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ABSTRACT 

The operating experience of various mechanical components 
indicates that their operating performance depends on non-
well-known physical mechanisms, while it is likely that 
various unexpected factors will act as catalysts for reaching 
the failure point. Therefore, one way to overcome the partial 
knowledge of physical mechanisms is the use of data-driven 
methods that estimate the degradation patterns and can 
predict the failure point. Thus, there is a growing need to 
design and develop new and more sophisticated data-driven 
prognostic technologies that can estimate the remaining 
useful life of a mechanical component. In this work, a new 
method for prognostics is proposed that not only provides a 
prediction over the failure point but also provides an 
explanation of the rationale behind that prediction. The 
proposed method utilizes tools from artificial intelligence and 
more specifically relevance vector machines (RVM) and 
differential evolution (DE). The cornerstone of the method is 
the assembly of an ensemble comprised of multiple RVM 
equipped with different kernels, and the subsequent evolution 
of the ensemble using the differential evolution. DE will 
provide a set of values for the coefficients of the ensemble. 
Then based on the coefficient values an explanation of the 
prediction is obtained. The explanation stems from the 
kernels themselves as each kernel models a different set of 
properties. The presented method is tested on a set of real-
world degradation data taken from a turbine. 

1. INTRODUCTION 

Predicting the future is one of the most intriguing issues 
throughout human history. Several ways from various areas 
– technology, nature, paranormal activity, and others – have 
been devised and imagined to foretell what is going to occur 
(Rescher, 1998).  

In engineering, the concept of the future entails the prediction 
of the operational state and performance of the system. Given 
that a system is expressed as a parametric analytical model, 
estimating the parameter values ahead of time provides the 
operational "future" of the system (Alamaniotis & Cappelli, 
2018). Notably, the most profound concern in engineering is 
predicting the time point that a system will fail. Accurate 
prediction of failure time reduces the cost of maintenance by 
allowing the implementation of predictive maintenance 
strategies and avoiding lengthy operational stops caused by 
system failures.  

In engineering jargon, the ahead-of-time prediction of the 
failure point is known as "prognostics" while the time from 
the current point till the failure point is called the remaining 
useful life (RUL). Several methods have been proposed to be 
utilized in performing failure prognoses that either use a 
physics-based model or data-driven methods (Hines & 
Usynin, 2008). Notably, the mechanisms – i.e., the 
underlying physics processes - of failure are not well 
understood in several domains, and therefore prognosis 
comes with a degree of uncertainty (Sankararaman, & 
Goebel, 2015). Furthermore, the need to identify the failure 
point of systems has given rise to a large variety of prognostic 
methods that are domain-aware. Notably, the operational 
conditions of the system affect the failure of the systems and 
thus, the same system may exhibit different failure points in 
various domains (Elattar, Elminir, & Riad, 2016). 

It should be emphasized that the advances in artificial 
intelligence (AI) and data science observed in the last decades 
have subsequently boosted data-driven prognostics. AI-based 
prognostics that have been developed include tools such as 
fuzzy logic (Alamaniotis, Grelle, & Tsoukalas, 2014), 
relevance vector machines (Li, Pan & Chen, 2014), deep 
learning (Liu, Zhang, Niu, Yang, & Wu, 2020), genetic 
algorithms (Coble, & Hines, 2009), neural networks 
(Ambade, Karnik, Songchitruksa, Sinha, & Gupta, 2021) and 
random forest (Wu, Jennings, Terpenny, Gao, & Kumara, 
2017). The list of AI prognostics is not limited to the above 
methods but there is a large variety of them that has been 
successfully applied to critical infrastructure such as nuclear 
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power plants (Coble, Ramuhalli, Bond, Hines, & Ipadhyaya, 
2015), aeronautics (Baptista, Prendinger, & Henriques, 
2020), aerospace (Nguyen et al., 2019), Lithium batteries 
(Meng, & Li, 2019), and autonomous cars (Raouf et al., 
2022).  

Furthermore, the concept of explainable AI (XAI), which has 
been at the forefront of innovation, has also been applied in 
developing intelligent prognostic models (Nor, Pedapati, 
Muhammad, & Leiva, 2021). This type of prognostics may 
push the envelope by making the AI methods trustworthy to 
the human operator. However, the XAI approaches so far 
have focused on explaining the model itself rather than the 
causal relation of the prediction with the physical processes.  

In the current work, a new method is proposed that adopts an 
explanation as part of the causal inference of the output 
prognosis. To that end, an ensemble of relevance vector 
machines (RVM) is assembled and its subsequent evolution 
with the differential evolution algorithm (Alamaniotis, 
Bargiotas, Bourbakis, & Tsoukalas, 2015) is introduced. The 
ensemble coefficient values together with the kernel 
functions used in each of the RVM are utilized to explain the 
prognosis. The contribution of the paper entails a new 
explainable intelligent method and its novel application to 
engineering prognostics. 

The paper has the following roadmap. In the next section, 
differential evolution and relevance vector machines are 
briefly introduced. Section 3 presents the developed 
intelligent prognostics method, while section 4 provides the 
results obtained on predicting the failure of a Gas Turbine 
used in power plants. Lastly, section 5 concludes the paper. 

2. BACKGROUND 

The following section briefly outlines the basic AI tools used 
in the development of this research. 

2.1. Relevance Vector Machines 

Learning kernel machines is a group of methods that belong 
to artificial intelligence and are expressed with the aid of a 
kernel. A kernel is a valid mathematical function that is cast 
into the following dual form: 

k(x1,x2) = (f(x1))T * f(x2)                      (1) 

where f(x) is a valid mathematical function and T denotes its 
transpose.  

RVM, which belongs to the library of kernel machines, may 
be utilized for regression problems by assembling a linear 
group of kernels as given below: 

                         (2) 

where b is the intercept of the regression and N stands for the 
population of the available known data points. The regression 

parameters are evaluated using an iterative algorithm such as 
the Expectation-Maximization (EM) that seeks and identifies 
the optimal parameter values. It should be emphasized that 
the optimization will drive some of the regression parameters 
to obtain zero values, and hence, the kernel functions 
associated with zero parameters inevitably have no 
contribution to the regression formulation. The data points 
that are associated with non-zero contributing kernels are 
designated as relevance vectors (Alamaniotis, Bargiotas, 
Bourbakis, & Tsoukalas, 2015). At last, the RVM 
formulation takes the form of a predictive distribution over 
the output t associated with the input x as given below: 

        (3) 

with 

                        (4) 

                     (5) 

where φ(x) is the basis function of the kernel, Σ stands for the 
covariance matrix of the available data, and α*, (σ2)* are the 
optimal values provided by the EM algorithm. 

2.2. Differential Evolution 

Artificial intelligence among many, offers a variety of 
possibilities for solving complex optimization formulations. 
The AI toolkit of evolutionary computing contains 
algorithms whose structure has been inspired by biological 
processes. 

One popular choice of evolutionary algorithms is differential 
evolution (DE) (Opara & Arabas, 2019). DE is a population-
based stochastic optimization method that shares the 
common steps of evolutionary computing algorithms. The 
block diagram of the main steps of DE is given in Fig. 1. It 
provides a global optimization solution and is suitable for 
optimizing objective functions that are nondifferentiable, 
non-continuous, noisy, and have multiple local minima 
(Storn & Price, 1997).   

The first step in DE is to initialize a population of L possible 
solutions, where L should be at least 4. Each solution is 
expressed in the form of parameter vectors where each vector 
entry represents the value of one parameter. Next, an upper 
and lower bound is defined for each parameter with the 
bounds being estimated by the modeler. The initial parameter 
values are randomly selected using a uniform distribution and 
this occurs for L times giving the initial population of L 
solutions. The initialization is followed by the mutation of the 
population as follows: for every vector three other vectors 
from the population are randomly selected. The selected 
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vectors are weighted and added, and their sum is called the 
donor vector. The mutation step is followed by the 
recombination where the initial vector entries are replaced by 
that of the donor vector according to probabilities drawn from 
a uniform distribution. The new vector is called the trial 
vector. Lastly, a selection of the vector occurs by comparing 
the trial vectors and the initial ones: the ones with the highest 
fitness function are retained for the next generation. The 
algorithm cycle where a population undergoes all the 
aforementioned processes is called generation. 

 
Figure 1. Block diagram of the differential evolution 
algorithmic steps. 
 

Once a generation is completed then the termination criteria 
are checked. The usual criteria utilized in DE termination 
check entail: i) whether the population converges to a specific 
solution and, ii) whether the maximum number of generations 
has been reached. 

If at least one of the above termination criteria is satisfied, 
then the algorithm is ended, and the current solution is 
forwarded as the optimal one. In case none of the criteria is 
satisfied, then the DE is reiterated with the current population 
being used as the initial population in the next generation. 

3. EXPLAINABLE PROGNOSTICS METHOD 

In this section, the proposed method for performing 
prognostics is proposed. The backbone of the method is the 
synergism of RVM and DE to perform a two-stage training 
before the final prediction. The block diagram of the method 
is depicted in Fig. 2.  

The first steps entail the determination of three RVM models 
with each model being equipped with a different kernel 

function. In the current work, three kernels are selected 
namely, the Linear, Gaussian, and Matern kernels. The 
selection of different kernels allows the modeling of different 
data properties of the underlying processes. In specific:  

i) The linear kernel models linear properties,  

1 2 1 2( , ) Tk x x x x=                       (6) 

ii) the Gaussian kernel models stationary 
properties,  

( )2 2
1 2 1 2( , ) exp / 2k x x x x σ= − −       (7) 

with one parameter σ2 being the variance of 
data 

iii) the Matern kernel models non-smooth ones: 

𝑘𝑘(𝑥𝑥1, 𝑥𝑥2) = �21−𝜃𝜃1/𝛤𝛤(𝜃𝜃1)���2𝜃𝜃1|𝑥𝑥1 − 𝑥𝑥2|/
𝜃𝜃2�

𝜃𝜃1𝛫𝛫𝜃𝜃1��2𝜃𝜃1|𝑥𝑥1 − 𝑥𝑥2|/𝜃𝜃2�                        (8) 

That is comprised of two parameters θ1, and θ2. Here, θ1 = 3/2 
(see Rasmussen & Williams (2006) for more details), Γ() is 
the gamma distribution, while 𝐾𝐾𝜃𝜃1()  is a modified Bessel 
function. 

 

 
Figure 2. Block diagram of the explainable prognostic 
method. 
 

The three RVM models are trained to utilize the available 
datasets to learn the failure patterns of the process of interest. 
Once the models are trained (i.e., their parameters are 
evaluated) then the RVM models are utilized to make 
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predictions of the current failure point. This is the first stage 
of training of the current method.  

Next, the individual predictions are forwarded to the next 
stage that implements a linear ensemble which is given 
below: 

E = w1*RVML+ w2*RVML+ w3*RVMM                     (6)  

with RVM# representing the respective RVM prediction 
from the three models and w# being the associated linear 
coefficients. In the next step, the linear ensemble is exposed 
to the training data to obtain values for the linear ensemble. 
This is the second stage of training whose goal is to find the 
contribution of each RVM model to the linear ensemble by 
computing appropriate weight values. The training at this 
stage takes the form of an optimization problem with the 
ensemble coefficients being determined as the optimal 
solution found by the differential evolution algorithm. In 
other words, DE allows the ensemble to be evolved driven by 
the available data. 

Notably, the prediction (prognosis) is accompanied by a set 
of explanations that are based on the values of the linear 
ensemble coefficients. The explanation is formed by the 
values of the linear coefficients and the data properties 
modeled by each kernel. 

The coefficients take values in the range [0 1], and therefore 
the explanations derived express the percentage certainty that 
the underlying process exhibits a property. Figure 3 shows 
the explanation framework of the current method. For 
instance, if the coefficients take the following values w1=0.2, 
w2=0.5, and w3=0.3 then the explanation is interpreted as: 

- Linear process: certainty 20%. 

- Stationary process: certainty 50%. 

- Smooth process: certainty 30%. 

 

 
Figure 3. Graphical representation of the explanation schema 
with the graphs representing the percentage certainty of each 
property used as an explanation. 
 

The above percentages explain the underlying processes that 
lead to the prognosis and may provide insights to the system 
operator on whether the processes have the expected 
properties.  

At this point, it should be noted that the method provides a 
point estimation and not a distribution. In other words, it does 
not make use of the uncertainties computed by the individual 
RVM models. 

4. RESULTS 

In this section, we apply the presented method to a real-world 
case that contains degradation data from a turbine blade. The 
goal is to identify the failure point of a turbine whose 
degradation is expressed as the crack propagation (in mm) as 
a function of operational cycles. The failure point of the 
turbine is the point at which the crack becomes equal to 5mm 
in length. Details of the dataset may be found in 
(Alamaniotis, Ikonomopoulos & Tsoukalas, 2012). 

The degradation dataset contains 5 histories of crack 
propagation. In the current work, the first 4 histories are 
utilized as the training dataset, while the 5th history is kept 
aside as the testing dataset. The prognostic method is applied 
every 100,000 cycles to identify the remaining useful life of 
the turbine (in operational cycles). The obtained dataset 
contains 6 measurements per history with the last one 
providing the failing point, and hence, our prognosis will be 
conducted 5 times. For visualization purposes, Fig. 4 depicts 
the 5th degradation history encompassed in the dataset. 

 

 
Figure 4. Plot of degradation history in the available dataset. 

 

The results obtained with the test dataset being the history 
shown in Fig. 4 are given in Table I. The results are given as 
the difference between the prediction and the real value, and 
the explanation percentages. 
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Table 1. Obtained results for prognosis and explanations of 
the degradation history in Fig. 4. 

Step 
# 

Prognosis Actual Difference Explanation 

 

1 

 

520*103 

 

460*103 

 

60*103 

Linear: 80% 

Stationary: 30% 

Smooth: 60% 

 

2 

 

409*103 

 

360*103 

 

49*103 

Linear: 60% 

Stationary: 39% 

Smooth: 65% 

 

3 

 

292*103 

 

260*103 

 

32*103 

Linear: 54% 

Stationary: 41% 

Smooth: 70% 

 

4 

 

191*103 

 

160*103 

 

31*103 

Linear: 50% 

Stationary: 38% 

Smooth: 66% 

 

5 

 

79*103 

 

60*103 

 

19*103 

Linear: 43% 

Stationary: 45% 

Smooth: 62% 

 

The obtained results show that the presented method can 
provide prognoses that are close to the actual remaining lives 
of the turbine. This is because of the two-stage learning 
process that was adopted by the proposed method. 
Furthermore, it should be noted that as new values are 
observed and assimilated by the proposed method the 
prognosis becomes more accurate. This is also something that 
is expected given that the proposed method is able, after some 
steps, to capture the properties of the degradation 
mechanisms. The latter is also observed by the explanation 
provided at each step: explanations seem to get around 
specific certainties – the certainty values fluctuate by little-. 

Overall, the proposed prognostics method can provide close 
to real failure point prognosis considering the high 
uncertainties in the degradation process. Furthermore, the 
explanation expressed in the form of the three properties 
serves as a feedback mechanism of the causal relationship 
between the degradation mechanism and the input datasets. 

5. CONCLUSION 

In this paper, a new method was presented for performing 
data-driven explainable prognostics. The method utilizes the 
synergism of a set of RVM models put together to form a 
linear ensemble whose solution is sought with the differential 
evolution algorithm. The ensemble coefficients, which are 
the solution identified with DE, are also matched with the 
kernel data properties to provide an explanation between the 

output and the failure mechanisms. The proposed method was 
tested on a set of real-world degradation data obtained for a 
turbine. Results exhibited that the method provides near to 
the actual prognosis of the failure point while the 
explanations accompanied provide insights into the 
properties of the degradation mechanisms. 

Future work will focus on i) utilizing the uncertainty 
information provided by the RVM models as part of the 
overall prognosis, and ii) performing in-depth testing of the 
method using other degradation datasets. 
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