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ABSTRACT 

This research presents a novel fault detection and diagnostics 
system for unmanned ground vehicles (UGVs) by combining 
Markov models representing the vehicle's navigation, 
kinematic behavior, and vehicle dynamics systems. Existing 
studies do not specifically address the challenges related to 
UGVs and their complex subsystems or the incorporation of 
weather and environmental condition data. The proposed 
system leverages environmental and weather condition data 
to monitor the UGV's state and detect anomalies in its 
behavior. By predicting the probability of faults such as 
collisions, sensor damage, and other malfunctions, the system 
aims to enhance the safety, reliability, and performance of 
UGVs. The research will demonstrate the effectiveness of the 
proposed methodology through case studies and performance 
evaluation, highlighting its potential application in various 
real-world scenarios. This work contributes to the ongoing 
research in prognostics and health management, particularly 
for autonomous systems, by providing a new approach to 
fault detection and diagnostics in UGVs. 

1. PROBLEM STATEMENT 

Unmanned ground vehicles (UGVs) have gained significant 
attention in recent years due to their diverse applications in 
transportation, logistics, and hazardous environment 
exploration. Ensuring the safety and reliability of these 
vehicles is of paramount importance, as faults or anomalies 
in their behavior can lead to critical failures, endangering 
human life and property. Traditional fault detection and 
diagnostics methods may not be sufficient to address the 
complex nature of UGV systems, particularly when 
considering the interdependence of the vehicle dynamics, 

perception, navigation, and control subsystems, as well as the 
influence of environmental factors 

Several studies have been conducted in the field of fault 
detection and diagnostics for autonomous systems, focusing 
on various aspects of using Markov models. Especially 
Hidden Markov Models (HMMs) have been extensively 
studied in various contexts. Martino (2020) provides an in-
depth analysis of HMMs for multivariate, functional, and 
complex data. Similarly, Yu (2010) proposes HMMs that 
combine local and global information for nonlinear and 
multimodal process monitoring. Azzalini (2022) employs 
HMMs as well as Deep Learning (DL) for the detection of 
anomalies in the behavior of autonomous robots. However, 
these studies do not specifically address the unique 
challenges associated with the integration of navigation and 
kinematic/dynamic subsystems, which is one of the critical 
aspects of our research. Khreich, Granger, Sabourin, and Miri 
(2009) focus on combining HMMs for improved anomaly 
detection, which is directly relevant to our research. Their 
approach to combining HMMs, offers valuable insights into 
the integration of Markov models representing the UGV's 
subsystems. There is a need for a comprehensive study that 
specifically addresses the challenges of UGV fault detection 
and diagnostics by integrating Markov models representing 
navigation, kinematic / dynamic subsystems, and 
weather/environmental condition data. 

The objective of this research is to develop a comprehensive 
vehicle state monitoring system for UGVs that can 
effectively detect and diagnose faults by integrating Markov 
models of the navigation and kinematic/dynamic subsystems, 
along with information about the weather and environmental 
conditions. This approach aims to provide a more accurate 
and robust fault detection system, capable of predicting the 
probability of faults such as collisions, sensor damage, and 
other malfunctions, ultimately enhancing the safety and 
reliability of UGVs. 
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2. EXPECTED CONTRIBUTIONS 

The outcomes of this research will provide: 1) The 
development and implementation of a novel vehicle state 
monitoring system for UGVs that effectively integrates the 
navigation and kinematic/dynamic subsystems. 2) A 
systematic approach to incorporate weather and 
environmental condition data into the vehicle state 
monitoring system. 3) Demonstration of the system's 
effectiveness in detecting anomalies and predicting fault 
probabilities through case studies and performance 
evaluation, emphasizing its applicability in a variety of real-
world scenarios. 4) Comparative analysis of the developed 
system with existing fault detection and diagnostics methods 
for UGVs, highlighting its potential to enhance the safety and 
reliability of these vehicles across diverse applications. 

These contributions will significantly impact the field of 
prognostics and health management, particularly for 
autonomous systems, by offering a new approach to fault 
detection and diagnostics in UGVs that aims to improve their 
safety, reliability, and overall performance. 

3. RESEARCH PLAN 

The research plan for developing the proposed vehicle state 
monitoring system for UGVs consists of the following 
objectives: 

 Design Markov models representing the navigation and 
kinematic/dynamic subsystems of the UGV, integrating the 
state space and mathematical model. 

 Develop a detailed mathematical model to calculate the 
probabilities of being in different states, considering the 
UGV's position, orientation, vertices and edges, vehicle 
dynamics, and weather condition data. 

 Implement the vehicle state monitoring system by 
employing a simulation environment to test and evaluate 
its performance in detecting anomalies and predicting fault 
probabilities. 

 Conduct case studies and performance evaluation of the 
proposed system, comparing its performance with existing 
fault detection and diagnostics methods for UGVs. 

 Analyze the results obtained from the case studies and 
identify the advantages and potential improvements 
offered by the system. 

By following this research plan, we aim to provide a 
comprehensive and novel approach to fault detection and 
diagnostics in UGVs, contributing to the ongoing research in 
prognostics and health management for autonomous systems. 

3.1. Sampling-Based Path Planning 

Sampling-based planning has emerged as a vital approach in 
robotic motion planning, addressing the complexities and 

computational challenges associated with high-dimensional 
configuration spaces. Karaman and Frazzoli (2011) argue 
that the most influential sampling-based motion planning 
algorithms to date include Probabilistic Roadmap Method 
(PRM) and Rapidly exploring Random Trees (RRTs). The 
primary aim of these algorithms is to efficiently explore the 
configuration space, generate collision-free paths, and ensure 
convergence to optimal solutions. Sampling-based planning 
techniques rely on the generation of random samples in the 
configuration space and the establishment of connections 
between them to create a roadmap or tree structure.  

PRMs, introduced by Kavraki, Svestka, Latombe, and 
Overmars (1996) are one of the earliest sampling-based 
planning methods. The PRM algorithm consists of two 
phases: the roadmap construction phase, which involves 
sampling and connecting nodes, and the query phase, which 
finds a path between the start and goal configurations. RRTs, 
proposed by LaValle (1998), are another fundamental 
sampling-based planning technique. The RRT algorithm 
incrementally constructs a tree rooted at the initial 
configuration by randomly sampling the configuration space 
and connecting the samples to the nearest vertex in the tree. 
Figure 1 shows examples of the path planning graphs 
generated by the RRT and PRM algorithms for 
nonholonomic and holonomic robots respectively. 

 

Figure 1. Path planning graphs generated by RRT (left) 
and PRM (right) algorithms. 

 
The limitations of pure PRMs and RRTs have led to the 
development of hybrid and multi-query approaches that 
combine the strengths of both methods. Algorithms like 
PRM-RRT, BIT*, SST, and FMT* have popularly found 
applications in diverse domains such as mobile robotics, 
aerial robotics, manipulation, and autonomous vehicles. 
Despite the numerous hybrid implementations of sampling-
based planning algorithms, the underlying concept of 
constructing a graph to represent the environment and the 
obstacles within it remains consistent. In these graphs, nodes 
represent distinct configurations or states of the robotic 
system, which could be positions in the workspace, joint 
angles, or other parameters that define the system's state. 
Edges, on the other hand, represent feasible transitions 
between these configurations that avoid collisions with 
obstacles. By creating such a graph, these algorithms 
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encapsulate the complex relationships between the robot, the 
environment, and the obstacles, providing a structured and 
systematic means to explore the configuration space. 

3.2. Markov Model 

To monitor the vehicle’s operations, we developed a Markov 
model based on its actions while traversing the environment. 

The Markov property states that the future state of a system 
depends only on its current state, and not on the sequence of 
previous states. The state / state transition probabilities of the 
Markov model can be dynamically calculated based on the 
path planning graph, position, and orientation of the UGV. 
Consider a simple UGV with State space: 
 

𝑆 =  {going straight, going left, going right, collision} 
 
Transition probability matrix: 
 

𝑃(straight → straight) ⋯ 𝑃(straight → collision)
⋮ ⋱ ⋮

𝑃(straight → collision) ⋯ 𝑃(collision → collision)
 

 
The transition probabilities for this UGV can be updated 
based on the vehicle's current position and orientation, and 
the vertices and edges of the graph. 

3.3. Calculation of State Probabilities 

The following mathematical formulation aims to calculate 
the probabilities of an unmanned ground vehicle (UGV) 
being in one of four states: "going straight," "going left," 
"going right," or "collision." This is done considering the 
UGV's position and orientation, the vertices and edges of the 
graph representing the environment. From the graphs in 
Figure 1 we can see that from any given vertex, the incident 
edges for that vertex represent the directions the UGV can go 
in without collision. All the other directions are prone to 
collision. We divide the vehicle’s field of vison in “collision”, 
and “collision-free” areas. Let the vehicle be at position “p” 
and “u” be the UGV’s orientation vector. The field of vision 
can be represented as a semi-circle with radius equal to the 
length of the longest edge and center p. V is the set of vertices 
connected to p.  

𝑉 =  {𝑣𝑒𝑟𝑡𝑒𝑥 1, 𝑣𝑒𝑟𝑡𝑒𝑥 2, 𝑣𝑒𝑟𝑡𝑒𝑥 3, … 𝑣𝑒𝑟𝑡𝑒𝑥 𝑁} 

The “collision free” area can be calculated by assigning a 
small sector for each edge or neighboring vertex. The unit 
vector vi representing the direction of the ith edge is given by: 

𝑣 =  
(𝑣𝑒𝑟𝑡𝑒𝑥 − 𝑝)

‖𝑣𝑒𝑟𝑡𝑒𝑥 − 𝑝‖
 

Figure 2 represents the field of vision of the UGV positioned 
at p and orientation u. The small circles represent the 
neighboring vertices, and their individual sectors are colored 

gray.  All the gray sectors together make up the “collision-
free” area.  

 

Figure 2. Field of Vision for the UGV 
Each vertex sector can now be classified as a "going straight", 
"going left", or a "going right" sector based on the angle 
formed by its direction vector vi, and the UGV’s orientation 
vector u. This angle θ can be calculated by: 

𝜃 =  cos
𝑢 . 𝑣

‖𝑢‖‖𝑣 ‖
 

Each vertex sector is classified into "going straight," "going 
left," or "going right" based on their angular position relative 
to the UGV's orientation, θ. Let ε be the threshold angle for 
classifying an edge as "going straight", based on the UGV’s 
vehicle dynamics. 

𝑉𝑒𝑟𝑡𝑒𝑥 𝑖 =

−ε ≤  θ ≤  ε → "going straight"
ε <  θ ≤  90 →  "going right"

− ε <  θ ≤  − 90 →  "going left"
 

The angle of the sector, α is the same for each sector. The 
“collision” and “collision-free” probabilities can be 
calculated as follows: 

𝑃(𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛_𝑓𝑟𝑒𝑒) =  
𝑁. α

180
 

𝑃(𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛) =  1 −  𝑃(𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛_𝑓𝑟𝑒𝑒) 

‘N’ is the total number of vertices connected to p. The 
“collision-free” probability can be divided into the "going 
straight," "going left," and "going right" probabilities as 
follows: 

𝑃(𝑔𝑜𝑖𝑛𝑔_𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡) =  
∑ α (𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡)

𝑁. α
 

𝑃(𝑔𝑜𝑖𝑛𝑔_𝑙𝑒𝑓𝑡) =  
∑ α (𝑙𝑒𝑓𝑡)

𝑁. α
 

𝑃(𝑔𝑜𝑖𝑛𝑔_𝑟𝑖𝑔ℎ𝑡) =  
∑ α (𝑟𝑖𝑔ℎ𝑡)

𝑁. α
 

The resulting probabilities can be used to predict the UGV's 
state and ultimately, it’s behavior in the future enabling fault 
detection and diagnostics. This mathematical formulation is 
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a key component of the comprehensive vehicle state 
monitoring system for UGVs proposed in this research. 

3.4. Fault Diagnosis Process 

The proposed fault diagnosis process in this research makes 
use of the Markov model and the vehicle state monitoring 
system to diagnose faults in UGVs. This assumes that any 
fault in the system will result in deviations from the expected 
state probabilities as described by the Markov model. The 
Markov model calculates the probabilities of the UGV being 
in different states, thus generating an expected state sequence 
under normal conditions. Upon obtaining the expected state 
sequence, the actual behavior of the UGV is monitored and 
compared with the predicted behavior. The comparison 
involves assessing the actual state sequence of the UGV 
against the expected state sequence. This comparison is 
facilitated by the vehicle state monitoring system, which 
continuously tracks the UGV's state transitions. When a 
discrepancy is detected between the actual and expected state 
sequences, it signifies an anomaly that could potentially 
indicate a fault. The nature and magnitude of the discrepancy 
can provide valuable information about the type and severity 
of the fault, thus aiding in the diagnosis process. Once a fault 
is detected and identified, it is then categorized according to 
its severity and impact on the UGV's performance. This 
enables the system to prioritize its response according to the 
severity of the fault. 

3.5. Remaining Work 

The remaining work includes the incorporation of vehicle 
dynamics, and environmental sensor data to accurately 
predict the UGV’s expected behavior. This will significantly 
improve the fault detection capability of the vehicle 
monitoring system. The dynamic states of the vehicle include 
velocity, acceleration, brake, steering angle, and traction. 
Weather data can be incorporated into the model as an 
external factor that influences the transition probabilities 
between states. Weather conditions can have a significant 
impact on the behavior of a UGV. For instance, rain, snow, 
or fog can affect the vehicle's traction, visibility, and sensor 
performance. One challenge here is that the state space 
becomes more complex, and so computational techniques 
may be needed to handle this increased complexity. 
Techniques like Hidden Markov Models (HMM), Model 
Predictive Control (MPC) and Reinforcement learning (RL) 
can be used to generate an expected behavior of the UGV. By 
comparing the expected behavior with the actual behavior, 
anomalies or faults can be detected. Further, the robust or 
stochastic variants of MPC can account for uncertainties and 
disturbances, which are common in real-world scenarios. 
MPC could be used to model the system's dynamics and 
predict its behavior under normal conditions, while RL could 
be used to learn optimal policies to detect anomalies that may 

indicate faults and responding to them. This could result in a 
robust and effective fault detection system for UGVs. 

4. CONCLUSION 

In this research a novel fault detection and diagnostics system 
for unmanned ground vehicles (UGVs) is proposed that 
combines Markov models representing the vehicle's 
navigation, kinematic behavior, and vehicle dynamics 
systems. We show that based on the information from the 
navigational module, collision risk as well as it's expected 
kinematic behavior can be modeled for a simple UGV. 
Expanding our method to include other more complex 
aspects of an UGV is the immediate next step. Traditional 
fault detection and diagnostics methods are not sufficient to 
address the complex nature of UGV systems, considering the 
interdependence of the vehicle dynamics, perception, 
navigation, and control subsystems. The proposed approach 
provides a more accurate and robust fault detection system, 
capable of predicting the probability of faults such as 
collisions, sensor damage, and other malfunctions, ultimately 
enhancing the safety and reliability of UGVs. 
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