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ABSTRACT 

Vibration sensors have gained increasing popularity as 

valuable tools for Prognostics and Health Management 

(PHM) applications, enabling early detection of mechanical 

failures in industrial machines. Vibration signals comprise 

two main sources of information: periodic vibrations from 

components, phase-locked to the rotating speed (e.g., gears), 

and non-deterministic broadband vibrations associated with 

bearings, structure, and background noise. 

In PHM applications, it is important to decompose vibrations 

to optimize the use of different diagnostic methods for each 

signal component. In practice, the decomposition should be 

cost-effective by working without supplementary 

information about system operating conditions and 

kinematics. A major application of this method is to separate 

the bearing and gear signals in a gearbox. This is because the 

gear signals are typically much stronger than the bearing 

signals, and can mask the presence of bearing faults. 

Existing methods of vibration source separation commonly 

rely on an auto-regression (AR) model of vibrations and 

employ adaptive filtering techniques to estimate its 

parameters. However, these methods suffer from degraded 

accuracy in complex geared vibrations containing numerous 

periodic components and requiring large filter length to 

promise high frequency resolution in component separation. 

To address these challenges, we propose a new method that 

utilizes dilated Convolutional Neural Networks (CNNs) 

instead of adaptive filtering to improve the accuracy of 

decomposing complex vibration signals, all without the need 

for any supplementary information. 

To evaluate the performance of the new method, we 

conducted experiments using both simulated signals and real-

world vibrations. The simulation results demonstrate 

improved accuracy in signal decomposition when our method 

is used instead of adaptive filtering. Additionally, the new 

method applied to real vibrations, showcases significant 

enhancement in bearing failure detection through accurate 

isolation of bearing-related vibrations.  

This study reveals the potential of our new method in various 

PHM applications requiring highly accurate diagnostics and 

prognostics in complex geared vibrations, particularly when 

supplementary information about operating conditions and 

system kinematics is unavailable. 

1. INTRODUCTION 

The application of vibration sensors, especially wireless 

ones, is gaining momentum in the field of industrial condition 

monitoring. Tiboni et al. (2022) demonstrated that this is 

primarily due to the sensors' ability to detect mechanical 

failures at early stages. 

1.1. Vibration Signal Components 

Vibration signals can be highly complex, particularly in 

geared machines that operate under varying speeds and loads, 

as noted by Feng at al. (2018), Zimroz at al. (2014) and 

Gildish at al. (2022). 

Even in cases where speed and load remain constant over a 

short period of time, the vibration signal typically comprises 

a combination of signals generated by two sources, as 

described by Antoni et al. (2004). The first source is 

generated by sub-systems, such as gears, that are phase-

locked to the operating speed, resulting in periodic 

components within the signal (periodic or deterministic part 

of signal). The second source comprises components that are 

not phase-locked (broadband or non-deterministic part of 

signal), such as bearings that experience rolling and slipping 

due to varying loads, as well as structure-related vibrations, 

as demonstrated by Gildish at al. (2022, June). Additionally, 

background and measurement noise contribute to the second 

part of vibrations. 

Building upon the work of Jackson et al. (1996) and Antoni 

et al. (2004), and under the assumption of constant operating 
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conditions, the digitized vibration signal can be expressed as 

the sum of periodic and non-deterministic stationary 

processes, as shown in the equation below: 

 𝑋(𝑛) = 𝑝(𝑛) + 𝑟(𝑛), (1) 

where 𝑝(𝑛)  and 𝑟(𝑛)  represent periodic and stationary 

processes, respectively.  

According to Wold's theorem, as published in Priestley at al. 

(1981), it is always possible and unique to decompose the 

signal into its periodic and non-deterministic components. 

In a periodic process, any value 𝑝(𝑛) can be predicted based 

on its past values 𝑝(𝑛 − 𝑚), where m > 0. However, when 

dealing with a non-deterministic process 𝑟(𝑛), attempting to 

predict its future values solely based on its past values would 

result in a systematic random error. 

In this study, we will isolate these two components using our 

new method, even in the absence of rotating speed 

measurements and system kinematics. 

1.2. AR Model of Vibrations 

Antoni at al. (2004) demonstrated that for periodic signals 

𝑝(𝑛), the optimal predictor of any value, in terms of 

minimizing the mean squared prediction error, is a linear 

combination of its past values. The predictor for values in 

process 𝑋(𝑛) is equivalent to the estimator of the periodic 

component of the signal �̂�(𝑛) . This predictor can be 

represented in an autoregressive form, as shown below:   

 �̂�(𝑛) = �̂�(𝑛) = ∑ 𝑤(𝑖)𝑋(𝑛 − ∆ − 𝑖)

𝑁−1

𝑖=0

, (2) 

where the predictor �̂�(𝑛)  estimates the value 𝑋(𝑛)  by 

utilizing its previous N values. The time delay ∆ guarantees 

that the non-deterministic component remains uncorrelated, 

as expressed by the condition  𝐸{𝑟(𝑛)𝑟(𝑛 − 𝑚)} = 0, ∀ 𝑚 >
∆. Once estimated, the model coefficients 𝑤(𝑖) represent the 

parameters of the auto-regression (AR) model with a length 

of N. 

When the predictor �̂�(𝑛) is calculated the difference between 

the signal and the predictor represents the estimation of the 

non-deterministic component of the process as follows: 

�̂�(𝑛) = 𝑋(𝑛) − �̂�(𝑛). 

Antoni et al. (2004) demonstrated that achieving high 

accuracy in estimating the periodic part of vibration signals 

requires using an AR model with a considerably long length, 

particularly when dealing with noise and a large number of 

periodic components. 

The selection of the AR model order N is crucial in this 

context. On one hand, a longer length is necessary to 

effectively capture a significant number of closely spaced 

periodic components. On the other hand, the length should be 

considerably shorter to avoid model overfitting and provide 

the predictor with sufficient time to estimate the coefficients 

within the limitations of the signal length. 

1.3. Related Works 

The methods presented below enable the decomposition of 

vibrations into the periodic and non-deterministic 

components.  

Antoni at al. (2004) and Randall (2004) utilized the periodic 

nature of vibrations to construct an adaptive filter that 

extracts the periodic part by exploring the AR model of signal 

and proposed a new adaptive filtering algorithm. Dixit et al. 

(2017) have summarized the main adaptive filtering methods 

used for estimating AR model parameters. The primary 

concept behind filtering is to minimize the error between the 

current signal values and the predicted values by the filter. 

The advantage of these methods is that they do not require 

any supplementary information regarding system operating 

conditions and kinematics. However, when a high frequency 

resolution is needed to estimate complex geared vibrations 

with numeric spectrum components related to the periodic 

part of the signal, the length of the filters increases 

significantly. 

Randall at al. (2011) introduced a method for extracting 

periodic components known as cepstrum-based extraction. 

The cepstrum is a logarithmic representation of the spectrum. 

By transforming the signal into the cepstrum domain, the 

harmonics corresponding to the rotating speed are mapped to 

specific positions in the quefrency domain (analogous to 

frequency in the cepstrum domain), enabling their extraction. 

While this method does not require knowledge about the 

system's kinematics, it is not accurate since relies on the 

presence of a significant number of shaft harmonics from 

each shaft in the spectrum, which is typically not the case. 

An alternative approach to extracting periodic contents is 

proposed by Groover et al. (2005), Braun (2011), Peeters et 

al. (2005 and 2007) and in Gildish at al. (2022 June). The 

signal is resampled to a consistent angular basis for each 

system shaft, followed by synchronous averaging to extract 

rotating speed multipliers related to the periodic component 

of vibrations. Although computationally expensive, this 

method showcases high accuracy in dealing with complex 

geared vibrations containing multiple periodic sources. 

Subsequently, Abboud et al. (2016) and Abboud et al. (2019) 

extended this method to handle non-stationary scenarios 

involving changing rotating speeds and loads. However, 

these methods require the measurement of the system's 

rotating speed and the possession of knowledge about the 

system's kinematics. This can be costly and may not be 

available in numerous PHM applications. 

The literature review clearly indicates that existing methods 

do not offer an accurate solution for decomposition of the 

complex vibration signals in situations where measurements 

of rotating speed and system kinematics are unavailable.  
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This paper is structured as follows: Section 2 describes the 

proposed method, while Sections 3 and 4 present the 

evaluation results using simulations and real data, 

respectively. The conclusions are summarized in Section 5. 

1.4. Contribution 

The proposed method improves the decomposition of 

vibration signal into sources compared to existing adaptive 

filtering methods. It is an unsupervised method that does not 

require any additional information about operating conditions 

or system kinematics. The new method improves bearing 

fault detection at early stages by accurately removing high-

energy gear vibrations without requiring any additional 

system information. This advancement is expected to reduce 

costs in PHM systems. Additionally, recent advancements in 

edge AI hardware enable practical implementation in devices 

with ultra-low power constraints, expanding its potential 

applications. 

2.  THE PROPOSED METHOD  

2.1. Algorithm Flowchart 

The proposed method is outlined in Figure 1. For the 

estimation of the periodic part from vibrations, a dilated 

Convolutional Neural Network (CNN) is utilized, as detailed 

in section 2.2.  

The new method decomposes vibration signals into periodic 

and non-deterministic vibrations by leveraging the AR 

assumption, as shown in equation (2). This assumption 

allows the periodic signal component to be predicted through 

a linear combination of its 𝑁  previous values, effectively 

separating it from the non-deterministic component. 

The proposed approach predicts the signal value 𝑋(𝑛)  by 

utilizing the previous N values as inputs to the dilated CNN 

model, where AR model order N corresponds to the model's 

receptive field. The optimization of the model parameters 

aims to minimize the error �̂�(𝑛) between the predicted values 

�̂�(𝑛) and the actual values 𝑋(𝑛) which corresponds to a non-

deterministic part of signal. The configuration parameters of 

the model consist of the depth (number of layers), kernel size, 

and dilation factor in each layer. 

The method tackles the challenge posed by adaptive filtering 

methods, where a long filter length (AR model order) is 

required to accurately predict complex vibrations with 

numerous periodic components and noise. In contrast, the 

number of parameters to be optimized in the dilated CNN is 

significantly lower as demonstrated further in section 2.2.3). 

 

 

Figure 1. Flowchart illustrating the proposed method of the 

periodic vibrations estimation  

In the following sections, we will discuss the application of 

dilated Convolutional Neural Networks (CNNs) for 

decomposing vibration signals into the two aforementioned 

sources. 

2.2. Dilated CNN 

The application of dilated CNN in time series forecasting was 

initially introduced by Borovykh et al. (2018) to expand the 

receptive field of filters in 1D convolutions. This approach 

originally employed a non-linear activation function for time 

series prediction. Subsequently, the method has been adapted 

and utilized in various domains, such as financial forecasting 

in Li et al. (2021) and time series forecasting in smart grid 

applications in Mishra et al. (2021). 

The problem of adaptive filter length is resolved by allowing 

a substantial increase in the dilated CNN receptive field while 

keeping the number of optimization parameters very small. 

This is achieved by extending the network depth and 

adjusting its kernel size. 

In general, in CNNs, a non-linear activation function is 

applied to the output of each layer. However, in our study, we 

employ a linear CNN approach since the optimal predictor 

for the periodic components needs to be linear, as 

demonstrated in equation (2). 

As demonstrated by Borovykh at al. (2018), when 

considering a one-dimensional vibration signal 𝑋(𝑛) and a 

CNN with 𝐿 layers, the input in each layer is obtained from  

the output of the previous hidden layer and can be expressed 

as follows: 

 

𝑥𝑙(𝑛) =  𝑤𝑙 ∗𝑑 𝑥𝑙−1(𝑛)

= ∑ 𝑤𝑙(𝑚)

∞

𝑚=−∞

𝑥𝑙−1(𝑛 − 𝑑𝑙𝑚), 
(3) 

where 𝑥𝑙(𝑛) is the output of layer 𝑙, operator (∗𝑑) refers to 

the dilated convolution, 𝑑𝑙  and 𝑤𝑙  represent the dilation 

factor and weights (or kernel) of layer  𝑙  respectively. In 

contrast to the regular convolution in dilated convolution the 

filter is applied to every 𝑑𝑙th element in the input vector. This 

enables the model to effectively learn connections between 



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2023 

 

4 

distant data points, facilitating the efficient capture of long-

range dependencies within the input signals. 

In this study we utilize an architecture comprising 𝐿 layers of 

dilated convolutions, with the dilation factor increasing by a 

factor of 2 in each subsequent layer: 𝑑𝑙  ∈ [20, 21, . . 2𝐿−1 ] 

An example of three-layer dilated CNN is shown in Figure 2 

 

Figure 2. Example of dilated CNN with 3 layers  

2.2.1. Signal Decomposition 

The predicted values of the signal, obtained using 𝐿 layers of 

the proposed linear dilated CNN, can be expressed as 

follows:    

 �̂�(𝑛) = 𝑤𝐿−1 ∗𝑑 𝑤𝐿−2 ∗𝑑 … 𝑤1 ∗𝑑 𝑋(𝑛), (4) 

where �̂�(𝑛) is the estimated periodic part of signal 𝑋(𝑛). 

The filter weights at layer 𝑙, represented by 𝑤𝑙 , have a length 

defined by the kernel size, and the dilation factor at each layer 

increases by a factor of 2: 𝑑 ∈ [20, 21, . . 2𝐿−1 ]. 

The non-stationary part of 𝑋(𝑛) is estimated by subtracting 

�̂�(𝑛) as follows: �̂�(𝑛) = 𝑋(𝑛) − �̂�(𝑛). 

The model is trained is as follows:  

1. Each signal is partitioned into a training set and a 

validation set, with a split ratio of 80:20. 

2. The mean square error (MSE) between the predicted and 

actual signal values is calculated after each epoch for 

both the training and validation sets. 

3. Early stopping is used to avoid overfitting by stopping 

the training when the running mean of the validation set 

MSE no longer improves. 

From a signal processing perspective, the utilization of 

dilated CNNs replaces a single filter, as commonly employed 

in adaptive filtering, with a multi-scale filter bank [ 𝑤1 , 

𝑤𝐿−2,… 𝑤𝐿−1]. This approach is similar to Wavelet CNNs 

introduced by Fujieda et al. (2018), which aid in enhancing 

the spectrum resolution for estimating periodic components. 

The advantage of using linear dilated CNNs lies in their 

easier optimization process, as they do not involve pooling 

layers and more complex architecture like in Wavelet CNNs. 

2.2.2. Receptive Field of Dilated CNN 

An adaptive filter of length 𝑁 (receptive field) is equivalent 

to a single-layer dilated CNN with a dilation rate of 1 and a 

kernel size of 𝑁. This makes it easy to compare these two 

methods. 

The main advantage of utilizing a dilated CNN instead of 

adaptive filtering can be illustrated by comparing the number 

of parameters that need to be optimized. Assuming an 

equivalent receptive field 𝑁 (AR model order) in both cases, 

we can compare the number of parameters involved. 

The receptive filled of dilated CNN is defined in Araujo at al. 

(2019) and can be generally expressed as follows: 

 𝑁 = ∑ (𝑑𝑙(𝑘𝑙 − 1) ∏ 𝑠𝑖

𝑙−1

𝑖=1

) + 1

𝐿

𝑙=0

, (5) 

where 𝐿 is the number of layers, 𝑑𝑙  and 𝑘𝑙  are the dilating 

factor and kernel size respectively in layer 𝑙 , 𝑠𝑖 is the stride 

of layer 𝑖.  

In our study, we employ the following definitions to 

showcase the advantages of the method, without sacrificing 

generality. It is important to note that in the future, the 

parameters can be optimized according to specific 

application requirements. 

We adopt a specific configuration where the dilation factor is 

increased by a factor of 2 for each layer, stride is constant and 

equal to 1 and kernel size is the same for all the layers: 

 

𝑑𝑙 =  2𝑙 , 

𝑠𝑖 =  1 ∀ 𝑖, 

𝑘𝑙 = 𝑘 ∀ 𝑙,  

(6) 

Thus, the simplified expression for the receptive field of the 

dilated CNN can be given as follows: 

 
𝑁 = 1 + ∑(2𝑙(𝑘 − 1))

𝐿

𝑙=0

= 1 + (𝑘 − 1)(2𝐿 − 1), 

(7) 

2.2.3. New Method Advantages 

In complex vibration signals containing numerous periodic 

components, it is crucial to have a sufficiently large receptive 

field to ensure accurate predictions. To achieve the desired 

receptive field, we have two options: either optimize 𝑁 

parameters, as done in adaptive filtering, or optimize 𝑘 ∙ 𝐿 

parameters in the case of dilated CNN. 

The advantages of utilizing the dilated CNN can be observed 

in the table below, where different values of 𝑁 are considered 

(between 1000 to 15000) and correspond to the number of 

parameters to be optimized in the regular adaptive filtering.  
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To demonstrate the advantages, the model depth is set to 𝐿 =
8, and the kernel size 𝑘 is calculated using equation (10). 

For instance, when the receptive field 𝑁 is equal to 15000, 

the dilated CNN requires only 480 parameters to be 

optimized, which is approximately 31 times fewer compared 

to the number of adaptive filtering. 

Reducing the number of parameters provides notable benefits 

in terms of parameter optimization and allows for expanding 

the receptive field while keeping the optimization parameters 

minimal. This helps prevent model overfitting, unlike 

classical adaptive filtering, where insufficient signal length 

hinders accurate estimation of filter parameters for longer 

filter lengths. 

 

Table 1. Comparison between number of parameters in 

dilated CNN vs. adaptive filtering 

Parameters to 

be optimized in 

adaptive 

filtering (𝑁) 

Kernel 

size 𝑘  of 

dilated 

CNN 

Parameters to be 

optimized in 

dilated CNN, (𝑘 ∙
𝐿 where 𝐿 = 8) 

1000 5 40 

2000 9 72 

4000 17 136 

8000 32 256 

12000 48 384 

15000 60 480 

3. METHOD EVALUATION IN SIMULATIONS  

The purpose of the simulation is to assess the benefits of 

using the new approach compared to the regular adaptive 

filtering when estimating periodic signal components from 

vibrations.  

During the evaluation, we consider the dilated CNN model 

with depth=1 and dilation=1 as an approximation of the 

existing adaptive filtering where filter length is equal to 

receptive field 𝑁  of the model. Consequently, the 

performance of the new method will be assessed by 

comparing it to this model configuration. 

To evaluate these advantages, a dataset consisting of 1000 

signals was simulated. Each signal within the dataset contains 

both periodic and non-deterministic components. Evaluation 

criteria were calculated for each signal and then averaged 

over the entire dataset.  

3.1. Signals Simulation  

The simulation of signals similar to vibrations was carried out 

according to the following specifications: 

1. Time Duration: Each signal had a duration of 1 

second. 

2. Sampling Frequency: The signals were sampled at a 

frequency of 24 kHz. 

3. Periodic Components: To simulate signals 

resembling real vibrations, the periodic part of each 

signal was generated as a sum of 100 sinusoidal 

signals with specific properties: 

The frequency of each sinusoid was randomly 

generated from a Beta [2, 2] distribution to ensure a 

higher likelihood of peaks appearing in the middle 

of the signal spectrum, similar to real-world signals. 

The phase of each sinusoid was uniformly 

distributed in the range of [-π, π]. The amplitudes of 

the sinusoids were drawn from a uniform 

distribution ranging from 0 to 1. 

4. The non-deterministic part of the vibration signals 

was simulated as noise with a normal distribution 

and SNR=10dB to ensure that the noise variance is 

sufficiently high to evaluate the method in a noisy 

environment. 

5. Both the periodic and non-deterministic parts were 

convolved with a structure function simulated as a 

second-order transfer function with 5 poles. The 

resonance frequencies of the system were randomly 

drawn from a uniform distribution between 0 and 

fs/4, where fs=24000Hz represents the sampling 

frequency. 

6. To maintain consistency and comparability, the 

generated signals were normalized to the range 

between -1 and 1. 

Figure 3 presents an example of simulated vibrations in both 

the time and frequency domains. The top graph illustrates the 

periodic and non-deterministic components of the signal. In 

the bottom graph, the spectrum reveals peaks that correspond 

to the periodic part, while the background noise represents 

the non-deterministic aspect of the vibrations. 
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Figure 3. Example of simulated vibration signal (orange) 

along with its periodic component (blue). The top and bottom 

graphs correspond to snapshots from the time and frequency 

domains, respectively. 

3.2. Evaluation Criteria  

The proposed method was evaluated based on the following 

criteria given 𝑝(𝑛) and �̂�(𝑛) are actual periodic part and that 

estimated from vibrations by using dilated CNN: 

 The Mean Square Error (MSE) is estimated given 𝑀 =
24000 samples in every signal 

 𝑀𝑆𝐸 =
1

𝑀
∑ (𝑝(𝑛) − �̂�(𝑛))2𝑀−1

𝑛=0 , (8) 

 The Coefficient of Determination (𝑅2) 

 𝑅2 = 1 − 
∑ (𝑝(𝑛)−𝑝(𝑛))2𝑀−1

𝑛=0

∑ (𝑝(𝑛)−�̅�)2𝑀−1
𝑛=0

, (9) 

where �̅�  is the average value of actual periodic part of 
signal 

3.3. Model Configuration  

The evaluation of the method involved utilizing the different 

configurations of the dilated CNN in comparison to the 

adaptive filtering whose length was equal the receptive field 

of the model for consistent comparison: 

 Several model depths were employed, including 1, 2, 4, 

and 8 layers. The depth of 1 served as a baseline for 

comparison, whose performance corresponds to that of 

adaptive filtering. 

 The recipient field 𝑁  of the dilated CNN, which also 

corresponds to the length of adaptive filter we plan to 

compare was adjusted within the range of 1500 to 5000 

samples. The minimum 1500 was chosen to provide the 

minimum kernel size of 6 samples as following from 

equation (10)  

 Simulations of different receptive fields and model 

depths were conducted to assess the model's 

performance. The kernel size of the model is uniquely 

defined by its depth and receptive field size following 

equation (7) as follows: 

  𝑘 =  1 +
(𝑁−1)

(2𝐿−1)
 , (10) 

where 𝑁 is the receptive field and 𝐿 is the model depth.  

 Model optimization was performed by using AdamW 

algorithm 

 The model optimization metric was MSE 

3.4. Decomposition Results 

In the top graph of Figure 4, we present an example of 

simulated periodic vibrations (orange) alongside the periodic 

component extracted using the dilated CNN (blue) in the time 

domain. The bottom graph displays the spectrum, revealing 

peaks that correspond to the simulated periodic component 

(orange) and the estimated periodic component (orange) of 

vibrations. 

 

Figure 4. The periodic component of a vibration signal, as 

depicted in the previous figure, was extracted using a dilated 

CNN.  
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The simulation results for varying receptive fields and model 

depths are summarized in Figure 5. For each combination of 

receptive field and model depth, the kernel size was 

recalculated using equation (10). 

Figure 5. Simulation results evaluated using two criteria: 𝑅2 

(top) and 𝑀𝑆𝐸  (bottom). The model with depth=1 

approximates the adaptive filtering approach. 

Both evaluation criteria yield similar results: 

 The blue graph's behavior reveals the drawback of 

adaptive filtering (model depth=1). As the receptive field 

grows, its performance declines due to the increased 

number of parameters and limited signal size. 

Consequently, over-fitting becomes a concern in this 

estimation scenario. 

 When the dilated CNN is used, the estimation accuracy 

improves as the model depth increases, particularly for 

larger receptive field values. This fact demonstrates the 

improvement of the new method compared to the exiting 

one 

 When the receptive field is small, the behavior of the 

estimation varies noticeably with increasing model 

depth. The model with depth=8 underperforms other 

models for receptive fields ranging between 1500 and 

3200 samples. However, it begins to outperform them 

starting from 3500 samples. The reason behind this is 

that the kernel size depends on both the receptive field 

and depth, and as the model depth increases, the kernel 

size becomes too small. Further research is needed to 

optimize the kernel size for different applications. 

 The performance of all models deteriorates as the 

receptive field increases. However, models with larger 

depth exhibit better performance for larger receptive 

fields which demonstrate the advantages of the new 

method 

3.5. Simulations Conclusions 

The simulation results highlight the advantages of the new 

method for decomposing vibration signals:  

 The utilization of dilated CNNs instead of adaptive 

filtering improves the decomposition across a wide range 

of receptive fields, by adjustment of kernel size and 

depth. 

 Increasing the model depth yields significant 

improvement in decomposition accuracy for larger 

receptive fields.  

 The performance of the models with small depth tends to 

degrade as the receptive field increases due to the limited 

signal length for optimizing parameters.  

 The new method does not enhance performance for small 

receptive fields because the kernel size becomes 

excessively small as the depth increases, consequently 

negatively affecting performance. 

4. EXPERIMENTAL RESULTS 

This section evaluates a new method to enhance early-stage 

detection of bearing faults using real vibration data from an 

offshore 5MW wind turbine. The experimental setup 

involved the utilization of the WT-HUMS (Wind Turbines 

Health and Usage Management System) developed by RSL 

Electronics for recording the vibrations and rotating speed 

data, as illustrated in Figure 6. 
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Figure 6. Measurement system architecture and sensor 

locations. Vibrations acquisition was facilitated by a Main 

Processing Unit, which transmitted the recorded data to a 

Ground Station. 

The analysis employed a sensor installed on the gearbox 

output, near the generator, capable of sensing both the 

gearbox and generator components. The sensor had a 

sampling frequency of 24 kHz, and each recording had a 

duration of 1 second.  

To ensure data quality, a validation procedure was 

implemented to select only vibration recordings in which the 

rotating speed remained stable. The stability criterion was 

defined as a maximum change of 2% in rotating speed during 

the recording.  

The objective of the experiment was to enhance the detection 

of generator bearing faults by isolating periodic and 

broadband vibrations using various configurations of dilated 

CNNs. The parameters of the dilated CNN were adjusted in 

a similar manner as defined in the simulations (see section 

3.3): 

The example of the periodic and the non-periodic parts 

extraction is demonstrated in Figure 7 and Figure 8. 

 

Figure 7. Evaluation of the method for real vibration signals 

in time (top) and frequency (bottom) domains. Top graph: the 

signal (orange) and the extracted periodic component (blue). 

Bottom graph: the signal spectrum (orange) and the extracted 

non-periodic component (blue). 

 

Figure 8. Zoomed version of the previous example  
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Figure 9 depicts a portion of the spectrum of the original 

signal, along with the extracted periodic component obtained 

from real vibrations using various model configurations. In 

these configurations, the receptive field remains constant at 

5000, while the depth is varied from 1 to 8. The spectrum of 

the extracted periodic component (shown in red) appears less 

noisy in the frequency range without peaks and exhibits the 

highest resolution around the peaks when the maximum 

model depth is utilized.     

 

Figure 9. Spectrum of the original signal (black) and the 

extracted periodic component obtained from real vibrations. 

Model with depth=1 approximates adaptive filtering. 

Figure 10 illustrates the enhancement in bearing fault 

detection at early stages achieved by utilizing the new 

method. The figure displays the envelope FFT of the 

generator bearing BPFI frequency after removing the high-

energy periodic component from the signal. The peak 

amplitude associated with bearing faults is maximized when 

employing the dilated CNN with the maximum depth. These 

results exemplify the advancement in early bearing 

diagnostics facilitated by the new method. 

 

Figure 10. Example of envelope FFT at bearing BPFI fault 

frequency at early stages of the inner race defect for different 

model depths. The model with depth=1 approximates the 

adaptive filtering approach. 

5. CONCLUSIONS AND RECOMMENDATIONS 

In this study, we propose a new method using dilated CNN to 

accurately decompose vibration signals into periodic and 

non-deterministic components. Our method eliminates the 

need for system kinematics and rotating speed measurements. 

Simulations and experiments on real vibrations from faulty 

wind turbine generator bearings demonstrate significant 

improvements compared to conventional adaptive filtering 

techniques. The study also highlights the importance of 

model configuration, receptive field, and depth. Future 

research should focus on optimizing the method for different 

scenarios, exploring different dilation and kernel options, and 

considering the benefits of non-linear models for improved 

estimation.  
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