase. In order to foster this shift in mindset, a generic, cost-

aware OSP toolkit has been developed to support the 

selection and placement of sensors, which is a critical step in 

PHM design. The toolkit provides unparalleled flexibility, 

allowing designers to define the optimization problem 

according to their specific program requirements. 

Additionally, it offers a platform for conducting diverse trade 

studies, enabling designers to explore different possibilities 

and make informed decisions. The toolkit is currently 

undergoing evaluation for sensor placement and PHM system 

design in the context of a small modular reactor.  

Planned future work includes evaluating the toolkit on a 

larger scale, incorporating a broader range of failure modes 

and subsystems. Additionally, the investigation of more 

computationally efficient combinatorial optimization 

algorithms is on the agenda. More sophisticated multi-variate 

machine learning methods will be explored as additional 

options to enhance over the Naïve Bayes classification 

method. The consideration of customized plug-ins for 

seamless integration with specialized simulation software 

(e.g., sensor meta data retrieval, simulation execution) is also 

part of the plan.  
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APPENDIX 

Table 2. Examples for various trade studies 

Trade Study Sensor meta data Constraints 

Same type of sensors placed at 

different locations 

• Define two sensors (e.g., S26 

and S27) 

• Create a sensor group (e.g., 

group 8) 

• Assign both sensors to this 

group 

• Create a constraint (e.g., C5) 

for group 8  

“Sensor": 

[{   "ID": "S26", 

      "Description": “pipe inlet pressure", 

      "Type": "Pressure",  
     "Mandatory": 0, 

     "VirtualSensor": "NA", 

     "SensorGroup": 8,  

     "FailureRate": 1e-6,  

     "TotalCost": 0.02 }, 

  {  "ID": "S27", 

      "Description": “pipe exit pressure", 

      "Type": “Pressure", 

      "Mandatory": 0, 

      "VirtualSensor": "NA", 

      "SensorGroup": 8,  

      "FailureRate": 1e-6,  
      "TotalCost": 0.02 ] } ] 

"Constraint": 

[ {  "ID": "C5", 

       "Metric": "SensorGroup", 

       "Type": 8, 
       "Logic": “<=", 

       "Value": 1 } ] 

Mark a sensor as mandatory 
(required for controls /Certification) 

• Set sensor “Mandatory” flag 
 

“Sensor": 

[{   "ID": "S1", 

      "Description": “lake water temperature", 

      "Type": "temperature",  

      "Mandatory": 1, 

      "VirtualSensor": "NA", 

      "SensorGroup": “NA”,  

      "FailureRate": 1e-6,  

      "TotalCost": 0.01 } ] 

NA 

Selecting sensors from various 
groups involves choosing any 
desired quantity (e.g., including at 
least one pressure sensor from one 
group and a maximum of two 
temperature sensors from another 

group) 

• Define two sensor groups 

• Assign sensors to 

corresponding groups 

• Create sensor group 

constraints 

(not listed for brevity) "Constraint": 

[ {  "ID": "C7", 

       "Metric": "SensorGroup", 
       "Type": 5, 

       "Logic": “>=", 

       "Value": 1 }, 

   {  "ID": "C8", 

       "Metric": "SensorGroup", 

       "Type": 6, 

       "Logic": “<=", 

       "Value": 2 } ] 

Introduce a virtual sensor 

• Define a sensor as virtual 

sensor 

• Specify the physical sensors 

involved 

• Only include additional costs 
(beyond each individual 

sensor costs) 

“Sensor": 

[{   "ID": "S5", 

      "Description": “VS based on S2, S3, S4", 

      "Type": "Virtual",  
      "Mandatory": 0, 

      "VirtualSensor": "[S2, S3, S4]", 

      "SensorGroup": “NA”,  

      "FailureRate": “NA”,  

      "TotalCost": 0.01 } ] 

NA 
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Figure 10. Color-coded D-Matrix with Virtual Sensors 
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