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ABSTRACT 

Ideally, reliability methods should support assessing and 

managing system health by utilizing the integrated health 

information of all the system assets. An important aspect is 

that reliability data employed in these methods are an 

approximated integral representation of past industrywide 

operational experience. Thus, they neglect an asset’s present 

health status (obtainable, for example, from online 

monitoring data and diagnostic assessments) and forecasted 

health projection (when available from prognostic models). 

Asset health should be informed solely by that specific asset’s 

current and past performance data and should not be an 

approximated integral representation of past industrywide 

operational experience. Sensor data, diagnostic assessments, 

and prognostic assessments are in fact not considered in plant 

reliability models. In addition, propagating quantitative 
health data from the asset level to the system level is made 

challenging by the diverse nature and structure of health data 

elements (e.g., vibration spectra, temperature readings, and 

expected failure time). Ideally, in a predictive maintenance 

context, system reliability models would support decision-

making by propagating available health information from the 

asset level to the system level to provide a quantitative 

snapshot of system health and identify the most critical 

assets. This paper directly addresses the limitations of current 

reliability methods by proposing a different approach to 

reliability modeling: a method that relies on asset diagnostic, 

prognostic, and monitoring data to measure asset health. 

Propagating health data from the asset level to the system 

level is performed through reliability models, not in terms of 

probability but rather in terms of margin, with margin being 

the “distance” between the asset’s present status and an 

undesired event (e.g., failure or unacceptable performance). 

1. INTRODUCTION 

Current reliability approaches assess and quantify the 

reliability associated with complex systems, such as nuclear 

power plants (NPPs). These approaches are generally based 

on classical Boolean logic structures, such as event trees 

(ETs) and fault trees (FTs) (Rausand, 2020). The outcome 

obtained by combining FTs and ETs is the set of minimal cuts 

sets (MCSs), with each MCS representing a unique 

combination of basic events (BEs) that leads to an undesired 

outcome (e.g., core damage). The probabilistic evaluation of 

an MCS is performed by evaluating the product of the 

probability values associated with each BE. A relevant factor 

here is that the probability values associated with the BEs 

used in the plant models are updated at least every 4 years 

based on past operational experience through the a Bayesian 

statistical process (Siu, 1998). Hence, the probability value of 

a BE associated with a physical asset (e.g., a centrifugal pump 

or motor-operated valve) in no way reflects that asset’s actual 

condition and performance. 

This fact plays a major role in the application of plant 

reliability models to support risk-informed decisions. To 

reduce operation and maintenance costs, existing NPPs are 

moving from corrective and periodic maintenance to new 

types of predictive maintenance strategies (Agarwal, 2021). 

This transition is designed such that maintenance is 

conducted only when the asset requires it (i.e., prior to 

undergoing imminent failure). And though these benefits 

cannot be achieved through actual reliability modeling 

methods and currently employed reliability data, they can be 

achieved by employing asset-monitoring sensors, automated 

data acquisition systems, data analysis methods, and 

improved decision-making processes. Combined, these 

resources can provide precise information on asset health, 

track its degradation trends, and estimate its expected failure 

time. Based on such information, maintenance operations can 

be scheduled and performed for each asset as needed. This 

dynamic context of predictive maintenance operations 

requires new methods of data analysis, propagating asset 
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health information from the asset level to the system level, 

and optimizing plant resources. 

This paper provides an alternative reliability approach 

for a predictive maintenance context in which a direct link is 

created between equipment reliability (ER) data and 

decision-making. Rather than thinking of reliability in terms 

of system and asset probability of failure, we propose a 

reliability mindset based on the concept of margin (Mandelli, 

2023). An asset’s health is quantified by determining its 

margin, based on the asset’s current and historical monitoring 

data. The margin values of the monitored asset are then 

propagated through system reliability models (e.g., FTs or 

reliability block diagrams) to identify the assets that are more 

critical to guarantee system operation. We show how a 

margin-based approach can assess asset health, based solely 

on current and historic monitoring data (e.g., condition-

based, anomaly detection, diagnostic, and prognostic data) 

(Xingang, 2021). The novelty of this margin-based approach 

is that it directly addresses the limitations of classical 

reliability modeling approaches by propagating and 

integrating health data from the asset to the system level.   

Here we focus on directly employing ER data effectively 

optimize maintenance operations (Pinciroli, 2023). As part of 

this decision-making process, the assessment of asset current 

and/or future conditions is required; this knowledge can be 

produced by employing condition monitoring, anomaly 

detection, or prognostic systems (Zio, 2022). In particular, we 

are answering this question: how health data/knowledge can 

be propagated from the asset to the system level? It is 

common practice to measure asset health using asset health 

indices (AHIs) (Hjartarson, 2006); the definition of such 

indices is typically situation and asset dependent (e.g., an 

AHI might be defined using a color-coded strategy or can be 

numerically quantified using arbitrary scales). One of the 

objectives of this paper is to provide a margin-based 

definition of AHI that is consistent on several operational 

contexts. The concept of margin is here borrowed from 

structural reliability analysis theory where margin is defined 

as the “distance” between the load and resistance probability 

distribution functions (Melchers, 2018). Reference (Lewis, 

2022) presents a bridge between prognostics and health 

management (PHM) and probabilistic risk assessment 

(PRA). Our work conceptually differs from (Lewis, 2022) in 

two elements. The first one is related to the fact that once an 

asset is supported by a PHM system, the reliability of that 

asset loses most of its stochasticity since the monitoring 

activity of such asset is designed to inform on its conditions 

that might lead to its failure. The second one is related to the 

kind of decisions that a PHM and PRA are supporting. 

(Mandelli, 2023) claims that PHM systems support dynamic 

decisions where maintenance activities are scheduled only 

when required, while PRA models support static decisions, 

such as setting periodic surveillance and maintenance 

activities. 

2. MARGIN MODELING 

Reference (Mandelli, 2023) expands the meaning of the 

word “reliability” to better reflect the needs of system health 

and asset management decision-making processes. Rather 

than focusing on the likelihood of a given event (in 

probabilistic terms), we think in terms of how far this event 

is from occurring. This new interpretation of reliability shifts 

the focus away from probability of occurrence and toward an 

assessment of how close an asset is to reaching an 

unacceptable level of performance or failing (see Fig. 1). 

Note that two data elements are required for this assessment: 

the estimated actual health condition of the asset, which can 

be acquired by the asset-monitoring system or through 

diagnostic methods, and the limiting conditions that must be 

avoided, which can be acquired from past operational 

experience (e.g., monitoring data generated by similar assets 

under failure conditions). 

An asset’s margin value 𝑀  is defined over the [0,1 ] 

interval, where 𝑀 = 1  corresponds to a perfectly healthy 

asset (requiring minimal to no maintenance attention) and 

𝑀 = 0 corresponds to a faulty asset (requiring maintenance 

attention). Figure 1 provides a glimpse (in graphical form) of 

how a link between monitoring data and decision-making can 

be established through a margin-based reliability mindset. 

Note that margin quantification is impacted by the 

availability of monitoring data and can be defined over 

heterogenous variables, such as pressure, vibration spectra, 

and time. For example, when dealing with condition-based 

monitoring data (both current and archived), margin 𝑀  is 

defined here as the distance between actual and past 

conditions (e.g., oil temperature and vibration spectrum) that 

lead to failure (see Fig. 2). Hence, margin-based reliability 

modeling provides a unified approach to dealing with 

heterogeneous monitoring data elements. 

 

Figure 1. Graphical representation of margin, based on actual 

asset-monitoring data. 

Note that the margin value of an asset is not static but 

changes with time, depending on asset conditions. For 

example, if degradation due to usage is observed from the 
monitoring data, the corresponding asset margin value 

decreases. Conversely, if a maintenance operation is 

performed on that same asset (e.g., restoration of centrifugal 

pump bearings), the asset margin value increases. 

This mindset shift regarding the concept of reliability 

(i.e., margin based instead of probability based) offers the 



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2023 

3 

advantage of directly linking the asset health evaluation 

process with standard plant processes for managing plant 

performance (e.g., plant maintenance operations and 

budgeting processes). The transformation also supports 

decision-making in a form that is more familiar and readily 

understandable to plant system engineers and decision 

makers. 

So far, margin has been defined for one single asset; the 

next step is to quantify the system’s margin value after 

obtaining the margin values of its assets. The propagation of 

margin values from the asset level to the system level is 

performed through classical reliability models, such as FTs 

or reliability block diagrams (Lee, 2011), which are solved 

using different rule sets (Mandelli, 2023) instead of set 

theory-based operations. 

In this respect, margin-based operators for assets in both 

series (OR operator) and parallel (AND operator) 

configurations must be defined. As an example, consider two 

assets ( 𝐴  and 𝐵 ). The margin 𝑀  of both assets can be 

visualized in a 2D space, as shown in Fig. 2. Starting with 

brand-new assets (i.e., 𝑀𝐴 , 𝑀𝐵 = 1 ) the aging and 

degradation that affects both is represented by the blue line, 

which parametrically signifies the combination of both 

margins 𝑀𝐴(𝑡) and 𝑀𝐵(𝑡) at a specific point in time t. Note 

that if no maintenance (preventive or corrective) was ever 

performed on either asset, this path would move from 

coordinates (1,1)  to coordinates  (0,0) , where both assets 

would be considered failed. Hence, the coordinates (0,0) in 

Fig. 2 represent the event “A AND B.” Similarly, when the 

blue line reaches the x or y axis of Figure 2 (characterized by 

𝑀𝐵 = 0 and 𝑀𝐴 = 0, respectively), either asset A or B has 

failed. Hence, the points in Fig. 2 characterized by either 

𝑀𝐵 = 0 or 𝑀𝐴 = 0 represent the event “A OR B.” 

Now we can calculate the margin 𝑀 for the AND and 

OR events described above. This is accomplished by 

following the definition of margin: by measuring the distance 

between the actual condition of assets 𝐴  and 𝐵  and the 

conditions identified by the event under consideration (e.g., 

the occurrence of both or either event). The margin for 

𝐴 𝐴𝑁𝐷 𝐵  can be calculated as the distance between the 

current point of coordinates (𝑀𝐴 , 𝑀𝐵) to the point (0,0). The 

margin for 𝐴 𝑂𝑅 𝐵 is the minimum distance from the current 

point of coordinates (𝑀𝐴 , 𝑀𝐵) to the x or y axis of Fig. 2 

(where 𝑀𝐵 = 0 and 𝑀𝐴 = 0, respectively): 

𝑀(𝐴 𝐴𝑁𝐷 𝐵) = 𝑑𝑖𝑠𝑡[(𝑀𝐴, 𝑀𝐵), (0,0)]          (1) 

𝑀(𝐴 𝑂𝑅 𝐵) = 𝑚𝑖𝑛(𝑀𝐴, 𝑀𝐵)                          (2) 

where the function 𝑑𝑖𝑠𝑡[. , . ] indicates the metric designed for 

calculating the distance between two points in an Euclidean 

space (e.g., if Euclidean distance is employed, 

𝑀(𝐴 𝐴𝑁𝐷 𝐵) = √𝑀𝐴
2 + 𝑀𝐵

2  ). Mandelli (2023) provides a 

set of considerations regarding the choice of appropriate 

distance metric 𝑑𝑖𝑠𝑡[. , . ]  to be employed. In summary, 

Euclidean and Manhattan distance metrics represent the 

lower and upper bounds for 𝑀(𝐴 𝐴𝑁𝐷 𝐵)  (i.e., 

√𝑀𝐴
2 + 𝑀𝐵

2 ≤ 𝑀(𝐴 𝐴𝑁𝐷 𝐵) ≤ 𝑀𝐴 + 𝑀𝐵 ). If the temporal 

evolution of 𝑀𝐴 and 𝑀𝐵 is available, a more precise estimate 

of 𝑀(𝐴 𝐴𝑁𝐷 𝐵) can be obtained. 

 

 
Figure 2. Graphical representation of event occurrences, 

based on a margin framework. 

Eqs. (1) and (2) allow us to propagate margin values 

through classical reliability models (e.g., FTs or reliability 

block diagrams) to quantify the system margin 𝑀𝑠𝑦𝑠 . The 

next step is to determine each asset’s importance (in a 

margin-based reliability context). In a classical reliability 

setting, this is done by relying on risk-importance measures 

(Lee, 2011), such as the Birnbaum or Fussell-Vesely 

measures. Given the different nature of the margin concept, 

we require a reliability importance measure, here indicated as 

𝑅𝐼𝑀𝛼 , that captures the impact of asset margin 𝑀𝛼  on 

system margin 𝑀𝑠𝑦𝑠. Here, we rely on a classical sensitivity 

measure (derivative based) for an asset 𝛼, defined as: 

𝑅𝐼𝑀𝛼 =
𝜕 𝑀𝑠𝑦𝑠

𝜕 𝑀𝛼
                                   (3) 

Simply stated, 𝑅𝐼𝑀𝛼 indicates how a small variation of 𝑀𝛼 

(e.g., improving the health of asset 𝛼) directly affects system 

margin 𝑀𝑠𝑦𝑠. 

3. INTEGRATION OF ER DATA INTO MARGIN MODELS 

The definition of margin presented in Section 2 is 

abstract; an application within a more practical setting 

depends on the phenomena of interest—and especially the 

monitoring data available. This section provides more 

quantitative details on how margin can be quantified 

depending on the available ER data. 

3.1. Technical Specifications Data 

As indicated in Section 2, a margin value can be 

calculated as the distance between the actual and limiting 

conditions. In practical settings, limiting conditions can be 

represented by the technical specifications of the considered 

asset, which are normally provided by the manufacturer. As 

an example, to ensure the proper function of induction 

motors, oil viscosity must be below a specified limiting 

condition. Oil viscosity can significantly change as a function 



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2023 

4 

of motor rotation speed. In this context, asset margin can be 

calculated as the difference between the limiting condition 

specified in the technical specifications and the currently 

measured oil viscosity. 

In general terms, given an upper limiting condition 𝑥𝐿𝐶  

for a monitored variable 𝑥𝑜𝑏𝑠, a margin 𝑀 can be defined as: 

𝑀(𝑥𝑜𝑏𝑠) =
𝑥𝐿𝐶−𝑥𝑜𝑏𝑠

𝑥𝐿𝐶−min(𝑥𝑜𝑏𝑠)
                           (4) 

where min(𝑥𝑜𝑏𝑠) indicates the minimum allowable value for 

𝑥𝑜𝑏𝑠. 

As an example, induction motors are designed to operate 

within specified differential temperature limits. These limits 

indicate the maximum permissible difference between the 

motor temperature and environmental temperatures that 

various classes of insulation materials can withstand (this 

temperature limit can range from 80°C to 120°C, depending 

on the insulation material). In this scenario, 𝑥𝐿𝐶  is 

represented by the specified temperature limit, while 𝑥𝑜𝑏𝑠 is 

the difference between the actual motor temperature and 

environmental temperature. 

3.2. Observed Reliability Parameters 

Current industrywide available datasets often report the 

mean time to failure (MTTF) values for assets, given the past 

operational experience of similar assets operating under 

similar environmental conditions (e.g., temperature and 

humidity). In this context, no monitoring data are available, 

and only past operational experience can be used. Similar to 

the reasoning behind Eq. (4), based on the asset’s current age 

𝑡 (since installation or refurbishment) and estimated 𝑀𝑇𝑇𝐹, 

its margin can be defined as a linear function of 𝑡: 

𝑀(𝑡) = {
𝑀𝑇𝑇𝐹−𝑡

𝑀𝑇𝑇𝐹
𝑖𝑓 𝑡 < 𝑀𝑇𝑇𝐹

0 𝑖𝑓 𝑡 ≥ 𝑀𝑇𝑇𝐹
                    (5) 

When the considered asset is brand new (i.e., 𝑡 = 0), margin 

𝑀 = 1. When the same asset is approaching its estimated 

𝑀𝑇𝑇𝐹, margin becomes 𝑀 = 0. 

3.3. Condition-based Data: Healthy Data 

Here, we consider a case in which the available 

monitoring data for the asset being considered were collected 

exclusively when the asset was healthy Ξℎ𝑒𝑎𝑙𝑡ℎ𝑦 , meaning 

that data pertaining to asset degradation or failure are 

unavailable. Ξℎ𝑒𝑎𝑙𝑡ℎ𝑦  represents a collection of past 

observation data elements 𝜉𝑜𝑏𝑠 . The following notation is 

used throughout this paper: a single observation data element 

𝜉𝑜𝑏𝑠  can be composed of 𝐿  observed variables 𝑥𝑙  (𝑙 =
1, … , 𝐿)  (i.e., 𝜉𝑜𝑏𝑠 = [𝑥1, . . , 𝑥𝐿]) , and the nature of the 

observed variables 𝑥𝑙  can be heterogenous in nature (e.g., 

temperature, pressure). 

In this kind of situation, an asset’s health status can be 

established by measuring how actual monitoring data differ 

(distance-wise) from healthy data. In this respect, anomaly 

detection tools (Nassif, 2021) designed to quantify the 

residual between the actual observed data 𝜉𝑜𝑏𝑠  and the 

predicted data 𝜉𝑟𝑒𝑐  (which are computed from 𝜉𝑜𝑏𝑠  and 

Ξ𝑜𝑏𝑠−ℎ𝑒𝑎𝑙𝑡ℎ𝑦) can be employed. Such tools can be based on a 

kernel density estimation, for example the auto-associative 

kernel regression method (Baraldi, 2015) or on deep-

learning-based methods, e.g., see (Zhang, 2019). Under 

normal conditions, 𝜉𝑟𝑒𝑐  is very similar to 𝜉𝑜𝑏𝑠  (i.e., 𝜉𝑜𝑏𝑠 ≅
𝜉𝑟𝑒𝑐). 𝜉𝑜𝑏𝑠 ≠ 𝜉𝑟𝑒𝑐 indicates anomalous behavior (e.g., asset 

degradation). 

In this context, a margin value can then be defined by 

measuring the difference between 𝜉𝑟𝑒𝑐 and 𝜉𝑜𝑏𝑠 as: 

𝑀(𝜉𝑜𝑏𝑠) = 𝑒
−(

‖𝜉𝑜𝑏𝑠−𝜉𝑟𝑒𝑐‖

ℎ
)

2

                              (6) 

where ‖𝜉𝑜𝑏𝑠 − 𝜉𝑟𝑒𝑐‖  indicates the residual between the 

observed and predicted data and ℎ represents the comparison 

parameter between 𝜉𝑟𝑒𝑐  and 𝜉𝑜𝑏𝑠  (expressed in terms of 

standard deviation). When the asset is experiencing normal 

conditions, 𝜉𝑜𝑏𝑠 ≅ 𝜉𝑟𝑒𝑐, 𝑀 = 1. If the asset is experiencing 

abnormal conditions, the norm of the difference between 𝜉𝑜𝑏𝑠 

and 𝜉𝑟𝑒𝑐increases; consequently, 𝑀 drops to 0. 

Note that Ξℎ𝑒𝑎𝑙𝑡ℎ𝑦  is here assumed to cover all possible 

healthy asset conditions. If this is not the case, when 𝜉𝑜𝑏𝑠 

enters an unforeseen healthy condition, the obtained margin 

value will show the asset to be unhealthy. However, once 

newly observed healthy conditions are recorded, they can be 

added to the original dataset Ξ𝑜𝑏𝑠−ℎ𝑒𝑎𝑙𝑡ℎ𝑦 . 

An example is shown in Fig. 3, which reflects a set 

Ξℎ𝑒𝑎𝑙𝑡ℎ𝑦  of observed data elements 𝜉𝑜𝑏𝑠 = [𝑥1, 𝑥2]  being 

collected (the green dots in the top image of Fig. 3). Actual 

observed data 𝜉𝑜𝑏𝑠  are constantly recorded, while 𝜉𝑟𝑒𝑐  are 

determined based on 𝜉𝑜𝑏𝑠 and Ξℎ𝑒𝑎𝑙𝑡ℎ𝑦  (see the black and red 

lines in the top image of Fig. 3), using the auto-associative 

kernel regression method (Baraldi, 2015). Applying Eq. (6) 

to this test case makes it possible to generate a temporal 

profile for the corresponding margin (bottom plot of Fig. 3). 

3.4. Condition-based Data: Healthy and Faulty Data 

This case extends the one described in Section 3.3 (in 

which only data generated under healthy conditions 

Ξℎ𝑒𝑎𝑙𝑡ℎ𝑦  are available) by incorporating data generated under 

faulty conditions, indicated here as Ξ𝑓𝑎𝑢𝑙𝑡𝑦 . It is assumed 

that, in the presence of an asset fault, the actual observed data 

𝜉𝑜𝑏𝑠 can be seen transitioning from Ξℎ𝑒𝑎𝑙𝑡ℎ𝑦  to Ξ𝑓𝑎𝑢𝑙𝑡𝑦 . 

In this scenario, by following the definition of margin 

given in Section 2 and by being provided with actual 

observed data (containing both historic healthy Ξℎ𝑒𝑎𝑙𝑡ℎ𝑦  and 

faulty data Ξ𝑓𝑎𝑢𝑙𝑡𝑦 ), a margin value can be determined by 

comparing the mutual distance of 𝜉𝑜𝑏𝑠  from the two 

populations: Ξℎ𝑒𝑎𝑙𝑡ℎ𝑦  and Ξ𝑓𝑎𝑢𝑙𝑡𝑦  (see Fig. 4). In 

mathematical form, a margin can be written as: 

𝑀(𝜉𝑜𝑏𝑠) =
𝐷(𝜉𝑜𝑏𝑠 ; Ξ𝑓𝑎𝑢𝑙𝑡𝑦)

𝐷(𝜉𝑜𝑏𝑠 ; Ξ𝑓𝑎𝑢𝑙𝑡𝑦) + 𝐷(𝜉𝑜𝑏𝑠 ; Ξℎ𝑒𝑎𝑙𝑡ℎ𝑦)
 

(7) 

where the operator 𝐷(. ; . ) represents the distance one single 

data element (i.e., 𝜉𝑜𝑏𝑠) and a population of data elements 
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(either Ξℎ𝑒𝑎𝑙𝑡ℎ𝑦  or Ξ𝑓𝑎𝑢𝑙𝑡𝑦 ). The choice of operator 𝐷(. ; . ) 

may depend on several factors, as dictated by the distribution 

of the Ξℎ𝑒𝑎𝑙𝑡ℎ𝑦  and Ξ𝑓𝑎𝑢𝑙𝑡𝑦  populations in the data space. 

 

 

 
Figure 3. (Top) Representation of Ξℎ𝑒𝑎𝑙𝑡ℎ𝑦  (green 

population), 𝜉𝑜𝑏𝑠 (black line), and 𝜉𝑟𝑒𝑐 (red line) in the 𝑥1, 𝑥2 

space. (Bottom) Temporal profile of the corresponding 

margin. 

 

 

Figure 4. Margin calculation, given the current status of the 

monitored asset 𝜉𝑜𝑏𝑠 when both healthy Ξℎ𝑒𝑎𝑙𝑡ℎ𝑦  and faulty 

Ξ𝑓𝑎𝑢𝑙𝑡𝑦  data are available in the [𝑥1, . . , 𝑥𝐿] data space. 

Note that a distance-based approach for 𝐷(𝜉𝑜𝑏𝑠 ; Ξ) is 

effective when the healthy and faulty data are well separated 

from each other in the [𝑥1, . . , 𝑥𝐿]  space. In practical 

scenarios, however, these two populations of data elements 

may overlap. In such cases, margin can be quantified by using 

density-based methods (Hastie, Tibshirani, and Friedman, 

2001), which are designed to translate (e.g., via kernel density 

estimation methods) the Ξℎ𝑒𝑎𝑙𝑡ℎ𝑦  and Ξ𝑓𝑎𝑢𝑙𝑡𝑦  datasets into 

probability distribution functions (PDFs): 𝑝𝑑𝑓ℎ𝑒𝑎𝑙𝑡ℎ𝑦  and 

𝑝𝑑𝑓𝑓𝑎𝑢𝑙𝑡𝑦 . Then, given a current observed measurement 

𝜉𝑜𝑏𝑠, margin can be quantified by evaluating these two PDFs 

at the coordinate 𝜉𝑜𝑏𝑠: 

𝑀(𝜉𝑜𝑏𝑠) =
𝑝𝑑𝑓ℎ𝑒𝑎𝑙𝑡ℎ𝑦(𝜉𝑜𝑏𝑠)

𝑝𝑑𝑓ℎ𝑒𝑎𝑙𝑡ℎ𝑦(𝜉𝑜𝑏𝑠)+𝑝𝑑𝑓𝑓𝑎𝑢𝑙𝑡𝑦(𝜉𝑜𝑏𝑠)
          (8) 

This equation weighs the PDF values at coordinate 

𝜉𝑜𝑏𝑠for both the healthy and faulty conditions. When 𝜉𝑜𝑏𝑠 is 

located in a region of the [𝑥1, . . , 𝑥𝐿]  space dominated by 

healthy data, 𝑝𝑑𝑓ℎ𝑒𝑎𝑙𝑡ℎ𝑦(𝜉𝑜𝑏𝑠) ≫ 𝑝𝑑𝑓𝑓𝑎𝑢𝑙𝑡𝑦(𝜉𝑜𝑏𝑠) , and 

𝑀(𝜉𝑜𝑏𝑠) ≅ 1.0. Conversely, when 𝜉𝑜𝑏𝑠 is located in a region 

of the [𝑥1, . . , 𝑥𝐿]  space dominated by faulty data, 

𝑝𝑑𝑓ℎ𝑒𝑎𝑙𝑡ℎ𝑦(𝜉𝑜𝑏𝑠) ≪ 𝑝𝑑𝑓𝑓𝑎𝑢𝑙𝑡𝑦(𝜉𝑜𝑏𝑠) and 𝑀(𝜉𝑜𝑏𝑠) ≅ 0.0. 

Figure 5 illustrates an example that extends the one 

shown in Section 3.3. In Fig. 5, Ξℎ𝑒𝑎𝑙𝑡ℎ𝑦  and Ξ𝑜𝑓𝑎𝑢𝑙𝑡𝑦  are 

shown in the top plot, 𝜉𝑜𝑏𝑠 is represented as the black line 

moving from left to right, and the corresponding margin is 

shown in the bottom plot. Here, 𝑝𝑑𝑓ℎ𝑒𝑎𝑙𝑡ℎ𝑦(𝜉𝑜𝑏𝑠)  and 

𝑝𝑑𝑓𝑓𝑎𝑢𝑙𝑡𝑦(𝜉𝑜𝑏𝑠)  were generated using kernel density 

estimation methods (Hastie, Tibshirani, and Friedman, 2001). 

An alternative formulation to Eq. (8) can be derived 

when machine learning (ML) methods (Mohri, 2012) are 

employed. In this setting, a supervised ML model (i.e., a 

classifier) is trained using both the faulty and healthy datasets 

(Ξ𝑓𝑎𝑢𝑙𝑡𝑦 , Ξℎ𝑒𝑎𝑙𝑡ℎ𝑦 ) and is employed to predict, given 𝜉𝑜𝑏𝑠 , 

the class 𝑜𝑢𝑡 (either faulty or healthy) to which 𝜉𝑜𝑏𝑠 belongs. 

Such a prediction can be augmented by also determining the 

probability estimate 𝑃𝑟𝑜𝑏𝑑𝑒𝑡𝑒𝑐 associated with the prediction 

𝑜𝑢𝑡. If the [0,1] margin interval is divided into two equally 

long segments, we can assign the “healthy” class to the [.5,1] 
interval and the “faulty” class to the [0, .5] interval. Hence, 

the predicted class 𝑜𝑢𝑡  generated by the ML model 

determines the margin variability interval (either [0, .5] or 

[.5,1]). The variable 𝑃𝑟𝑜𝑏𝑑𝑒𝑡𝑒𝑐  (see Fig. 6) is essentially a 

measure of the prediction accuracy. More precisely, a high 

value of 𝑃𝑟𝑜𝑏𝑑𝑒𝑡𝑒𝑐 implies a high degree of accuracy in the 

prediction; conversely, a very low value implies low 

accuracy. In this context, 𝑃𝑟𝑜𝑏𝑑𝑒𝑡𝑒𝑐 is used to determine the 

precise margin location in the [0, .5] or [.5,1] intervals. A 

high value of 𝑃𝑟𝑜𝑏𝑑𝑒𝑡𝑒𝑐 would drive the margin toward the 

extremes of the intervals (either 0 or 1), whereas a low value 

of 𝑃𝑟𝑜𝑏𝑑𝑒𝑡𝑒𝑐  would drive the margin toward the common 

point of the intervals (i.e., 0.5). 

Consequently, provided 𝜉𝑜𝑏𝑠 and a ML model that can 

generate both 𝑜𝑢𝑡  and 𝑃𝑟𝑜𝑏𝑑𝑒𝑡𝑒𝑐 , a margin value can be 

defined as: 

𝑀(𝜉𝑜𝑏𝑠) = {
0.5 −

𝑃𝑟𝑜𝑏𝑑𝑒𝑡𝑒𝑐

2
𝑖𝑓 𝑜𝑢𝑡 = 𝑓𝑎𝑢𝑙𝑡𝑦

0.5 +
𝑃𝑟𝑜𝑏𝑑𝑒𝑡𝑒𝑐

2
𝑖𝑓 𝑜𝑢𝑡 = ℎ𝑒𝑎𝑙𝑡ℎ𝑦

        (9) 

Deep-neural-network-based models (Hastie, Tibshirani, and 

Friedman, 2001) are an ML model class widely employed for 

diagnostic applications. Given 𝜉𝑜𝑏𝑠 , this class of classifier 

models generates the class 𝑜𝑢𝑡 (either faulty or healthy) to 

which 𝜉𝑜𝑏𝑠 belongs, along with a probability value associated 
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with each class: 𝑃𝑟𝑜𝑏ℎ𝑒𝑎𝑙𝑡ℎ𝑦  and 𝑃𝑟𝑜𝑏𝑓𝑎𝑢𝑙𝑡𝑦  (rather than a 

single probability value 𝑃𝑟𝑜𝑏𝑑𝑒𝑡𝑒𝑐). Note that, if two classes 

are considered (faulty and healthy), 𝑃𝑟𝑜𝑏ℎ𝑒𝑎𝑙𝑡ℎ𝑦 +
𝑃𝑟𝑜𝑏𝑓𝑎𝑢𝑙𝑡𝑦 = 1. The variable 𝑜𝑢𝑡 is determined as: 

𝑜𝑢𝑡 = {
ℎ𝑒𝑎𝑙𝑡ℎ𝑦 𝑖𝑓 𝑃𝑟𝑜𝑏ℎ𝑒𝑎𝑙𝑡ℎ𝑦 > 𝑃𝑟𝑜𝑏𝑓𝑎𝑢𝑙𝑡𝑦

𝑓𝑎𝑢𝑙𝑡𝑦 𝑖𝑓 𝑃𝑟𝑜𝑏ℎ𝑒𝑎𝑙𝑡ℎ𝑦 < 𝑃𝑟𝑜𝑏𝑓𝑎𝑢𝑙𝑡𝑦    (10) 

 

 
Figure 5. (Top) Representation of Ξℎ𝑒𝑎𝑙𝑡ℎ𝑦  (green 

population), Ξ𝑓𝑎𝑢𝑙𝑡𝑦  (red population), and 𝜉𝑜𝑏𝑠  (black line) 

in the 𝑥1, 𝑥2  space. (bottom) Temporal profile of the 

corresponding margin. 

 

 
Figure 6. Graphical representation of margin based on the 

𝑜𝑢𝑡 and 𝑃𝑟𝑜𝑏𝑑𝑒𝑡𝑒𝑐 provided by a ML model. 

 
In this context, margin quantification directly employs 

the two generated probability values (i.e., 𝑃𝑟𝑜𝑏ℎ𝑒𝑎𝑙𝑡ℎ𝑦  and 

𝑃𝑟𝑜𝑏𝑓𝑎𝑢𝑙𝑡𝑦) as: 

𝑀(𝜉𝑜𝑏𝑠) = 𝑃𝑟𝑜𝑏ℎ𝑒𝑎𝑙𝑡ℎ𝑦 = 1 − 𝑃𝑟𝑜𝑏𝑓𝑎𝑢𝑙𝑡𝑦              (11) 

3.5. Prognostic Data 

Estimating an asset’s remaining useful life (RUL) 

provides valuable information regarding the temporal 

occurrence of the loss of function for the considered asset. 

Given the stochastic nature of the failure phenomena, RUL is 

typically expressed in terms of a probabilistic distribution 

along the temporal axis. Many methods have been developed 

in the literature to predict RUL for specific assets, and 

Ferreira and Gonçalves (2022) summarize the most widely 

used methods. To integrate the RUL PDF (indicated here as 

𝑃𝐷𝐹𝑅𝑈𝐿 ) into a margin-based reliability model, we apply 

reasoning similar to that presented in Section 2. Here, a 

margin is the distance between the actual time and predicted 

RUL. The main differences are that the RUL is estimated 

once a degradation mechanism has been identified (e.g., 

through an anomaly detection method) and is an actual 

distribution function rather than a point value. 

Once the RUL PDF is estimated, the corresponding 

margin value can be estimated via two approaches. The first 

defines the margin as: 

𝑀(𝑡) = 1 − 𝐶𝐷𝐹𝑅𝑈𝐿(𝑡).                   (12) 

 

where 𝐶𝐷𝐹𝑅𝑈𝐿 indicates the cumulative distribution function 

corresponding to 𝑃𝐷𝐹𝑅𝑈𝐿 . The second approach estimates 
margin as the distance between the actual asset life and a 

point estimate of the RUL distribution (e.g., the 5th percentile 

𝑝5%
𝑅𝑈𝐿): 

𝑀(𝑡) =
𝑝5%

𝑅𝑈𝐿−𝑡

𝑝5%
𝑅𝑈𝐿                                   (13) 

where 𝑝5%
𝑅𝑈𝐿  indicates the 5th percentile of the RUL 

distribution 𝑃𝐷𝐹𝑅𝑈𝐿. 

4. TEST CASE: CIRCULATING WATER SYSTEM (CWS) 

SYSTEM 

To develop initial methods and models, a CWS at a 

Public Service Enterprise Group Nuclear, LLC owned plant 

site was selected as the target plant asset. The CWS is an 

important non-safety-related system. As the heat sink for the 

main steam turbine and associated auxiliaries, the CWS is 

designed to maximize steam power cycle efficiency 

(Agarwal, 2021). A CWS consists of the following major 

equipment (Agarwal, 2021): 

• Vertical, motor-driven circulating water pumps 

(CWPs), each with an associated fixed trash rack and 

traveling screen at the pump intake to filter out debris 

and marine life 

• Main condenser 

• Condenser waterbox air removal system 

• Circulating water sampling system 

• Screen wash system 
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• Necessary piping, valves, instrumentation, and 

controls to support system operation. 

The selected plant site (a two-unit pressurized-water 

reactor) features six circulators at each unit. Schematic 

representations of the main condensers for Plant Site Unit 2 

are shown in Fig. 7.  

In this research, the project team focused on optimizing 

the maintenance strategy for the CWS. To differentiate 

between motor and pump maintenance activities for each 

circulator, those assets are hereafter referred to as the CWP 

motor and the CWP, respectively. 

The Unit 1 and Unit 2 CWS process data are collected 

once per minute and stored in the Plant Site 1 monitoring 

system. Due to file size restrictions, the project team received 

CWS process data hourly for both units, ranging from 2009 

to 2019. The process data include: 

• Ambient air temperature (°F) 

• CWP inlet and outlet river temperature (°F) 

• CWP motor status (ON or OFF) 

• CWP motor stator winding temperature (°F) 

• CWP motor inboard-bearing (MIB) and outboard-

bearing (MOB) temperature (°F) 

• CWP motor current (amps). 

 

Figure 7. Plant Site Unit 2 CWP combination of 21A and 

21B, with sensors and instrumentation. 

4.1. Data Processing 

As indicated by Agarwal (2021a.), the raw data collected 

from the NPP are distributed over several data sources and 

were processed by completing the following steps: 

• Text data are converted into numeric form (e.g., the 

ON/OFF data element is converted into 0/1) 

• New features are generated (e.g., pump differential 

temperature [DT], pump age since refurbishment) 

• Pump vibration data are processed through a fast 

Fourier transform algorithm, and the magnitude of 

the vibration signal for specific frequencies is 

captured 

• Based on the system operational history (e.g., 

maintenance records), data elements are labeled (as 

pertaining to either healthy or faulty state) 

• Missing data entries are resolved 

• Data conflicts between the operational history and 

recorded numerical values are resolved 

• All data sources are merged into a single time series 

• All features of the time are Z-normalized (each 

feature 𝑥 is transformed into �̃� =
𝑥−𝑚𝑒𝑎𝑛(𝑥)

𝑠𝑡𝑑_𝑑𝑒𝑣(𝑥)
, where 

the operators 𝑚𝑒𝑎𝑛(𝑥) and 𝑠𝑡𝑑_𝑑𝑒𝑣(𝑥) correspond 

to the mean value and standard deviation of the 

considered variable 𝑥, respectively). 

A series of preprocessed time series plots is shown in 

Fig. 8. 

 

 

Figure 8. Plot of five features of the preprocessed time series. 

Note that online motor current data are available from 2017, 

whereas process variables are available from 2009. 

For the specific case, by looking at the operational 

history of the CWS system, we were able to label portions of 

the data under healthy and faulty conditions (i.e., we were in 

the scenario described in Section 3.4, if this were not 

possible, we would have relied only on the known healthy 

conditions – see Section 3.3 ). In this respect, Fig. 9 shows 

box plots of four of the considered features for the healthy 

and faulty states. These variables were chosen based on their 

coverage of all healthy and faulty states. Note that the 

structure of the box plots shifts between healthy and faulty 

states. This is essential for correctly capturing system health 

from the available monitoring data. Note that the box plots in 
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Fig. 9 enable comparison between healthy and faulty states 

by looking at the distribution of one individual feature at a 

time. 

 

Figure 9. Box plots of four of the considered features (DT, 

motor stator temperature, MIB temperature, and MOB 

temperature) for healthy and failure states. 

4.2. Margin Model for Air Intake and Misalignment 

Given the provided context, both Ξ𝑓𝑎𝑢𝑙𝑡𝑦  and Ξℎ𝑒𝑎𝑙𝑡ℎ𝑦  

data are available; hence, we employed the density-based 

method described in Section 3.4 to estimate the 

𝑝𝑑𝑓ℎ𝑒𝑎𝑙𝑡ℎ𝑦(𝜉𝑜𝑏𝑠) and 𝑝𝑑𝑓𝑓𝑎𝑢𝑙𝑡𝑦(𝜉𝑜𝑏𝑠). For this specific test 

case, we considered a subset of the original data points 

contained in Ξ𝑓𝑎𝑢𝑙𝑡𝑦  and Ξℎ𝑒𝑎𝑙𝑡ℎ𝑦  over four monitored 

variables (i.e., DT, motor stator temperature, MIB 

temperature, and MOB temperature). We considered a CWS 

snapshot in which an air intake instance was observed 

(between May 15 and July 8, 2008). Directly applying Eq. (7) 

to each 𝜉𝑜𝑏𝑠 made it possible to determine the corresponding 

margin value (see Fig. 10). This plot shows the initial 

situation, in which the system is in a healthy state (𝑀𝑠𝑦𝑠 =
1), before the margin then rapidly plummets once the faulty 

condition is initiated. The two peaks that follow were 

generated during the repair time window. 

 

 
Figure 10. Graphical representation of the margin for air 

intake during an air intake occurrence, using the density-

based method. 

 

An important element to highlight here is that the 

populations Ξ𝑓𝑎𝑢𝑙𝑡𝑦  and Ξℎ𝑒𝑎𝑙𝑡ℎ𝑦  for air intake are fairly 

separated, as shown in Fig. 9. This allows us to assign a 

margin value of 𝑀𝑠𝑦𝑠 = 1  when 𝜉𝑜𝑏𝑠  is located near the 

Ξℎ𝑒𝑎𝑙𝑡ℎ𝑦  population, and 𝑀𝑠𝑦𝑠 = 0 when 𝜉𝑜𝑏𝑠 is located near 

the Ξ𝑓𝑎𝑢𝑙𝑡𝑦  population. 

A similar situation can be generated for the misalignment 

failure mode. In this case, however, the populations Ξ𝑓𝑎𝑢𝑙𝑡𝑦  

and Ξℎ𝑒𝑎𝑙𝑡ℎ𝑦  are not completely separated as they were 

shown in Fig. 9. This situation is not uncommon and may be 

caused by the labeling process applied to the original data 

(healthy vs. misalignment). We considered a CWS snapshot 

in which a misalignment instance was observed (between 

April 2013 and January 2015). Directly applying Eq. (7) to 

each 𝜉𝑜𝑏𝑠  made it possible to determine the corresponding 

margin value (see Fig. 11). This plot shows that the initial 

situation, in which the system is in a healthy state, is actually 

characterized by 𝑀𝑠𝑦𝑠 = .8  (instead of 𝑀𝑠𝑦𝑠 = 1 ). This is 

caused by the fact that the distributions associated with the 

two populations (Ξℎ𝑒𝑎𝑙𝑡ℎ𝑦  and Ξ𝑓𝑎𝑢𝑙𝑡𝑦) for the misalignment 

failure mode share some degree of overlap (see also Fig. 9). 

If the distributions of these two populations do not overlap, 

𝑀𝑠𝑦𝑠 = 1 when the system is in a healthy state. 

 

 
Figure 11. Graphical representation of the margin for 

misalignment during a misalignment occurrence. 

4.3. Margin Model from ML Models 

As indicated in (Agarwal, 2021a; 2021b), the following 

two ML models were generated to perform health and fault 

classification: 

• Binary classifier: This module is a XGBoost binary 

classifier. With CWP data, it predicts whether the 

CWP is experiencing normal operation or undergoing 

any degradation at the pump, motor, or system levels. 

The model is developed by considering time domain 

features extracted from vibration data, along with the 

features extracted from monitoring data. Features such 

as motor current and vibration data are unavailable 

prior to September 2017 and October 2019, 

respectively. The missing features are mapped with 

NaN values. While training and making predictions, 
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the XGBoost model discards all features with NaN 

values. 

• Diagnostic model: This module is a multiclass 

classifier. For CWP data, it predicts the type of fault a 

CWP is currently undergoing. The model is developed 

by considering frequency domain features extracted 

from vibration data, along with the features extracted 

from the raw data. Features such as motor current and 

vibration data are unavailable prior to September 2017 

and October 2019, respectively. The missing features 

are mapped with NaN values. While training and 

making predictions, the XGBoost model discards all 

features with NaN values. Figure 12 shows an example 

prediction generated by the diagnostic model. 

 

 

Figure 12. Example prediction by the diagnostic model. 

The outputs of these two ML models have been merged 

to assess the margin for each failure mode by using Eqs. (9)–

(11), as indicated in Section 3.4. Figure 13 presents the 

margin associated with air intake when using ML models; the 

same temporal profile can be compared against the one 

shown in Fig. 10, in which a density-based approach was 

applied to the same dataset. This margin calculation was 

applied to a subset of observation data 𝜉𝑜𝑏𝑠  showing a 

transition from a healthy state to an air intake faulty state. 

This transition is captured in a margin sense by observing 

how the CWS margin for air intake drops from about 0.9 

(system healthy) to 0.08 (system in an air intake faulty state). 

 

 

Figure 13. Graphical representation of the margin for air 

intake during an air intake occurrence, using ML models. 

5. CONCLUSION 

This paper has described a reliability approach designed 

to directly employ available condition-based, diagnostic, and 

prognostic data. It proposed a margin-based approach for 

assessing asset health, which is based solely on current and 

historic monitoring data (e.g., condition-based, anomaly 

detection, diagnostic, and prognostic data). We provided 

details on how heterogenous ER data elements are employed 

to assess the status of an asset through a margin value that 

serves as an analytical measure of its health. We then showed 

how, depending on the operational context of the asset (e.g., 

type of failure modes) and the available pertaining to it, a 

margin value can be quantified using well-known statistical 

and ML algorithms. 

Assessing system health is performed by propagating, 

through classical reliability models (e.g., FTs or reliability 

block diagrams), the margin values of those assets that 

support system function(s). Such propagation is not 

performed through set theory-based rules but rather through 

distance-based operations. This information can then be used 

to assess the reliability importance of each asset in order to 

identify the most critical assets. A margin-based approach 

directly addresses the limitations of classical reliability 

modeling approaches and provides a snapshot of system 

health—given the availability of monitoring data. These two 

different approaches are designed to address different types 

of decisions: classical reliability models support static 

decisions (e.g., a set frequency of periodic maintenance or 

surveillance operations) based on past operational 

experience, whereas a margin-based approach directly 

supports dynamic decisions involving maintenance 

operations that should only be performed when necessary, 

based on monitoring data (i.e., a predictive maintenance 

context). Note that the application of these two decision types 

(static and dynamic) is dictated by the degradation process 

being considered. When asset failure occurs suddenly, or the 

monitoring system cannot capture asset degradation, classical 

reliability approaches can be used to set preventive 

maintenance and periodic surveillance frequencies. On the 

other hand, when assets progressively degrade and the 

installed monitoring system is able to capture the degradation 

trend, a predictive maintenance context that relies on a 

margin-based approach can be set. 

An analysis of the CWS system of an existing power 

plant generated insights into the structure and operational 

context of real data. Developed statistical and ML methods 

were employed to assess system health via margin-based 

operations. 

A margin-based interpretation of reliability shifts the 

focus of the concept away from the probability of occurrence 

and toward assessing how far away (or close) an asset is to 

reaching an unacceptable level of performance or undergoing 

failure. This shift in focus provides a direct link between the 

asset and system health evaluation process and standard plant 

processes for managing performance (e.g., plant maintenance 
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and budgeting processes). It also supports decision-making in 

a predictive maintenance context in a form that is more 

familiar and readily understandable to plant system engineers 

and decision makers (Xingang, 2021). 
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