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ABSTRACT 

Traditional internal combustion engine vehicles have low 

transmission bearing failure rates in their lifespans. However, 

the prolonged lifespan of electric and autonomous vehicles 

can surpass the reliable life of bearing designs, which poses 

a risk of bearing failure and loss of propulsion. In comparison 

to replacing bearings on a fixed schedule to ensure reliability, 

a bearing health monitoring system has proven to be a more 

cost-effective solution. Despite extensive research on bearing 

condition monitoring, implementing well-known methods 

such as vibration spectrum analysis in vehicles can be 

challenging due to vibrations from vehicle components and 

the road. This paper explores and compares the effect of 

various pre-processing techniques on the spectrum of a faulty 

drive unit’s bearing with various fault levels. To achieve this 

objective, three faults with different width sizes of 0.1 mm 

(mild), 0.5 mm (moderate) and 2 mm (severe) were injected 

into the inner race of a ball bearing. A bench setup was then 

used to capture the vibrations of multiple vehicle components 

including the faulty ball bearing under various speed/load 

conditions. Phase domain transform, envelope and Fourier 

transform were used as the core signal processing steps, and 

advanced signal processing methods for removing discrete 

frequencies from other components and enhancing the fault 

signature were explored. A health indicator was then 

developed from the spectrum of the vibration signals and 

calculated for the captured data. Next, for each fault level, the 

area under Receiver Operating Characteristic (ROC) curve 

was calculated and used as a metric to compare the 

performance of the health monitoring system for 

classification of faulty and healthy bearings. The health 

indicator results show that applying minimum entropy 

deconvolution, and spectral kurtosis-based band pass 

filtering increases the ROC area from 0.40, 0.99, 1.0 to 0.84, 

1.0 and 1.0 for the mild, moderate, and severe inner race 

faults, respectively. This implies that although applying only 

phase domain transform, envelope and Fourier transform 

might be enough for moderate and severe faults, advanced 

signal processing is needed to enhance the fault signature for 

early detection of mild faults. 

1. INTRODUCTION AND BACKGROUND 

1.1. Introduction 

Bearing failure, which is a common cause of machine 

breakdown (Randall & Antoni, 2011), has been extensively 

addressed in industries like manufacturing and power 

generation. A number of effective methods have been 

presented for bearing fault diagnosis in early stages, which 

could prevent costly downtime (Nabhan, Ghazaly, Samy, and 

Mousa, 2015). However, bearing health monitoring has not 

been extensively studied in the automotive industry as the 

bearing failure rate is relatively low over the lifespan of 

Internal Combustion Engine (ICE) powered vehicles (Garner 

G D. S., 2021) (Rao SS, 1994). Additionally, it is typically 

assumed that a driver is able to detect any abnormal noise 

associated with bearing failure, allowing the fault to be 

identified before it reaches a critical safety level. 

The vehicle market is anticipated to face a significant shift 

toward Electric Vehicles (EVs) in the near future. Prominent 

vehicle manufactures have made announcements indicating 

their plan to either exclusively manufacture Electric Vehicles 

(EVs) or significantly increase their production compared to 

ICE-powered vehicles (Weiss, 2021). This shift reflects the 

growing trend toward electrification and the increasing 

recognition of EVs as the future of transportation. The 

acceleration of this transition is being propelled by global 

regulations that aim to restrict CO2 emissions, continuous 

technological advancements, and the rapid expansion of 

charging infrastructure (Weiss, 2019) (Haram MH, 2021).  

Electric Autonomous Vehicles (EAVs) are also rapidly 

emerging (Pan S, 2021). It is expected that by 2040, EAVs 

could represent approximately half of all new vehicle sales. 
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The autonomous taxi sector is expected to dominate the EAV 

market with companies that investing heavily in these 

advancements like Cruise, Waymo, and Zoox (Deloitte 

University Press, 2016). 

Battery technology advancements have facilitated the 

development of EVs and EAVs with extended lifespans 

reaching millions of miles (Motavalli, 2020). Consequently, 

the durability of current bearing designs is surpassed over the 

course of a vehicle’s life, that significantly raise the 

probability of bearing failure and potentially vehicle failure 

in EVs compared to ICE-powered vehicles (Garner G S. P., 

2021). The chance of bearing failure in autonomous taxi 

fleets could even be higher than EVs. This is primarily 

because the passengers in autonomous vehicles may not be 

able to recognize any abnormal sounds and indications of 

bearing failures that a human driver would typically identify.  

1.2. Failure Modes in the Automotive Industry 

There are various bearing failure modes that could mainly be 

categorized into fatigue, wear, fracture and cracking, 

corrosion, electrical erosion, and plastic deformation. In the 

automotive sector, the most frequent failure modes are 

typically divided into three categories including 

contamination ingress, brinelling failure, and fatigue (SKF, 

2014).  

As the mileage increases, the integrity of bearing sealing can 

be compromised which creates a pathway for water and 

contaminants to enter the bearing. This could deteriorate 

lubrication and initiate corrosion on the bearing elements.  

The next failure mode is bearing brinelling which may occur 

under a substantial impact load, typically resulting from 

abusive incidents such as being involved in a vehicle 

collision. This intense pressure could lead to permanent 

indentations called brinell marks (Upadhyay RK, 2013).  

The presence of indentations caused by contamination 

ingress and brinelling failure has the potential to result in 

fatigue failure. This failure leads to the gradual degradation 

of the metal’s surface, resulting in the formation of spalling 

marks. The spalling can propagate and grow in size if left 

undetected, leading to more severe damage to the bearing and 

potentially creates safety concerns. Therefore, it is crucial to 

detect a spalling originated from the fatigue mode in its early 

stages before failure and loss of functionality. In (Jafarzadeh, 

2022), two fault injection methods were proposed to mimic 

fatigue failure mode and facilitate development of a bearing 

fault detection system for that common failure mode.  

1.3. Bearing Fault Detection 

Implementing a predetermined replacement schedule for 

bearings could be the most straightforward approach to 

ensure reliability and to address the failure modes. However, 

this method may not be cost effective for EVs, and in 

particular EAVs with an extended lifespan (Garner G S. P., 

2021) (Jafarzadeh, 2022). On the other hand, an automated 

bearing health monitoring system offers a reliable solution 

for identifying and isolating the bearing faults. This method 

could expand the replacement interval and minimize the 

maintenance expenses while it also eliminates the risk of loss 

of propulsion and the associated safety concerns (Garner G 

S. P., 2021) (Jafarzadeh, 2022). 

In general, electrical signature analysis, acoustic analysis, 

and vibration analysis have been studied as bearing health 

monitoring systems in the literature (Tandon, 1999) (Smith 

WA, 2015). Electrical signature analysis involves monitoring 

the electrical signals such as current, voltage, and power. This 

method focuses on detecting abnormal electrical patterns or 

changes that can indicate bearing faults. Acoustic analysis 

focuses on analyzing the sound and noise generated by the 

bearing while operating. Vibration analysis involves using 

vibration sensors to measure vibration patterns of a bearing. 

Vibration analysis is often preferred over acoustic and 

electrical signature analysis due to its ability to capture 

detailed mechanical irregularities. Vibration analysis directly 

reflects the dynamic behaviors of the bearing and offers 

insights into localized faults, and load variations which might 

be challenging to capture through acoustic or electrical 

signature analysis, that might be influenced by additional 

factors like environmental noise or complex electrical 

systems. Vibration analysis can potentially detect bearing 

degradation at its early stages due to its sensitivity (Tandon, 

1999) (Smith WA, 2015).   

In the presence of a local fault on either the outer or inner race 

of a bearing, the roller elements generate wideband vibration 

impulse (Smith WA, 2015). These vibration bursts occur at 

specific frequencies known as the bearing critical 

frequencies. It is expected to have an experimental variation 

of up to 2% from the ideal critical frequency formulation due 

to bearing slippage (Randall & Antoni, 2011). Therefore, a 

bearing fault is characterized by peaks at critical frequencies 

(Randall & Antoni, 2011).  

To develop a bearing health monitoring system based on the 

vibration signals, it is required to enhance the fault signatures 

and remove noise. To achieve this purpose, various signal 

processing techniques have been investigated in the literature 

including envelope spectrum (Darlow, Badgley, & Hogg, 

1974), minimum entropy deconvolution (Sawalhi, Randall, 

& Endo, 2007), unsupervised noise cancellation (Antoni & 

Randall, 2004), and bandpass filtering based on spectral 

kurtosis (Antoni J. , 2006). In (Randall & Antoni, 2011), a 

comprehensive review of these methods is provided.  

In (Jafarzadeh, 2022), a bearing fault injection method along 

with a ground-truthing method were presented to enable 

development of a bearing health monitoring system in the 

automotive industry. This paper extends the findings and 

methodologies introduced in (Jafarzadeh, 2022). In this 

paper, an on-vehicle bearing health monitoring algorithm for 

EV’s drive unit is presented and then compared the effect of 
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various pre-processing techniques on the spectrum of a faulty 

drive unit bearing for different fault levels. Section 2 

introduces the experimental setup and the proposed algorithm 

including the preprocessing steps. Section 3 presents the 

results for three bearing fault levels (mild, moderate, and 

severe).  

2. EXPERIMENTAL SETUP AND METHODS 

2.1. Fault Injection and Experimental Setup 

A Precision machining method (described in (Jafarzadeh, 

2022)) is used for fault injection. The experimental setup for 

fault injection is depicted in Figure 1. The figure illustrates 

the placement of the bearing within the lathe spindle chuck, 

allowing the motion controller to maneuver the cutting tool 

mounted on the tool holder, and inject the fault. The bearing 

is disassembled for placement in the presented setup and fault 

injection. The size, shape, and location of the defect can be 

controlled by this method. Using this method, a fault with 3 

levels were injected (with width sizes of 0.1mm, 0.5 mm, and 

2mm) into the inner race of a ball bearing, shown in Figure 

2. Figure 3 shows the assembled faulty ball bearing with 

width of 2mm.  

 

Figure 1. (a) Experimental setup for fault injection, (b) an example 

of the injected fault under a microscope. 

 

 

Figure 2. Injected fault into the inner race of a ball bearing with the 

size of (a) 0.1mm, (b) 0.5 mm, and (c) 2mm. 

 

 

Figure 3. Injected fault into the inner race of a ball bearing. 

 

A method based on volume under the Power Spectral Density 

curve of the vibrations (known as GRMS) versus load and 

speed is considered here for ground-truthing state of health, 

which was introduced in (Jafarzadeh, 2022). Table 1 provides 

the calculated ground-truth values for the injected faults. 

 
Table 1. Ground-truth values for different fault level of the 

bearings.  

 Volume 

(N.m2/s2) × 104 

Volume (faulty) / 

Volume (healthy) 

Healthy  2.39 1 

Faulty –0.1 mm 3.75 1.56 

Faulty –0.5 mm 8.80 3.68 

Faulty –2 mm 10.42 4.36 

 

The faulty bearing is then assembled on the motor shaft of an 

EV drive unit which has other shafts, ball bearings, roller 

bearings and gear pairs. The drive unit is then installed on a 

dynamometer to be able to capture the data under various 

loads and speeds. This is to ensure that the developed fault 

detection method is robust to the load and speed and can 

monitor the health of the bearings in the vehicle under various 

condition use. An accelerometer sensor is attached to the 

external surface of the drive unit casing afterwards, and 
vibration data (with the healthy and faulty bearings) is 

captured under a wide range of load (20- 400 Nm.) and speed 

(1000-6000 rpm) to cover the operating range of an EV drive 

unit.   

2.2. Methods 

In the proposed method, signal processing steps are applied 

on the captured vibrations. The processed signals are then 

transformed to the frequency domain and are used to define a 

health indicator for fault detection. The signal processing 

steps are divided into the core algorithm and optional steps as 

shown in Figure 4. 

For a vehicle, the speed varies during a trip while the fault 

signature can be seen at the critical frequencies of raw 

vibrations only if the bearing’s shaft rotates with a constant 

speed. Order tracking is needed to remove this speed 

variation and allow the usage of frequency domain 

approaches (Randall & Antoni, 2011). Therefore, raw 

(a) (b) (c) 

(a) (b) 
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vibrations are transformed from the time domain to the phase 

domain as the first step. It is shown that applying an envelope 

filter is necessary to attenuate high frequency components, 

isolate transients and enhance the fault signature (Randall & 

Antoni, 2011) before transforming the phase domain signals 

to the frequency domain. To transform the processed signal 

to the frequency domain, the signal is broken into small 

overlapping segments, a window (such as Hanning or 

hamming) is applied on the small segments to reduce the 

frequency domain artifacts, and then a Fast Fourier transform 

(FFT) is employed on each windowed segment. These 

processing steps including phase domain, envelope filter and 

FFT are called the core algorithm.  

There are challenges associated with the on-vehicle health 

monitoring of drive unit’s bearings. The bearing fault 

signature may be buried in frequency content from other 

components of the vehicle and in particular other components 

of the drive unit such as other bearings, shafts, and gears. So, 

it is essential to remove vibrations generated from other 

components. To remove the vibrations from other 

components including shafts and gears as well as other 

bearings (not on the same shaft as the bearing of interest), it 

is suggested to use discrete frequency removal (DFR) 

techniques including Autoregressive (AR) Linear prediction, 

Self-Adaptive Noise Cancellation (SANC), and Time 

Synchronous Averaging (TSA) (Randall & Antoni, 2011) 

(Sawalhi N. R., 2005). The SANC method can enhance the 

visibility of fault by removing the unwanted noise, however 

it can be sensitive to the choice of parameters and therefore 

requires careful tunning. The TSA is useful for extracting 

synchronous components; however, it may not work well if 

there is significant variation in the repetition rate (Randall R. 

B., 2011). The AR is considered in this paper due to its ability 

to capture temporal relationships, adapt to changing patterns, 

and providing effective fault isolation from noise. AR 

predicts the deterministic part of a signal (for example signals 

from shafts and gears in this case) based on a certain number 

of samples in the past so that this part can be subtracted from 

the measured signal. 

 

 

Figure 4. Signal processing steps for bearing fault detection algorithm. 

 

Further to the removal of vibration from other components, it 

is expected that signal-to-noise ratio (SNR) is lower for on-
vehicle health monitoring compared to fault detection using 

a controlled environment and bench setup and the fault 

signature might be buried in noise. It is known that pulses 

originated from the fault are impulsive (Randall & Antoni, 

2011). Therefore, enhancing the impulsiveness leads to fault 

signature enhancement. Two methods are employed here to 

improve the signal impulsiveness: Minimum entropy 

deconvolution (MED) and band pass filtering based on the 

spectral Kurtosis (Wiggins, 1978) (Sawalhi N. R., 2005).   

MED is an iterative filter which is automatically tuned to 

maximize the Kurtosis of a signal. Bandpass filtering finds 

and isolates the frequency range in which the Kurtosis is 

maximum. Using these two methods, the impulsiveness and 

consequently the fault signature can be enhanced. The AR, 

MED and band pass filtering are considered as the optional 

steps in this paper.  

3. RESULTS 

In this section, the mentioned signal processing steps are 

applied and then compared on the captured vibrations for the 

injected faults to a ball bearing located on the motor shaft of 

an EV’s drive unit (it is called BB11 in this paper). As the 
injected faults are at the inner race, peaks at the ball pass 

frequency inner race (BPFI) are for the faulty bearings.  

Firstly, the core signal processing steps are applied (phase 

domain, envelope filter and FFT) to the vibrations from 

different fault levels. As an example, Figure 5 shows the 

vibration spectrum for the severe (2 mm) and mild (0.1 mm) 

faults at 91 Nm. and 1000 rpm (motor shaft). It is indicated 

that after applying the envelope filter, peaks can be observed 

at BPFI harmonics of the bearing with the severe fault. 

However, for a fault with 0.1 mm size, more advanced 

processing steps are required as the fault signature cannot be 

seen in this figure.  
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Figure 5. Core processing for severe and mild faults, a) raw 

spectrum of a faulty bearing (severe) b) spectrum of a faulty 

bearing (severe) with applying the envelope, c) raw spectrum of a 

faulty bearing (mild), d) 

 spectrum of a faulty bearing (mild) with applying the envelope. 

 

The impact of optional processing steps on the spectrum of 

the 0.1 mm fault can be seen for the examples shown in 

Figure 6 - 8. Figure 6 shows that applying MED enhances 

fault signature at BPFI while attenuating the other peaks in 

the spectrum. Adding band pass filtering can add more 

enhancement to the fault signature compared to other peaks 

in the spectrum as illustrated in Figure 7. Figure 8 

demonstrates that applying AR attenuates the shaft frequency 

(as a discrete frequency) which also results in the 

enhancement of the fault signature.  

  

Figure 6. Effect of MED on a mild fault a) spectrum of a faulty 

bearing with core preprocessing steps, b) spectrum of a faulty 

bearing with core preprocessing steps and MED  

  

Figure 7. Effect of bandpass filtering on a mild fault a) spectrum of 

a faulty bearing with core preprocessing steps, b) spectrum of a 

faulty bearing with core preprocessing steps, MED, and bandpass 

filtering. 

  

Figure 8. Effect of AR on a mild fault a) spectrum of a faulty 

bearing with core preprocessing steps, b) spectrum of a faulty 

bearing with core preprocessing steps, MED, and bandpass 

filtering. 

 

The suggested signal processing steps in Figure 4 can 

significantly improve the fault signature. Figure 9 displays 

the spectrum of the faulty bearing with fault level 2 mm with 

applying only phase domain and FFT in comparison to phase 

domain, AR, MED, band pass filter (bpf), envelope and FFT. 

It is evident that the fault signature, which is the peak at BPFI, 

is strengthened, and frequency content of other components 

and noise have been removed.  

  

Figure 9. Spectrum of a faulty bearing (severe fault) a) before and 

b) after applying the suggested preprocessing steps.  

 

The effect of signal processing steps is compared 

quantitatively after defining and calculating a health indicator 

(HI). In general, HI extracts the features that are most 

informative and relevant to health condition monitoring. In 

the proposed method, a peak height in a small window 

centered at the first harmonic of the critical frequency (BPFI) 

is used as the HI for each segment after normalizing by the 

median of the FFT amplitude of a window centered at BPFI. 

The selection of window size serves as a calibration 

parameter. An optimal window size should effectively 

encompass the critical frequency information while 

mitigating the interference of unrelated frequencies. Figure 

10 visualizes the small and large windows around BPFI that 

are considered for HI calculation. The introduced HI is 

defined as,  

 

𝑯𝑰 =
𝐦𝐚𝐱(𝐅𝐅𝐓 𝐚𝐦𝐩𝐥𝐢𝐭𝐮𝐝𝐞𝐬 𝐢𝐧 𝐚 𝐬𝐦𝐚𝐥𝐥 𝐰𝐢𝐧𝐝𝐨𝐰 𝐜𝐞𝐧𝐭𝐫𝐞𝐝 𝐚𝐭 𝐭𝐡𝐞 𝐁𝐏𝐅𝐈)

𝐦𝐞𝐝𝐢𝐚𝐧 (𝐅𝐅𝐓 𝐚𝐦𝐩𝐥𝐢𝐭𝐮𝐝𝐞𝐬 𝐢𝐧 𝐚 𝐥𝐚𝐫𝐠𝐞𝐫 𝐰𝐢𝐧𝐝𝐨𝐰 𝐜𝐞𝐧𝐭𝐫𝐞𝐝 𝐚𝐭 𝐭𝐡𝐞 𝐁𝐏𝐅𝐈)
     (1) 

  

(c) 

(a) (b) 

(d) 

(a) (b) 

(a) (b) 

(a) (b) 

(a) (b) 
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Figure 10. Spectrum of a healthy bearing compared to a faulty 

bearing together with the window used in HI calculation. 

 

Next, the HI is calculated for all load and speed variations as 

well as all combinations of the proposed processing steps 

including the raw signals. As an example, Figure 11 shows 

the HI values versus load and speed for which AR is applied 

to the vibration signal in addition to the core preprocessing 

steps for the healthy and faulty bearings. Figure 12 shows 

boxplots of the calculated HIs under all conditions for the 

healthy and faulty bearings using the core processing steps, 

and AR. Both figures indicate a good separation between 

healthy and faulty bearing, especially for fault size of 2mm 

and 0.5mm. 

 

Figure 11. Health indicator values for faulty and healthy bearings 

as a function of load and speed. 

 

 

Figure 12. Boxplot of HI values for faulty and healthy bearings 

under all load and speed conditions. 

 

To improve the fault detection performance, a moving 

average with the window size of 200 segments is applied to 

the HIs calculated for each segment. These matured HIs are 

used for fault detection. The area under the Receiver 

Operating Characteristic (ROC) curve (True Positive Rate 

(TPR) versus False Positive Rate (FPR)) is commonly used 

to evaluate the performance of a fault detection algorithm. 

This curve is shown for the case presented in Figure 13, 

where the core processing steps, and AR are applied. The 

figure illustrates a trade-off between the TPR and FPR, where  

a curve closer to the top-left corner indicates that the model 

is capable of achieving higher TPR while keeping the FPR 

low. The presented curves show that the model outcome for 

the severe and moderate faults have a high performance. 

ROC values of 1, 1, and 0.84 are obtained for the separation 

of the healthy to the severe, moderate and mild faults, 

respectively.  

 

Figure 13. ROC curve for different bearing fault levels after 

applying the core processing steps and AR. 

 

The ROC calculation is repeated for all combinations of the 

preprocessing steps. The results are shown in Figure 14. 

Comparing the results for the core signal processing steps 
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(indicated as HI_raw_env in the figure) to the ones which 

include optional preprocessing steps shows that optional 

preprocessing steps can increase the ROC values from 0.40 

to 0.84 for the mild fault. It implies that detection of this fault 

is possible only if the optional processing steps are employed. 

On the other hand, the increase of 0.99 to 1 in the ROC value 

for the moderate fault and unchanged value of 1 for the severe 

fault shows that for moderate to severe faults, the core 

preprocessing steps might be adequate. It should also be 

noted that results in Figure 14 confirms that envelope filter 

offers superior results.  

 

 

Figure 14. Ranking of preprocessing combinations for the faulty 

bearings. 

4. CONCLUSION 

This paper presents a method that demonstrates an early-

stage fault detection capability, thus representing a predictive 

maintenance approach. The impact of various signal 

processing techniques on the frequency representation of the 

vibration signals of faulty bearings is investigated in this 

paper. A health indicator is then proposed and calculated. 

ROC values are used as a metric to compare the signal 

processing steps for classification of healthy and faulty 

bearings. The results show that although applying only phase 

domain transform, envelope and Fourier transform might be 

enough for moderate and severe faults, advanced signal 

processing including AR, MED, and band pass filtering is 

needed to enhance the fault signature for early detection of 

mild faults. 

For future work, the estimation of the remaining useful life 

(RUL) can also be added to the developed health monitoring 

algorithm as an output. In addition, the presented algorithcan 

be refined and verified using vehicle-level test data. Further 

insights on the effectiveness of the presented algorithm can 

be achieved by expanding the method to other bearing types 

such as roller bearings.   
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