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ABSTRACT

The prognostic of events, and particularly of failures, is a key
step towards allowing preventive decision-making, as in the
case of predictive maintenance in Industry 4.0. However, the
occurrence time of a future event is subject to uncertainty,
and is typically modelled as a random variable. In this re-
gard, the default procedure (benchmark) to compute its prob-
ability distribution is empirical, through Monte Carlo simula-
tions. Nonetheless, the analytic expression for the probability
distribution of the first occurrence time of any future event
was presented and demonstrated in a recent publication. In
this article it is established a direct relationship between these
empirical and analytical procedures. It is shown that Monte
Carlo simulations numerically approximate this analytically
known probability measure when the future event is triggered
by the crossing of a threshold.

NOMENCLATURE

kp Present time.
Xk Random variable of interest at time k.

Xkp+1:k Random trajectory of the variable of interest
from time kp + 1 up to time k.

E Qualitative description of an event.
Ek Binary random variable denoting the occurrence

or not the event E at time k.
τE Random variable depicting the first future

occurrence time of the event E .
P(·) Probability mass function.
p(·) Probability density function.
δx(·) Dirac delta distribution located at x.
1A(·) Indicator function of an arbitrary set A.
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1. INTRODUCTION

Event prognostics is a cross-cutting problem in science and
engineering, where the notion of an “event” depends on the
specific application (Redner, 2001). However, the general
framework consists of having a variable of interest whose dy-
namics may depend on various factors and sources of uncer-
tainty, and where the occurrence of the event is declared once
this variable crosses a threshold for the first time (Siegert,
1951). Thus, given an initial condition for this variable of
interest, the prognostic problem is about determining at what
time in the future the corresponding event would be triggered.
Naturally, if the dynamics of this variable is subject to sources
of uncertainty, this implies that the time of occurrence of the
future event should be a random variable, and its character-
ization would necessarily require calculating its probability
distribution.

The most widely used method to prognosticate an event
is the method of Monte Carlo simulations (Metropolis &
Ulam, 1949). For applications where computational time is
not an issue, this method is appropriate provided it guaran-
tees stochastic convergence when the number of simulations
tends to infinity or is “large enough” (this notion depends
on the particular application), although it remains computa-
tionally expensive. For the same reason as above, it would
be advisable to use an alternative method in applications
where computing time is a limited resource. However, even
in those cases, Monte Carlo simulations are very relevant,
since they establish the benchmark or “ground truth” against
which the performance of other methods can be measured
(Tamssaouet, Nguyen, Medjaher, & Orchard, 2021; Wei et
al., 2021; Zhang, Xiong, He, & Pecht, 2019; Sreenuch, Al-
ghassi, Perinpanayagam, & Xie, 2014; Le Son, Fouladirad,
Barros, Levrat, & Iung, 2013; Zio & Peloni, 2011).
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Monte Carlo simulations allow the approximation of expec-
tations with arbitrary precision (it depends on the number
of simulations; the more simulations, the higher precision).
Consequently, it is natural to ask what is the actual analytical
expression for the expected value that is approximated when
employing these Monte Carlo simulations in event prognos-
tics. This analytical expression was recently reported in the
literature (Acuña-Ureta, Orchard, & Wheeler, 2021), where
the problem of event prognostic is posed within a general
framework, establishing the analytical form of the probabil-
ity distribution of the time of occurrence of a future event
together with its corresponding mathematical demonstration.
Even the criteria for declaration of events is generalized, al-
lowing the incorporation of uncertainty in it. In other words,
the crossing of a threshold does not necessarily declare an
event, but its declaration may be described by an uncertain
event likelihood function, attributing the notion of probability
that an event will occur or not given the condition of a system.
Nonetheless, the relationship between the empirical approach
based on Monte Carlo simulations, which is very commonly
used, and this analytical expression for the probability distri-
bution recently mentioned is not evident, especially consider-
ing the mathematical rigor with which the probability distri-
bution was originally presented.

Understanding the relationship between the already standard-
ized Monte Carlo simulations to perform prognostics (or to
validate prognostic algorithms) and the Theory of Uncertain
Event Prognosis (Acuña-Ureta et al., 2021), which is the con-
tribution of this article, is crucial for the advancement in re-
search related to prognostics. Among the most essential rea-
sons for acknowledging this relationship are the following:

1. A formal framework for event prognostics based on
mathematics is recognized. This framework gives a theo-
retical foundation to the notion of uncertain hazard zones
(Orchard & Vachtsevanos, 2009), which has been widely
known for years but never formalized.

2. Notions of convergence in prognostic algorithms arise.
This applies to model-based and data-driven approaches
since the framework is agnostic about how predictions
are generated.

3. The formality of the Theory of Uncertain Event Progno-
sis gives rise to the generation of objective standards in
terms of performance metrics of prognostic algorithms.

4. Enormous practical advantages have already been
shown, like dramatically speeding up stochastic con-
vergence when computing the occurrence time of a
future event, reducing the computational cost, as evi-
denced in (Acuña-Ureta & Orchard, 2022b), where there
is computation time reduction from the scale of hours
by using standard Monte Carlo simulations, to the scale
of milliseconds by leveraging transformations using the
Theory of Uncertain Event Prognosis.

The results in this article are meant to express the direct re-
lationship between the Theory of Uncertain Event Prognosis
and the conventional way in which prognostic results have
been validated using Monte Carlo simulations; thus, no case
study is provided here. To check the validity of these re-
sults with a simple and illustrative case study, please refer to
(Acuña-Ureta & Orchard, 2022a), where it is shown that the
Theory of Uncertain Event Prognosis leads to the same prob-
ability distribution for the first occurrence time of an event
that can be obtained by performing Monte Carlo simulations.
Alternatively, to check a more sophisticated application with
a real application, readers can be referred to (Acuña-Ureta &
Orchard, 2022b).

This article is structured as follows. In Section 2, a brief re-
view of the Theory of Uncertain Event Prognosis is made,
where the analytical expression for the probability distribu-
tion of the occurrence time of a future event is shown. Sec-
tion 3 presents the main contribution of this article, which
consists in establishing a clear relationship between this ana-
lytical expression and the traditional empirical way in which
the method of Monte Carlo simulations is used in event prog-
nostics. Finally, conclusions are presented in Section 4.

2. THEORY OF UNCERTAIN EVENT PROGNOSIS

Before presenting the probability measure of the occurrence
time of a future event (Acuña-Ureta et al., 2021), it is neces-
sary to make some definitions:

1. A stochastic process {Xk}k∈N depicting the random tra-
jectory of a variable of interest (subjected to uncertainty
sources).

2. An event E .

3. A threshold x̄, whose crossing by the variable of interest
triggers the event occurrence.

With all these definitions and denoting kp as the present time,
the first time in which the event E occurs can be defined as
(Daigle & Goebel, 2013)

τE(kp) := inf
{
k ∈ N : {k > kp} ∧ {Event occurrence

. . . at time k}
}
. (1)

Since the threshold crossing (event occurrence) depends on
{Xk}k∈N, which is a stochastic process, then τE is a random
variable. How do we calculate P(τE = ·) then? The first step
is to give meaning to the particular event to be predicted. For
example, if it were a failure prognostic problem, we could do
it as follows:

E = “System failure”. (2)

At each time k, E might either occur or not, with some prob-
ability. We can define a binary stochastic process {Ek}k∈N
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such that, for each k ∈ N, Ek = ek ∈ {E , Ec} and, therefore,

P(Ek = Ec) = 1− P(Ek = E), (3)

where Ec is the complement of E , and is thus associated with
the non-occurrence of the event “System failure” in this case.
We want to determine the first occurrence time of E , denoted
as τE = τE(kp), which can be now formally defined as

τE(kp) := inf
{
k ∈ N : {k > kp} ∧ {Ek = E}

}
. (4)

Although this definition is similar to others in the literature
(Daigle & Goebel, 2013), it does not make explicit the under-
lying probability distribution of τE . According to (Acuña-
Ureta et al., 2021), this probability distribution is actually
given by

P(τE = k) :=

∫
Xkp+1:k

P (Ek = E|xk)

k−1∏
j=kp+1

[
1−

. . .P (Ej = E|xj)
]
p(xkp+1:k)dxkp+1:k. (5)

In simple words, this expression states that the probability
of the event occurring for the first time in a future instant of
time k, k > kp, can be computed from averaging all the pos-
sible future trajectories xkp+1:k, evaluating on the one hand
how likely it is that there is system failure at time k, ex-
pressed through the term P (Ek = E|xk), and on the other
hand that it has not occurred before, expressed through the

term
k−1∏

j=kp+1

P (Ej = Ec|xj) =
k−1∏

j=kp+1

[
1−P (Ej = E|xj)

]
.

3. PROBABILITY MEASURE APPROXIMATED BY
MONTE CARLO SIMULATIONS

Given that Monte Carlo simulations are transversally ac-
cepted as a standard method to compute the probability dis-
tribution of the first occurrence time of a future event, the
following pedagogically illustrates how these simulations ap-
proximate the probability measure of the Theory of Uncertain
Event Prognosis presented in Section 2, particularly in Eq.
(5).

Starting from an initial health condition xkp
, where kp is the

present time, we can simulate N ∈ N independent identi-
cally distributed (i.i.d.) realizations of the stochastic process
{Xk}k>kp . This is, each realization corresponds to a ran-
domly generated sequence of values for the variable of inter-
est as a function of time, as illustrated in Fig. 1. With these
simulations we can adopt a frequentist approach and approx-
imate P(τE = k) as the frequency with which these realiza-
tions hit the threshold x̄ for the first time at time k. That is,

P(τE = k) ≈ # Realizations hitting the threshold at time k

# Total amount of realizations simulated
. (6)

By the Law of Large Numbers, it is known that the previous
approximation in Eq. (6) turns into equality when N → +∞.

This approach is popularly known as the application of the
method of Monte Carlo simulations to the event prognostic
problem. It follows from the descriptive definition of τE , but,
what is the underlying analytic expression for the expected
value that is being approximated by the method? The method
was originally developed to approximate expectations, so im-
mediately we can figure out it is approximating an integral.
The answer actually corresponds to a particular scenario of
the probability distribution reported within the Theory of Un-
certain Event Prognosis shown in Eq. (5), as shown below.

To approximate P(τE = k), it is required to simulate N i.i.d.
realizations of {Xk}k>kp , which consists on drawing sam-
ples from the joint probability distribution p(xkp+1:k) (see
Fig. 1 for an illustrative example of a single realization). Each
realization corresponds to a trajectory followed by xk along
time. In other words, it is a sequence of possible future values
of the variable of interest, expressing its evolution over time.
The i-th simulated trajectory can be denoted as

xkp+1:k
(i) =

{
xkp+1

(i), xkp+2
(i), . . . , xk

(i)
}
, (7)

where xkp+1:k
(i) ∼ p

(
xkp+1:k

)
, and the supra-index i ∈

{1, 2, . . . , N} denotes the specific realization of the stochas-
tic process. Therefore, p(xkp+1:k) can be weakly approxi-
mated in mathematical terms as

p(xkp+1:k) ≈
1

N

N∑
i=1

δxkp+1:k
(i)(xkp+1:k), (8)

where δxkp+1:k
(i)(xkp+1:k) is the Dirac delta located at

xkp+1:k
(i). By definition, this Dirac delta has two properties:

• δxkp+1:k
(i)(xkp+1:k) =

{
+∞ , xkp+1:k = xkp+1:k

(i)

0 , otherwise

•
∫
Xkp+1:k

δxkp+1:k
(i)(xkp+1:k)dxkp+1:k = 1 .

This is why, due to the linearity property of integrals, we have∫
Xkp+1:k

(
1

N

N∑
i=1

δxkp+1:k
(i)(xkp+1:k)

)
dxkp+1:k = 1. (9)

It is important to note that Eq. (8) denotes a weak approxi-
mation. That is, the approximation is valid for the calculation
of expected values.

To count how many of those trajectories hit the threshold at
time k we can use the indicator function, which is defined as
follows. Let A be an arbitrary set. An indicator function of
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Figure 1. Illustration of a single realization of the stochastic process {Xk}k∈N, denoting a possible sequence of values for the
variable of interest over time and the moment k when threshold x̄ is crossed for first time. Other realizations would result in
different threshold crossing times.

the set A is defined as

1A(a) =

{
1, a ∈ A
0, a /∈ A.

(10)

Without loss of generality, let us assume that Xkp+1:k de-
picts a decreasing -although not strict- trend, just like in Fig.
(1) (it could had been an increasing trend, and the analysis
would have been analogous). If a trajectory hits the thresh-
old for the first time in time k, it means that xk ≤ x̄ (i.e.,
the threshold is crossed at time k) and xj > x̄, for all
j ∈ {kp + 1, kp + 2, . . . , k − 1} (i.e. the threshold was not
crossed before time k). Consequently, we can define the set
of all possible trajectories up to time k as Xkp+1:k, and a sub-
set of them actually hitting the threshold at time k, k > kp,
as

A :=
{
xkp+1:k ∈ Xkp+1:k : {xk ≤ x̄} ∧ {xj > x̄}k−1

j=kp+1

}
.

(11)

The amount of trajectories hitting the threshold at time k is:

N∑
i=1

1A

(
xkp+1:k

(i)
)
. (12)

In other words, we are counting since we add 1 for each tra-
jectory that crosses the threshold at time k. Thus, Eq. (6) can
be approximated as

P(τE = k) ≈

N∑
i=1

1A
(
xkp+1:k

(i)
)

N
. (13)

Note that the indicator function just introduced can be split
into a product of indicator functions as

1A

(
xkp+1:k

(i)
)

= 1{
xkp+1:k:{xk≤x̄}∧{xj>x̄}k−1

j=kp+1

} (xkp+1:k
(i)
)

= 1{x:x≤x̄}

(
xk

(i)
) k−1∏

j=kp+1

1{x:x>x̄}

(
xj

(i)
)

(14)

= 1{x:x≤x̄}

(
xk

(i)
) k−1∏

j=kp+1

[
1− 1{x:x≤x̄}

(
xj

(i)
) ]

.

(15)

Hence,

P(τE = k)

≈ 1

N

N∑
i=1

1{x:x≤x̄}

(
xk

(i)
) k−1∏

j=kp+1

[
1− 1{x:x≤x̄}

(
xj

(i)
) ]

(16)

=
1

N

N∑
i=1

∫
Xkp+1:k

1{x:x≤x̄}(xk)

k−1∏
j=kp+1

[
1− 1{x:x≤x̄}(xj)

]
. . . δxkp+1:k

(i)(xkp+1:k)dxkp+1:k (17)

=

∫
Xkp+1:k

1{x:x≤x̄}(xk)

k−1∏
j=kp+1

[
1− 1{x:x≤x̄}(xj)

]

. . .

(
1

N

N∑
i=1

δxkp+1:k
(i)(xkp+1:k)

)
dxkp+1:k (18)

Thus, given that by the Law of Large Numbers there is weak
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convergence:

1

N

N∑
i=1

δxkp+1:k
(i)(xkp+1:k)

w→
N→+∞

p(xkp+1:k), (19)

what we actually obtain by taking the limit when N → +∞
is that

P(τE = k) =

∫
Xkp+1:k

1{x:x≤x̄}(xk)

k−1∏
j=kp+1

[
1−

. . .1{x:x≤x̄}(xj)
]
p(xkp+1:k)dxkp+1:k. (20)

It it is straightforward to note that Eq. (20) is actually the
same equation as Eq. (5) when

P (Ej = E|x) = 1{x:x≥x̄}(x), (21)

j ∈ {kp + 1, kp + 2, . . . , k}. Within the Theory of Uncertain
Event Prognosis, P (Ej = E|x) is known as uncertain event
likelihood function. As a consequence, an indicator function
is just a particular case when there is complete certainty in
the event declaration, so it yields one whenever the event is
known to happen given x, and zero otherwise.

This result that begins in Eq. (6) assuming the widely ac-
cepted method of Monte Carlo simulations used as a bench-
mark all along these years to perform prognostics, ends up
showing that an underlying probability distribution for the
first occurrence time of a future event is being approximated,
which is wholly conceived under the formalization provided
by the Theory of Uncertain Event Prognosis.

4. CONCLUSION

In this article, it has been shown that the method of Monte
Carlo simulations that has been used all along these years
to empirically approximate the probability distribution of the
occurrence time of a future event in fact approximates a par-
ticular mathematical expression. The structure of this analytic
expression is perfectly conceived as a particular case within
the Theory of Uncertain Event Prognosis. Consequently, this
fact evidences the clear alignment between empirical results
and the development of this new analytical framework that
gives a formal theoretical foundation to event prognostics.
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