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ABSTRACT 

Often, in condition monitoring, datasets are asymmetric. That 
is, for most machines being monitored, there is no labeled 
fault data, only nominal data (hence, the dataset is 
asymmetric). Deep Learning and other neural network-based 
mechanization have difficulty solving this type of problem, 
as they typically require a full set of labeled data, both 
nominal and faulted. Zero-Fault Shot learning is a class of 
machine learning problems with no labeled fault training 
data. In this class of problems, only nominal data is used for 
knowledge transfer. In this paper, a mixed hypothesis testing 
and Bayes classifier it used to provide both inferences to the 
type of fault and also provide information as to when 
maintenance should be provided. This is done without any 
fault data and demonstrates knowledge transfer from a set of 
nominal components, greatly reducing the cost of 
implementation and fielding of a system. 

1. INTRODUCTION 

Condition monitoring facilitates predictive maintenance 
policies. For high-asset value equipment, such as a helicopter, 
predictive maintenance improves safety and operational 
readiness/asset availability. Safety is improved by identifying 
component damage that requires maintenance. Scheduled 
maintenance and inspection may not identify damaged 
components prior to failure. For example, the M250C47B 
turboshaft engine has 10 shafts, 12 gears, and 26 bearings. 
The service life of the turbine is 2000 hours, but other 
components are “on condition.” That is, periodic inspection, 
a chip detector, and oil analysis are used to determine the 

engine’s condition and when an overhaul is performed. But 
these inspections may miss damage due to contamination, 
improper maintenance, over speed, over temp, or over torque. 
Vibration monitoring is an accepted practice used to identify 
component damage that is occurring between overhauls or 
that are missed during an inspection. Being able to detect a 
damaged component, such as in the M250C47B engine, prior 
to failure clearly improves safety and improves operational 
readiness.  
 
Predictive maintenance, or the estimate of a Remaining 
Useful Life (RUL), allows operators to plan maintenance 
better. That is, the helicopter operator can turn an 
unscheduled maintenance event, such as a “Chips Light” (a 
chip detector triggers a cockpit warning that metalware 
particles in the oil. This requires a maintenance action), into 
a planned maintenance event. Helicopters often have required 
inspections every 50 or 100 hours. Given a predictive 
maintenance indicator, the operator can: order parts, ensure 
the correct skill set is available to perform the maintenance 
and schedule the repair along with the already required 
inspection.  
  
In some circumstances, condition monitoring and predictive 
maintenance may allow components to go “on condition” (a 
maintenance credit) or to extend the component time between 
overhauls (TBOs). The ability to change an existing 
maintenance practice through condition monitoring could 
greatly reduce operations and maintenance costs. The process 
extending TBO is covered in (SAE HR-1 Standards), while 
rules for airworthiness certification of a system to achieve a 
maintenance credit are outlined in the AC29-2C. However, 
achieving credit on an existing maintenance process is 
expensive and slow.  
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Alternatively, on new aircraft, the aircraft manufacturer may 
incorporate an inspection system that is based on condition 
monitoring. In effect, the manufacturer would develop two 
maintenance (Airlines for America, 2018). The first 
maintenance schedule would incorporate condition 
monitoring to extend intervals, and the second schedule, 
would be the fallback in condition monitoring systems data 
was not available.  
 
In all cases, the condition monitoring system (for rotorcraft, 
usually this is called a Health and Usage Monitoring System, 
HUMS) needs to be able to identify the faulted component 
and RUL. The ability to additionally identify the failure mode 
can allow for better fault degradation models. For example, 
if it is known that the bearing fault is an inner race vs roller 
element or outer race, it is possible to estimate the spall length 
(Medvedovsky, et al, 2022). Or knowing the type of fault on 
a shaft can improve the outcome of the inspection. For 
example, knowing that a shaft is out of balance requires a 
balancing tool, whereas a high 3/Rev would indicate a 
replacement of the Thomas coupling.  
 
Given the expense of manual fault detection and the level of 
expertise required, a number of data-driven detection have 
been proposed to reduce these costs and automate the process 
of fault detection. As mentioned, most of the time, there is 
limited or no labeled data available for training for vibration-
based fault detection. To address this, the concept of Zero-
Shot Learning (ZSL) has been proposed. ZSL has been 
widely used in image classification for its ability to recognize 
objects from a new distribution (e.g., images in nights instead 
of morning). The ZSL, in this case, is, using nominal data 
from machine A, we classify a fault, such as a bearing spall 
without any fault example, on both machine, A, and B (figure 
1). 
For application in mechanical diagnostics (Zhang, Wei, 
2022) highlights the limited availability of fault datasets and 
the cost and time required to collect such data. As with other 
ZSL approaches, (Zhang, Wei, 2022) proposes a data 
augmentation strategy and transfer learning (Zhang et al 
2022). In transfer learning, the diagnostic models reuse the 
previously learned knowledge is applied to the new diagnosis 
task, so that accurate fault identification can also be achieved 
using a few faulty samples.  
 
For example, consider a bearing. There are at least four 
failure modes: cage, ball, inner, and outer race fault. Bearing 
analysis can be performed using envelope analysis (Abboud, 
et al, 2017).  Envelop analysis used the spectrum of the 
absolute value of the Hilbert transform of a heterodyned 
signal. The condition indicator (CI) for an outer race fault 
would be the spectral power associated with outer race 
frequency, the BPFO (Ball Pass Frequency Outer). To 
represent an inner race fault, the power spectrum at the BPFO 
would be “Transferred” to the BPFI. There may be some 
scaling to the CI to take into account the difference in the 

transfer function from the fault to the sensor and to account 
physically that the inner race is modulated by the shaft rate 
(usually about half of the energy for a similar length spall). 
 

 
Figure 1 The suggested mechanization for zero-fault-shot 

learning. 
 
However, for most applications, there is no fault data 
whatsoever. In these cases, an alternative approach to transfer 
learning is proposed. This paper uses a non-gaussian 
hypothesis test to establish a health index threshold from 
which the individual CI thresholds are calculated. This, in 
turn, is used as the input of a Bayesian classifier for 
determining the fault class. The configuration data is then 
transferred to all other similar assets (e.g. Bell 407, 407GX 
or 407GXi). This is, in effect, true ZSL as it is based solely 
on nominal data, greatly reducing the cost of HUMS 
deployment. 

The main contribution of this paper is it demonstrates, using 
a mathematical model for nominal case, that a statical 
approach of nominal data can be transferred across different 
machines, to allows classification on both machine A, the 
training machine, and machine B, a machine on which we 
have no information, as illustrated in figure 1. 

2. BASIS OF THE HYPOTHESIS TEST MODEL 

Consider that many CI based on the spectrum. That is, the 
Fourier transform is applied to a time-domain signal, and the 
magnitude is taken. The CI is then for some frequency (k), for 
example, the BPFO:  

𝐶𝐼 = 	%𝑟𝑒𝑎𝑙(𝑘)! + 𝑖𝑚𝑎𝑔(𝑘)!    (1) 
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For a nominal bearing, the distribution of the real and 
imaginary part of the Fourier transform of k is Gaussian. 
Then, the distribution of k can be modeled as: 

1
2𝜋𝜎!5 𝑒𝑥𝑝 8−𝑟𝑒𝑎𝑙(𝑘)

!

2𝜋𝜎!5 : = 𝑓(𝑋)         (2) 
 And 

 1 2𝜋𝜎!5 𝑒𝑥𝑝 8−𝑖𝑚𝑎𝑔𝑒(𝑘)
!

2𝜋𝜎!5 : = 𝑓(𝑌).      (3) 
 

For the nominal condition, f(X) is the real part and f(Y), the 
imaginary part, are independent, such that P(X,Y) = 
P(X)P(Y). Then the joint probability function is: 
  
1
2𝜋𝜎!5 𝑒𝑥𝑝 8−𝑟𝑒𝑎𝑙(𝑘)

!−𝑖𝑚𝑎𝑔𝑒(𝑘)!
2𝜋𝜎!5 : = 𝑓(𝑋, 𝑌) 

(4) 
 

This probability distribution function (PDF) is in terms of the 
real and imaginary parts of the Fourier transform. However, 
one needs the PDF of magnitude M, as this is the CI in eq. 1. 
If F is defined as phase, then X = M cos(F), and Y = M 
sin(F). Setting dXdY = M dM dF, the joint probability 
function is:  
 

𝑀Φ
2𝜋𝜎!5 𝑒𝑥𝑝 A−𝑀Φ 2𝜋𝜎!5 B = 𝑓(𝑀,Φ)      (5) 

 
As phase is independent of magnitude and uniformly 
distributed, then:   
 

𝑓(𝑀,Φ) = 𝑃(𝑀)𝑃(Φ)      (6) 
 
As such, the probability distribution of f(M) can be shown to 
be (Proakis, 1995): 
 

∫ 𝑓(𝑀,Φ)𝑑Φ = 𝑀
2𝜋𝜎!5 𝑒𝑥𝑝 A−𝑀

!

2𝜋𝜎!5 B	"
#     (7) 

 
This defines a Rayleigh distribution, representing the CI for 
a signal failure mode, such as the inner race of bearing. 
However, as there are multiple failure modes (as noted for a 
bearing: cage, ball, inner or outer race faults), the strategy is 
to define the health of the component at the normalized 
energy of the component. That is, the Health will be defined 
as a function of n CIs normalized by power: 
 

𝐻𝐼 = 	0.5 𝑐𝑟𝑖𝑡5 √𝒀$𝒀   (9) 
 

Where Y is a vector of CIs that have identical and 
independent PDFs, while crit, is the critical value for a given 
probability of false alarm (PFA).  This assumption is 
enforced through the use of a whitening transformation using 
a Cholesky decomposition (Bechhoefer et. al, 2011). The 
Cholesky decomposition of a Hermitian, positive definite 
matrix results in A = LL*, where L is a lower triangular, and 

L* is its conjugate transpose. By definition, the inverse 
covariance is positive definite Hermitian, where S is the 
covariance of the CIs, such that: 
 

                       LL* = S-1, then Y = L × CIT      (10) 

The critical (crit, eq. (9)) value is taken from the ICDF for 
the HI for a given probability of PFA. For this paper, this is 
1e-6. As noted, CIs are assumed to have Rayleigh-like PDFs 
(e.g., heavily tailed). For Gear CIs and Bearing CIs (where 
magnitudes are biased by root mean square (RMS)), a 
transform is used to make the CI more Rayleigh. The 
transform "left shifts" the CI. For example, a shift such that 
the .05 CDF (cumulative distribution function) of the CIs is 
assigned to 0.0. 

Note that the PDF for the Rayleigh distribution uses a single 
parameter, b, defining the mean µ = b (p/2)0.5, and variance 
s2 = (2 - p/2) b 2.  As a result of applying the whitening 
transform, the value for b  for each CI will then be: s2 = 1, 
such that: 

𝛽 = 1.526 = 1
%2 − 𝜋 2⁄Q 		 				(11)	

For the HI equation in (9), the normalized energy of the CIs, 
it can be shown to be a Nakagami PDF (Bechhoefer, He, 
Dempsey, 2011). The descriptive statistics for the Nakagami 
are h = n, and w = 2n /(2-p/2), where n is the number of CIs 
used in the HI calculation. 
 
The HI provides actionable information as component health. 
The HI, as a hypothesis test, rejects the null hypothesis that 
the component is nominal. Measurements/acquisitions 
provide evidence of degradation and alert operations and 
maintenance personnel to the need for maintenance. From a 
maintainer perspective: 
 

• The HI reflect the current component's damage, 
where the probability of exceeding an HI of 0.5 is 
the PFA. 

• A warning (yellow) alert is generated when the HI 
is greater than or equal to 0.75: maintenance should 
be planned. 

• An alarm (red) alert is generated when the HI is 
greater than or equal to 1.0. Continued operations 
could cause collateral damage. 

• The threshold-setting process ensures that the 
probability of a false alarm is exceedingly small 
when the HI reaches 1.  
 

A component with a HI value does not define a probability of 
failure for the component nor that the component fails when 
the HI is 1.0, as the model is built around the alpha error 
(probability of false alarm), not beta error (probability of 
missed detection). Instead, defining maintenance at an HI of 
1 initiates a proactive policy to change operator behavior.   
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2.1. Zero-Shot Learning: Knowledge Transfer  

In most ZSL strategies, given one fault, knowledge transfer 
is used to model a different type of fault. In this hypothesis 
testing model, learning is performed through the question: 
over a set of CIs, what would the alarm threshold be for CI i, 
given that the other CIs were at their nominal value?  

In the process of calculating the CI covariance, it is a simple 
matter to calculate the mean value for each CI. Then for each 
CI in the HI, an optimization problem is solved to minimize 
the error of the CI value for a warning or alarm limit. For 
example, consider the case of a high-speed bearing in a wind 
turbine. The mean values and offset (correction to make the 
PDF more Rayleigh like) for the cage, ball, inner and outer 
race are for the nominal data, and alarm limit (calculated for 
the optimization listed in figure 2) are respectively. 
 

Table 1 Calculated Statistics for Example Problem 
 Cage Ball Inner Outer 

Mean 0.0696 0.1367 0.0552 0.0686 
Offset 0.0404 0.0713 0.0374 0.0444 
Alarm 0.5479 2.1526 0.2712 0.4533 
     
L 2.0328 0.0968 -1.6435 -0.4552 
  0.4779 0.1974 -0.9553 
   4.1447 -1.1515 
     2.0368 

2.2. The Bayes Classifier  

For a simple decision space, e.g., the bearing is nominal, or 
the inner race is damaged, P(Hi|z) is the probability that Hi is 
true given measured CI observation, z (bold indicates that z 
could be a vector of CI data). The correct hypothesis is the 
one corresponding to the largest probability of the n possible 
states of the component. The decision rule will be to choose 
Ho (the null hypothesis) if:  

P(Ho|z) > P(H1|z), P(H2|z),... P(Hm|z) (12) 
 

Else choose the decision space (e.g., damaged bearing due to 
a fault mode) with the greatest P(Hi|z). The null hypothesis 
P(Ho|z) will represent the default case of a nominal 
component.  
 
As an example, consider the binary case, where the decision 
rule becomes:  

%('!|𝒛)
%('"|𝒛)

𝐻+
≷
𝐻,
1              (13)   

This notation means that if the ratio is greater than 1, reject 
the Null hypothesis.  

 
Figure 2 Process Flow to Calculate Statistics for Bayes 

Classifier 
 
This is the maximum a posteriori probability criterion, where 
the selected hypothesis corresponds to the maximum of two 
posterior probabilities. Using Baye’s theorem: 
 

𝑃(𝐻-|𝒛) =
.(𝒛|'#)%('#)

.(𝒛)
, 𝑖 = 0,1             (14) 

 
where P(Hi) is the probability of Hi based on the measured CI 
observations (e.g. parameter data), such that: 
 

!(#/|𝒛)
!(#0|𝒛)

= '(𝒛|#/)!(#/)
'(𝒛|#1)!(#1)

                        (15) 

 
Rearranging terms, the test is then: 
 

.(𝒛|'!)

.(𝒛|'")

𝐻+
≷
𝐻,

%('$)
%('!)

           (16) 

 
Using (16), one can now define the likelihood ratio as: l(z) = 
p(z |H1)/p(z |H2). Because the likelihood ratio is continuous 
and differentiable, the natural log can be taken. As the log is 
monotonically increasing, the log likelihood ratio test 
becomes:  

𝑙𝑛(𝑙(𝒛))
𝐻+
≷
𝐻,

%('$)
%('!)

   (17) 

2.3. The Bayes Classifier Using the Normal Distribution  

The classifier uses the Normal distribution with a n 
dimension decision space. This decision space describes the 
parameters associated with the ZSL algorithm. 
 
The Null hypothesis: H0. It is defined as the mean of the 
parameter vector space, m0, representing the mean CI values 
for the nominal component. The probability distribution 
function for the parameter vector, z, given H0 is defined by 
as: 

for i = 1:n

CM = E[CIs];
S = COV[CIs];
Si = S^-1;
T = (0.5/crit)^2;
SIT = CHOL(SI x T)

find value that minimizes 
er such that:            

C = CM
C(i) = value
Coff = C-offset
Y = L*Coff
er = (1 - sqrt(Y’Y))
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𝑝(𝒛|𝐻𝟎) = 1
2𝜋"/$+ |Σ%|&%.(𝑒𝑥𝑝[−0.5(𝒛 −𝒎𝟎))Σ%&*(𝒛 −𝒎𝟎)] 

(18) 
 

While an alternative hypothesis (e.g. for i = 1 to n – 1 fault 
types) is:  
 
𝑝(𝒛|𝐻𝒊) = 	1 2𝜋"/$+ 		|Σ,|&%.(𝑒𝑥𝑝7−0.5(𝒛 −𝒎𝒊))Σ,&*(𝒛 −𝒎𝒊)8       

(19) 
 

The normalized distance squared measured between z and 
any m is:  

𝑑! = (𝒛 −𝒎𝒊)$Σ-3+(𝒛 −𝒎𝒊)         (20) 
 

Substituting the distance function into (17) gives the log-
likelihood ratio test: 

+
!
(𝑑,! − 𝑑-!) +	

+
!
𝑙𝑛 A|4$||4#|

B
𝐻-
≷
𝐻,

%$
%#

            (21) 

The most likely state of the component is the case where the 
normalized distance squared between z, and m0 (plus an 
offset that represents the log ratio of test case probabilities) is 
greater than the normalized distance between z and m1.  

3. EXAMPLE PROBLEM: AUX DUPLEX BEARING  

When developing a HUMS for an helicopter type, such as the 
Bell 407GXi, the system must first be receive a supplemental 
type certificate (STC) from the Federal Aviation 
Administration. There is, at this point, capability for 
developing the CIs for a component, but no configuration for 
fault detection. The aircraft after, two or three hours of flight 
time, generates CIs. In general, one wants enough data to 
estimate the covariance of the CIs (eq. 10).  

After sales of additional kits, say three aircraft, the 
covariance, offset, mean value and alert values are updated. 
With this small fleet, there is now a measure of the within 
aircraft variance, and between aircraft variance. When new 
aircraft systems are sold, such as the 407 (older analog 
aircraft) or the 407GX (first digital cockpit 407), they and all 
other aircraft with a similar transmission receive the same 
configuration. In this way, knowledge transfer of the 
configuration occurs.  

In September 2020, a HUMS was installed on a new 407GXi. 
The system configuration was developed Mar 2018 and later 
updated in Jan 2019.  When a new HUMS is installed, there 
is a review of the system to check for correct functionality. 
The review showed, occasionally, large energies on the 
Auxiliary Duplex bearing on the transmission (figure 3).    

Note that Figure 3 is a full year's worth of data and that 
initially, only a few hundred acquisitions were available. 
Recall that the rule is that maintenance is scheduled when the 
HI is greater than 0.75, and maintenance is recommended 
when the HI is 1.0. This decision is based on the filtered HI 

(burnt red line in Figure 3), as it is acknowledged that the data 
can be noisy.  

 
Figure 3 Aux Bearing Health from Sept 2020 to Sept 2021 

 
Using the Bayes Classifier (eq. 21) with configuration 
transferred from the original configuration a year prior (table 
1), the decision classes are: 1 is nominal, 2 is a cage fault, 3 
is a ball fault, 4 is an inner race fault, and 5 is an outer race 
fault. 

Figure 4 shows CIs used in the HI calculation in figure 3. 

 
Figure 4 Aux Bearing CIs 

 
There were approximately 20 acquisitions per hour.  In figure 
5, the upper plot shows that the classifier identifies a damaged 
ball in the bearing. This is further confirmed in figure 4. The 
lower fault shows the probability of class 3 occurring in an 
hour. This represents the probability of ball fault in the 
bearing.  
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Figure 5 Top: Decision Class from Bayes Classifier, 

Bottom: Probability of a Ball Fault 
 
One question is, why is the data so noisy? Consider that the 
Aux bearing is in the lowest part of the gearbox. As this was 
a new gearbox, a) it was unlikely that the bearing was 
damaged, and b) one could hypothesize that there were meal 
wear particles in the oil. As a ball rolls in its grove, metal 
particles are occasionally captured between the ball and the 
races.  This causes the larger “peaks”.  
 
After approximately 120 hours of run time, the bearing HI 
Trend was approaching 0.75. The decision was made to 
replace the gearbox oil and flush the gearbox (scheduled with 
an existing inspection). It was thought that this would remove 
the wear particles in the oil, and reduce the HI/ball CI. This 
did work (see figures 3, and 4), but evidently, the damage had 
been done. After a month (index 2800) the bearing HI, and 
ball CI increased. In figure 5, the probability of a ball fault is 
increasing. As the aircraft was coming for an annual 
inspection (at index 3312), the decision was made to replace 
the bearing (Figure 6). 
 

 
Figure 6 Aux Bearing with Ball Spall 

 
This repair returned the bearing HI to a nominal value and 
subsequently flew six hundred hours with no problems.  
 
This was a particularly difficult bearing fault as if it were an 
inner or outer race, or a rolling element vs. a ball, the CI and 
resulting HI would not be so time-dependent and random.  

4. CONCLUSION  

Zero-Shot Learning is essential for a commercially 
successful monitoring system deployment. While seeded 
fault testing is a powerful aid for learning and system 
evaluation, it is not practical for most applications as the 
expense and time required would be unacceptable. The lack 
of, basically, any fault data renders most ZSL techniques as 
not practical. This is especially true for aircraft where the 
design of reliability of the systems will, by definition, makes 
fault rare and dataset “long-tailed.” 

What is available to practitioners of condition monitoring is 
nominal data. What is presented is a ZSL approach based on 
hypothesis testing to define configuration statistics which can 
be used by a Bayes classifier for not only component health 
determination but also fault classification. This knowledge 
transfer is demonstrated in that configuration was developed 
initially on three Bell 407GX aircraft, was applied to new 
Bell 407GXi aircraft, and successfully detected a bearing 
fault.  

Demonstration of ZSL will allow acceptance for aviation 
systems to go “on condition.” Acceptance means that both 
manufactures of HUMS and aircraft Original Equipment 
Manufactors that buy those systems will work towards a 
certification process to allow for maintenance credit. This 
will facilitate urban air mobility, which is more cost-sensitive 
to maintenance than other aviation sectors.  
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