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ABSTRACT

This work presents an integrated architecture for a prognos-
tic digital twin for smart manufacturing subsystems. The
specific case of cutting tool wear (flank wear) in a CNC
machine is considered, using benchmark data sets provided
by the Prognostics and Health Management (PHM) Society.
This paper emphasizes the role of robust uncertainty quantifi-
cation, especially in the presence of data-driven black- and
gray-box dynamic models. A surrogate dynamic model is
constructed to track the evolution of flank wear using a re-
duced set of features extracted from multi-modal sensor time
series data. The digital twin’s uncertainty quantification en-
gine integrates with this dynamic model along with a machine
emulator that is tasked with generating future operating sce-
narios for the machine. The surrogate dynamic model and
emulator are combined in a closed-loop architecture with an
adaptive Monte Carlo uncertainty forecasting framework that
allows prediction of quantities of interest critical to prognos-
tics within user-prescribed bounds. Numerical results using
the PHM dataset are shown illustrating how the adaptive un-
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certainty forecasting tools deliver a trustworthy forecast by
maintaining predictive error within the prescribed tolerance.

1. INTRODUCTION

Industries with high-value physical assets incur significant
expense, to the tune of millions of dollars in a year, due to a
lack of usable insights into productivity optimization and, in
particular, unnecessary downtime created by scheduled pre-
ventive maintenance (Menon, Shah, & Coutroubis, 2018; Ra-
makrishna, Khong, & Leong, 2017; Vogl, Weiss, & Helu,
2019). There is significant recent literature on the develop-
ment of digital (computational) solutions for solving prog-
nostics related problems for such systems and subsystems.
At its core, prognostics requires uncertainty forecasting us-
ing a sufficiently accurate dynamic model of system degrada-
tion. Addressing issues of data sufficiency, accuracy and scal-
ability of model construction and uncertainty forecasting are
open questions, especially as it pertains to timely and trust-
worthy prediction of critical events that foreshadow system
failure (Wright & Davidson, 2020; Vogl et al., 2019). There
is keen interest in the academia and industry alike to develop
innovative tools that, by capturing their specific evolutionary
characteristics, effectively predict failure before it happens.
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This allows operators to take corrective action in time, ulti-
mately maximizing asset productivity.

Computational representations of complex evolutionary mod-
els, like those used for prognostics, have been referred to
in the last few years as digital twins. Unfortunately, the
term “digital twin” has transformed into a catch-all phrase
that conveys little meaning in the absence of proper context
(Wright & Davidson, 2020; Errandonea, Beltrán, & Arriza-
balaga, 2020). As explained in Ref. (Wright & Davidson,
2020), not only does the term digital twin vary from applica-
tion scenario and industry, but also it has started to face the
natural backlash associated with being identified as a wild-
card term. With the object of reducing the vagueness of the
term, Ref.(Wright & Davidson, 2020) proposes a definition
of digital twin with three pillars: (i) a computational model
of real-world object or process, (ii) an evolving data-set relat-
ing to the object or process, and (iii) a means of dynamically
updating the model to better conform to the data. Worth high-
lighting in this definition is the central role that data plays.
This is the case because it enables the direct and continuous
connection with the behavior of the real-life object/process
as it evolves in its operation. Naturally, such a strong re-
liance on data from the real-world object/process automati-
cally sheds light onto the treatment of uncertainty in the mea-
surements, as it is a necessary component in imbuing physical
measurements with adequate meaningfulness. Thus, properly
accounting for and handling uncertainty, especially of the out-
put quantities, is another key feature of any adequate digital
twin, since it offers avenues to discern how robust the model
results are and how much trust can be placed in them (Wright
& Davidson, 2020)(Jimenez, Schwartz, Vingerhoeds, Grabot,
& Salaün, 2020). More recent review articles (Thelen et al.,
Aug, 2022) recognize the important role of uncertainty quan-
tification in the context of digital twins.

The use of digital twins in smart manufacturing is hardly a
new idea. Digital twins have been conceptually and, in some
cases, experimentally studied in almost all stages and dimen-
sions of the manufacturing process of different industries: de-
sign stage, production stage and service stage (Tao, Zhang, &
Nee, 2019, Ch. 2). See also refs. (Lu, Liu, Wang, Huang,
& Xu, 2020; Qi & Tao, 2018; Li, Lei, & Mao, 2022; Lat-
tanzi, Raffaeli, Peruzzini, & Pellicciari, 2021) for a list of
comprehensive reviews on digital twin mediated smart man-
ufacturing. The specific case of prognostics and health man-
agement has been investigated in some depth as well, with
developments in the sub-stages of observation, analysis and
decision (Tao et al., 2019, Ch. 7). Notwithstanding, proper
treatment of the uncertainty inherent in the input data, the
model and (especially) the output data, continues to be mostly
unaddressed by the research community and manufacturing
industries, resulting in considerable difficulties when evaluat-
ing the robustness and the trustworthiness of the digital twins’

operation and output. We address this issue in the present
work.

This paper concerns the framework of digital twins for the
purpose of system prognostics, i.e. the task of predicting
future system states over a process-dependent time window,
leading to insights on system performance, including diver-
gence from nominal and potential failure. Therefore, all char-
acterizations and definitions must be understood within the
boundaries of this stated prognostics application. Notably, in
addition to incorporating the three-component framework of
digital twin described above (model, evolving data, dynamic
model updates) via a modular architecture, this paper puts
front and center the characterization and forecasting of un-
certainty emergent from models and data, leading to a quan-
tifiably trustworthy prediction of system behavior for perfor-
mance optimization and better maintenance scheduling.

2. CONTRIBUTION AND PROPOSED ARCHITECTURE

As stated in the previous section, a central point in the
present work is the characterization and controllably accu-
rate forecasting of uncertainty in the dynamic models em-
ployed with the digital twin. There are many frameworks
for uncertainty forecasting (Yang & Kumar, 2019b) and each
seeks to accurately propagate the state probability distribu-
tion through time. Traditionally, forecasting tools have been
open-loop: see Fig.(1a) for an open-loop Monte Carlo propa-
gation framework. The shown approach combines sensor data
with system dynamics models and run simulations of future
performance by a priori guessing the size of the simulation
(number of initial conditions). The accuracy of the forecast
of the quantities of interest (QoI) can only be estimated after
the simulation is completed. If required error bounds are not
achieved, a new simulation must be executed, and there ex-
ists no clear guidance on how the size of the simulation must
be modified. This backward looking (retrospective) tuning
is expensive and can easily take days to complete. Achiev-
ing a stipulated level of accuracy in uncertainty forecasting
in complex systems, however technically difficult, configures
a crucial aspect in the development of any digital twin. This
has two supporting ideas:

• Trustworthiness. Decisions that depend on system forecasts
need the forecast to be trustworthy, i.e., of decision-quality.
For example, a milling machine with a predicted tool fracture
length (QoI) exceeding 10−6 m would have to be serviced. A
simulation that can predict this QoI within a guaranteed ac-
curacy bound of 10−8 m (1% error) is trustworthy, whereas a
simulation with unknown or unpredictable error bound would
not be considered so.

• Confidence. Prognostics engineers identify key indicators
of failure, whose expected order of magnitude estimates
are known. E.g., in a milling machine operating in certain
conditions, it may be known that the cutting speed (QoI) is
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(a) Complex System Forecasting via Open-Loop Monte Carlo

(b) Closed-loop Adaptive Monte Carlo (AMC)

Figure 1. Traditional Monte Carlo framework for complex
systems forecasting and the Adaptive Monte Carlo platform.

about 4584 RPM, and speeds in excess of 5000 RPM indicate
off-nominal operation and malfunction. A forecast that guar-
antees prediction of this QoI within 4.5 RPM (1% differential
error) may instill sufficient confidence to recommend that the
machine is maintained and repaired.

The work in this paper differentiates itself by making adap-
tive uncertainty forecasting the cornerstone of the prognostic
digital twin. The closed-loop, adaptive Monte Carlo (AMC)
forecasting platform shown in Fig.(1b) eliminates guesswork
from achieving trustworthy uncertainty forecasting in com-
plex systems. It enables front-end accuracy control in the
prediction of user-defined quantities of interest (QoI: see
Sec.(3.1.2)). It has a closed-loop architecture such that the
simulation continuously monitors its performance vis-à-vis
user stipulated QoI error bounds. When off-nominal fore-
casting error is detected, it determines optimal modifications
to reestablish specified forecasting accuracy without any user
intervention. In contrast to the feedback loop in Fig.(1a),
which requires user adjustment after the general simulation
has been finished, the feedback loop for simulation adjust-
ment in Fig.(1b) is automatic and takes place while the gen-
eral simulation is executing (see Secs.(3.1.3) and (3.1.4)).
Fig.(2) now illustrates the overall proposed prognostic dig-
ital twin. There are three main modules, moving from the
right and moving to the left:

1. The Uncertainty Quantification (UQ) Engine: which in-
cludes the adaptive AMC platform and a machine emu-
lator. The machine emulator is a dynamic model tasked
with generating future operational time series data for
the process under expected operating conditions. In this
work, a seasonal ARIMA model is employed to construct
the machine emulator: Sec.(3.2).

2. The Dynamics Learning Engine: which employs ma-
chine learning tools in conjunction with available physics
insights to build a data-driven surrogate of the the ma-
chine degradation process. This paper considers tool-
wear dynamics. To keep the development straightfor-
ward, a simple LASSO regressor is employed to build
the surrogate dynamic model (Sec.(3.4)).

3. The Sensing Module: which performs pre-processing on
available multi-modal sensor and historical data and ex-
tracts key features (F⋆ in Fig.(2)) that impact the dy-
namic evolution of machine degradation (tool flank wear,
in this case). This key step of dimensionality reduction
is achieved in this paper by employing a simple LASSO
framework, described in Sec.(3.3.2).

In summary, the AMC platform integrates with two data-
driven sub-modules: i.) the dynamics surrogate in the dynam-
ics learning engine that translates key features (F⋆ of a single
run of the machine) to a numerical representation of machine
degradation (flank wear in this paper), and, ii.) the machine
emulator that creates time series sensor data representative of
future runs of the machine, allowing a sweep of operational
scenarios to support predictive uncertainty quantification in
the evolution of flank wear. The next section describes indi-
vidual sub-modules of the proposed prognostic digital twin.

3. DESCRIPTION OF SUB-MODULES

3.1. Adaptive Monte Carlo and Uncertainty Quantifica-
tion

The architecture of the Adaptive Monte Carlo (AMC) plat-
form (Fig.(1b)), as originally conceived in (Yang & Kumar,
2019b), requires a complete description of the system dynam-
ics via differential equations. In almost all practical appli-
cation scenarios, however, such a description is exceedingly
scarce, and data-driven evolutionary models must be used
instead. Measurement and simulation (from finite-element-
method-based software packages, for example) data is abun-
dant nowadays, as well as powerful machine machine learn-
ing tools that can exploit the data to construct dynamic evolu-
tionary models. In this paper we present the extension of the
AMC platform to operate with data-driven evolutionary mod-
els in the context of prognostics for smart manufacturing. A
schematic of the proposed data-driven system is presented in
Fig.(2).
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Figure 2. Schematic of the Prognostic Digital Twin.

3.1.1. System Dynamics

A nonlinear dynamic system with initial condition uncer-
tainty and random excitation is given by the following
stochastic differential equation (SDE) (Øksendal, 2003):

dx = f(t,x)dt+ g(t,x)dB(t), x0 ∼ W0(x) (1)

where x ∈ RN denotes the system state and x0 the initial
condition with associated probability density function (pdf)
W0. The “process noise” term, dB(t), is an M -dimensional
Brownian motion term with zero mean and correlation func-
tion Qδ(t1 − t2). The nonlinear vector function f(t,x) :
[0,∞) × RN → RN corresponds to the deterministic part
of the system and g(t,x) : [0,∞) × RN → RN×M is
a nonlinear matrix noise-influence function. For stochastic
systems given in Eq.(1), the propagation of state pdf W(t)
is given by the corresponding Fokker-Planck equation. In
the case where process noise is absent, Eq.(1) reduces to:
dx = f(t,x)dt, x0 ∼ W0(t0,x), and the time evolution of
the state-pdf W0(t0,x) is given by the stochastic Liouville
equation (SLE). In Monte Carlo simulations (MCS), realiza-
tions of initial uncertainty are generated via random sampling
{Xi

0}ni=1 ∼ W0, where n denotes the total number of parti-
cles in the ensemble. Each particle is forward propagated in
time through system dynamics to obtain an approximate rep-
resentation of the evolved state pdf. That is,

Wt(x) ≈ {Φt(X
i
0)}ni=1 (2)

where Φt(·) is the system dynamics map that maps initial
conditions to the current state. For dynamic systems with
no process noise, Φt is the state-transition function x(t) =
Φt(x0) (Yang & Kumar, 2019a). The state-transition map
Φt(·) can be either physics-based (e.g., ordinary or stochastic
differential equations) or data-driven, such as recurrent neural
networks, autoencoders, etc.

3.1.2. Quantities of Interest (QoI) and Error Bounds

The AMC platform performs ensemble adaptations based on
the difference between its measured forecasting accuracy and
stipulated error bounds. Quantities of interest (QoI) are used
to characterize the transient performance of MCS as it relates
to Wt. Each QoI is application specific and can be defined as
anything from a simple state mean to the instantaneous heat
flux on a vehicle. In general, QoIs are defined as the expected
value of a function of the state, h(xt), where xt is the current
state with density function W(xt) ≡ Wt (Yang & Kumar,
2019b):

h(xt) = EWt
[h(xt)]︸ ︷︷ ︸

Quantity of Interest: QoI

=

∫
Ωt

h(xt)Wtdxt (3)

In the above expression, Ωt is the state-space at time t. Prior
to executing the AMC platform, its user must decide what
application specific quantities (h(xt)) must be forecast within
prescribed bounds, and, what those prescribed bounds need to
be to achieve a trustworthy forecast. While this is a nontrivial
task, the relationship between the QoI and the MC approxi-
mation error developed in Ref. (Yang & Kumar, 2019b) al-
lows AMC to be implemented in a wide variety of scenarios.
Continuing under the assumption that the state-transition map
Φt(x0) = xt is injective and continuously differentiable,
Eq.(3) can also be expressed in terms of the initial state-pdf:

EWt [h(xt)] =

∫
Ω0

h[Φt(x0)]︸ ︷︷ ︸
St(x0)

W0dx0 = EWo [St(x0)] , (4)

where Ω0 is the state-space at time t0. St(·) ≜ (h ◦ Φt)(·) =
h[Φt(·)] is an integrable composite function and h(·) is appli-
cation dependent. For the complete derivation of Eq.(4), see
Ref.(Yang & Kumar, 2019b). QoIs form the basis of ensem-
ble adaptations in the AMC platform through the so-called
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Koksma-Hlawka inequality given below (Niederreiter, 1978):

|h− h̃n| ≤ D({Xi
0}ni=1)V (St) , (5)

where h̃n is the sample-based approximation of h. The left
hand side of the above equation represents the departure of
the the AMC forecast from the true QoI value. On the right
hand side, V (St) is the variation of the composite function
St, and D({Xi

0}ni=1) denotes the discrepancy of the ensem-
ble at the initial time t0. The function V (St) is not “control-
lable”, but the discrepancy function, D({Xi

0}ni=1) is, since
the initial state distribution is known. As a result the product
of terms on the right hand side of Eq.(5) can be controlled
by performing an optimization of the discrepancy function.
Eq.(6) below denotes the performance measure utilized in
AMC to quantify the departure of the MC approximation
(h̃n) from the truth (h) in direct terms of the quantity of in-
terest (Yang & Kumar, 2019b).

σϵn︸︷︷︸
Performance measure

=

√
E[(h(xt)− h̃n(xt))2]

=
√
E[ϵ2n] →

σ(St((x)0))√
n

(6)

In AMC, the performance guarantee is defined as the ability
to hold the estimation accuracy of the user-defined QoI within
the prescribed accuracy bound. To estimate the quantity de-
fined in Eq.(6), an approximation technique known as boot-
strapping is employed. As described in (Efron, 1979), boot-
strapping is introduced to solve the problem of estimating a
sampling distribution of a specified random variable given a
random sample X = (X1, X2, . . . , Xn) from an unknown
probability distribution F (Efron, 1979).

3.1.3. Particle Addition

The theoretical basis of particle addition in the AMC platform
is the Koksma-Hlawka inequality. Per Eq.(5), QoI forecasting
error can be reduced by adding new particles that minimize
ensemble discrepancy at the initial time. This optimization
problem is difficult, on account of high dimensionality and
non-convexity of the discrepancy function. To introduce the
ensemble enhancer sub-module within the platform, first as-
sume that the current particle ensemble at time t can be rep-
resented by P p

t with p particles. Let the corresponding initial
ensemble at time t0 be P p

t0 ∼ U [0, 1)N since a uniform en-
semble can be transformed into any target state-pdf. Without
loss of generality, assume the propagated mean is the tracked
QoI which allows the current MC estimation error (standard
deviation of the MC estimation error) to be estimated via
bootstrapping and denoted by Ep

t = E(P p
t ). Now, if the

estimation error is greater than the user-prescribed threshold
(EP

t > EU∗

t ), the ensemble enhancer is activated and new par-
ticles are introduced until the MC accuracy falls back within
the defined thresholds(Yang & Kumar, 2019b). It should be

noted that all particles are added at time t0 to P p
t0 and then for-

ward propagated to join the current ensemble at time t. The
ensemble enhancer within the AMC platform (particle addi-
tion process) reduces discrepancy by exploiting the space-
filling property of the ensemble to select particles for addi-
tion to P p

t0 . A space-filling sample design leads to particles
that fill out the domain of interest as homogeneously as possi-
ble (Janssen, 2013). Examples of some space-filling designs
are Latin hypercubes, fractional designs, and orthogonal ar-
rays (Grosso, Jamali, & Locatelli, 2009; Simpson, Poplin-
ski, Koch, & Allen, 2001; Fang & Lin, 2003). There also
exists several measures for quantifying this property, which
include, but are not limited to, distance, entropy, and discrep-
ancy. For the adaptive Monte Carlo platform, the discrep-
ancy measure was chosen due to the relationship between the
QoI (i.e., h(xt) = E[h(xt)]) and discrepancy given by the
Koksma-Hlawka inequality (Eq.(5)). A numerically tractable
approximation of discrepancy, D(P ), was derived by Hicker-
nell (Hickernell, 1998) and is given by Eq.(7):

D2
CL2

(P ) ≈
(
13

12

)N

− 2

n

n∑
k=1

N∏
i=1

(
1 +

1

2
|xki − 0.5| − 1

2
|xki − 0.5|2

)

+
1

n2

n∑
k=1

n∑
l=1

N∏
i=1

[
1 +

1

2
|xki − 0.5|

+
1

2
|xli − 0.5| − 1

2
|xki − xli|

]
, (7)

where N is the dimension of the state space, and n is the cur-
rent number of samples plus additional candidates. With this,
the particle addition procedure thus corresponds to solving
the optimization problem defined by Eq.(8) directly

xp+1
∗ = arg min

x∈RN

[
D2

CL2
(P

(p+1)
t0 )

]
, (8)

where D2
CL2

is Eq.(7) and xp+1
∗ denotes the next optimal can-

didate to be included in P p
t0 thereby defining the P

(p+1)
t0 en-

semble. In other words, discrepancy (Eq.(7)) is minimized
within the ensemble enhancer for every particle addition.

3.1.4. Particle Removal

During forward propagation, the error related to the current
ensemble may decrease depending on the change in variation
of the function St. That is, the error of the current ensemble
may outperform its desired boundary (EP

t < EL∗

t ) such that
a reduction in ensemble size can be performed in the inter-
est of reducing the computational load of future propagation
(Yang & Kumar, 2019a). Within the AMC platform, particles
are “halted” and not carried with the ensemble to the next
time step rather than completely “removed.” This allows par-
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ticles to be reactivated at a later time step if needed without
having to execute the optimization routine and propagate the
particle(s) starting from t0. Candidates are identified for re-
moval based on their current significance with respect to the
evaluated state probability density function. Particles with
lower weights (evaluated state-pdf values) are considered for
removal with a greater probability. The method of character-
istics (MOC) can be used to compute the solution of the SLE
at a particle’s current location in the state space at the current
time (Yang, Buck, & Kumar, 2015). Using MOC, the ODE
governing the evolution of the state pdf for each ensemble
particle is given via (d/dt)W(t,x) = −W(t,x) · ∇ · f(t,x)
with the solution

W(t,x(t)) = W0[x0(x(t))] exp

[
−
∫ t

t0

∇ · f(τ,xc(τ))dτ

]
,

(9)
where x0[x(t)] = Φ−1

t (xt) are the initial conditions with re-
spect to the particle’s current location x(t). Considering the
current ensemble (P p

t ), the probability of removing a member
particle (xi

t) from the ensemble is given by

Pr(Remove xi
t) = 1− W(t,xi

t)∑p
j=1 W(t,xj

t )
(10)

where i = 1, 2, . . . , p. Particle removal continues un-
til the measured error is above the specified lower bound,
En
t > EL∗

t , thereby alleviating additional computational cost.
The AMC platform has been shown to generate uncertainty
forecasts with the above described accuracy guarantees in
aerospace problems such as reentry dynamics and space situ-
ational awareness. Due to the broader scope of this article, we
refrain from presenting in-depth results outlining the advan-
tages of the AMC framework compared to traditional Monte
Carlo. The interested reader is encouraged to look at the re-
sults documented in Refs.(Vanfossen & Kumar, 2023; Yang
& Kumar, 2019b, 2019a)

3.2. The Machine Emulator

In order to achieve robust predictive uncertainty quantifica-
tion, a machine emulator is needed that creates realistic future
operational time-series data. This is similar in effect to a data-
augmentation system that create realistic time series sensing
data “from the future”. While further work is required in this
area to achieve high-fidelity emulation, this paper employs a
lightweight and functional method that can predict the time
series generated from CNC use. A suitable tool for mod-
eling and predicting time-series data is autoregressive inte-
grated moving average (ARIMA) models (Hamilton, 1994).
Recall first an autoregressive moving average (ARMA) model
of order (p, q), in which given a time series Xt, we have

Xt =

p∑
i=1

αiXt−i +

q∑
i=0

θiεt−i , with θ0 = 1 .

where αi, θi are coefficients that are determined by applying
least squares on the predicted values of a exiting data set of
the time series. Intuitively one can think of these coefficients
as a measure of the contribution of the ith previous time step
to the value at the current time step. This reflects the belief
that the time series is a stationary process after we have taken
enough differences with the previous time steps (and scale the
previous time steps by αi). More concretely, if we look at

Xt − α1Xt−1 − · · · − αp′Xt−p′ = εt + · · ·+ θqεt−q,

we can see that the left hand side is just an aggregate of sev-
eral time steps of Brownian motion. To get to an ARIMA
model we can refactor this with the lag operator L:

(1−
p′∑
i=1

βiL
i)Xt = (1−

q∑
i=1

φiL
i)εt

where the βi and φi are such that once we expand them we
get equality with the expressions above. Now, if we believe
that a major factor in the recurrence is just the previous time
steps without scaling, then some of the β’s above are simply
1. In this case we expect to be able to factor out of the form
(1− L)

d. If we add in the factor above to the expansion, our
expression for the time series is similar to how it was before:

(1−
p′∑
i=1

βiL
i)(1− L)dXt = (1−

q∑
i=1

φiL
i)εt

We could simply adjust the βi’s to approximate the origi-
nal formula. Now we have an ARIMA model (not just an
ARMA) of order (p, d, q):

(1−
p∑

i=1

βiL
i)(1− L)dXt = (1−

q∑
i=1

φiL
i)εt .

The advantage here with the order d terms is that they do
not have to have coefficients trained by the data. Of course,
we now have 3 instead of 2 hyper parameters to fit ((p, d, q)
versus (p, q)).

Seasonal ARIMA Model: The final iteration we have here is
to add a seasonal component to the ARIMA model. The mo-
tivation behind such a model can be seen in the following ex-
ample: If one considers predicting construction prices, then
the last 4 weeks of construction spending are very relevant,
but the construction spending of 12 months ago (in a 4 week
window) are also relevant. Thus, a seasonal ARIMA model
with order (p, d, q), and with seasonal order (P,D,Q,m) is
as follows:

(1−
p∑

i=1

βi,1L
i)(1− L)d(1−

P∑
i=1

βi,2L
i∗m)(1− Lm)DXt
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= (1−
q∑

i=1

φi,1L
i)(1−

Q∑
i=1

φi,2L
i∗m)εt

Now we can look back a full period of data, and with the way
the polynomials expand out, we have terms for the previous
p time steps. Additionally, if we go back a period we have
terms for the p previous time steps of that period, and we
have that for the previous P periods.

Generating Time series: The ARIMA sub-module generates
a time series from a ARIMA model trained on each run of
the PHM data set. In the case of the PHM data set we gener-
ate 7 time series for the 7 sensor series of each machine run.
To predict an individual sensor’s time series, a time series is
generated from each of the runs within the training data set.
These time series are then combined weighted on each of the
AIRMA model’s performances in predicting the last 10% of
it’s runs time series. That is to say if run 1’s ARIMA model is
twice as accurate as run 2’s ARIMA model than it will receive
twice the weighting in the aggregate sum.

3.3. Sensing Module

The sensing module is tasked with pre-processing the training
multi-modal sensor. It identifies a small set of features that
are most impactful to the prediction of flank wear (QoI).

3.3.1. Data Pre-processing

Data of manufacturing machines is of three distinct forms,
namely (i) evolution data, (ii) operation data and (iii) time-
series data. The pre-processing procedure of the data diverges
into their own respective sub-procedures:

(i) Evolution data is information that can only be measured
when a machine is not in operation, such as the wear of a
machine and the cumulative lifetime of a machine. There-
fore, the evolution data relevant to a given operation are mea-
surements made before and after along with their differences.
However, only measurements made after operation are usu-
ally reported. So when missing, the remaining evolution data
is populated using data of preceding operations.

(ii) Operation data is information relating to how a machine
was operated, such as machine settings, use case identifica-
tion numbers, etc. Data of this form can either be continuous
or categorical. For continuous information, the data is scaled,
shifted, and normalized such that all values lie within the in-
terval [0, 1]. For categorical information, the data is encoded
as new binary features.

(iii) Time-series data is information carrying sensor or con-
trol signals recorded during machine operation. When the
length of operation is constant, many standard signal process-
ing methods are applicable. However, in industry, operation
of manufacturing machines occurs on infrequent intervals. As

a result, the methods used to characterize the time-series are
agnostic to its length and are as follows:

1. The first of such methods quantifies any jumps present
across operations by differencing the final time-series
value of the preceding operation with the initial value of
the current operation.

2. The second of which quantifies the joint statistical prop-
erties of the time-series’ by determining parameters of
the joint moment generating function, calculated up to
the 5th moment.

3. The third of which quantifies the key frequencies present
in the time-series with the Fourier Transform. Ten fre-
quencies with the greatest Fourier coefficient magnitudes
are sampled from high, medium, and low frequency
ranges.

The result of data pre-processing is a large set of potential fea-
tures; however, identification of a more tractable small set of
features to construct the evolutionary model is still required.

3.3.2. Feature Selection

Selection of the best characteristic data features to serve as
model parameters is performed by the Least Absolute Shrink-
age and Selection Operator (LASSO) (Tibshirani, 1996) and
was chosen for its well documented applications in the ma-
chine learning field. LASSO is a regression analysis tech-
nique that adds a 1-norm regularization term to the stan-
dard least-squares formulation of a regression procedure. The
LASSO problem can be formulated as follows:

min
β∈Rp

∥y −Xβ∥22 + λ∥β∥1 , (11)

where ∥ · ∥2 and ∥ · ∥1 denote respectively the 2- and 1-
norm. β represents the vector of p regression coefficients and
λ−0 represents the regularization parameter. The appropriate
value of λ for best performance must be determined, and al-
though numerous techniques exist, by far the most commonly
adopted is cross-validation.

The most relevant feature of LASSO is encapsulated by the
structure of the second term of the cost function in Eq.(11)
and its influence on the behavior of the regression coefficients
β once they are found: for a large enough λ, a great degree of
sparsity is induced in the LASSO coefficients β, as the major-
ity of them are made 0. This then means that only a handful
of predictors in X are active in the solution of Eq.(11). Such
a feature establishes LASSO as one of the main mechanisms
to perform feature subset selection, as it automatically allows
one to represent the set of responses with a minimal set of
“relevant” predictors (Hastie, Tibshirani, Friedman, & Fried-
man, 2009, Chapter 3). Once the solution β∗ to Eq.(11) is
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obtained, the estimate ŷLASSO is then found via:

ŷLASSO = Xβ∗ . (12)

To employ the LASSO procudure, the QoI (flank wear) and
all features dependent on its known value are first extracted
from the large feature set and defined as a set of potential true
responses y. Then, the remaining large feature set is defined
as predictors X. Finally, the LASSO framework determines
the set of β∗ containing at most the number of predictors de-
manded by the modeling method. Of the found ŷ solutions,
that which constructs the QoI most accurately defines the fea-
ture selection by its β∗ used to downsize the large feature set
to the small feature set.

3.4. Data-driven Evolutionary Model

The Dynamics Learning Engine seeks to model the true un-
derlying dynamics of a system, without knowing the dynam-
ics themselves. As a result, we consider data-driven methods
to map a subset of generated statistical features to the QoI
(flank wear). Initially, we consider methods that perform this
mapping with significant nonlinearity, which includes linear
regression with autoregressive terms or nonlinear basis, as
well as Feed-Forward Neural-Network (FFN) architectures.
Upon further evaluation, we found that regression with L1
regularization produced noticeably lower mean-squared er-
ror losses when compared against FFN’s trained on the same
data. As a result, we utilize this L1 regularization when pre-
dicting the flank wear. The constructed small feature set in
Sec.(3.3.2) isolates the characteristics which impact the sys-
tem most significantly. From here, the system’s dynamics are
approximated by mapping the “differenced” QoI, or the dif-
ference between the QoI of the prior and current operating
conditions, from the small set of features. We make our pre-
dictions of the QoI (flank wear) by directly using this LASSO
model, as shown in Eq.(12).

4. RESULTS AND DISCUSSION

4.1. Application Scenario

The 2010 Prognostic and Health Management (PHM) Soci-
ety’s annual data challenge competition tasked participants
with estimating the remaining useful life on a CNC milling
machine tool bit from force, vibration, and acoustic sensor
information (Society, May 18, 2021). The dataset contains
flank wear measurements of the three cutting edges of 6 mm
ball nose tungsten carbide cutters. These measurements were
taken proceeding CNC operations with sensor time series
measurements gathered during CNC operations on 50 kHz
sensing channels. Data was collected for 3 separate cutters,
each conducting 315 operations (Total of 945 runs). For all
operations, the CNC machine was set with 10,400 RPM spin-
dle speed, 1,555 mm/min feed rate, 0.125 mm radial depth
of cut, and 0.2 mm axial depth of cut (Society, May 18,

Figure 3. Mean Squared Error in LASSO Predictions vs. Fea-
ture Compression Ratio (all cases): PHM data set.

2021). Each run contains time series sensor readings on the
order of 100,000 samples. Downsampling was performed to
standardize the input to the ARIMA training module reducing
the PHM data set to 1000 samples per run. To be compatible
with the proposed twin, the QoI was defined as the average
flank wear of all three flutes. For training across all feature se-
lection, QoI prediction, and ARIMA modeling sub-processes,
the first 90% of operations from the data were selected. The
remaining 10% of operations were used in system-level val-
idation and analysis. Overall, the results presented in this
section are preliminary. Testing with more dense datasets is
required to validate the benefits of this framework, and is be-
ing considered in current and future work.

4.2. Numerical Results

4.2.1. LASSO Performance

The training data for the LASSO model was the first 284 data
points of the PHM data set, the remaining 31 runs are then
used as the testing set. Recall that LASSO represents the
dimensionality reduction/feature selection tool in the digital
twin platform: it provides as its output the (small) set of “most
relevant” features (i.e., F⋆ in Figure (2)) from the original set
of features F (its nput).

In order to analyze the performance of feature selection pro-
cedure in LASSO, its mean squared error (MSE) over the
range of possible compression ratios (i.e., the ratio of the
number of features in F⋆ set and the number of features in
F) and the monotonicity (i.e., nested nature of feature sets
as a function of compression ratio) were considered for the
PHM data set. The MSE values are shown in Figure (3), and
the monotonicity (i.e., comparison of consecutive small fea-
ture sets to discern whether each one is a superset of its prior
set) analysis is illustrated in Figure (4).
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Figure 4. Percent Feature Set Overlap vs Feature Compres-
sion Ratio: PHM data set.

4.2.2. Digital Twin Performance

Results shown in this section correspond to the PHM data set
(Society, May 18, 2021) as the training source for the data-
based elements of the described digital twin platform. As de-
tailed above, the PHM data set contains flank wear measure-
ments of the three cutting edges of 6 mm ball nose tungsten
carbide cutters. Aiming at having one scalar measure of tool
degradation, the QoI was defined as the average flank wear
of all three flutes. For training across all feature selection,
QoI prediction and ARIMA modeling sub-processes, the first
90% of operations from the data were selected. The remain-
ing 10% of operations were used in system-level validation
and analysis.

The results shown in this section represent the output of the
AMC platform for 31 time steps and 3 different cases of error
accuracy/error thresholds: 0.1 µm, 0.05 µm and 0.005 µm.
The particles are initialized to begin simulation at the end of
the 90% mark of the PHM data. Figures (5)-(6) show results
for the case of threshold set at 0.1 µm. For this relatively
less demanding threshold, AMC is detected to underperform
(exceed the set bound) only once (14th timestep: blue circle
in Fig.(6)). At this point, adaptations described in Sec.(3.1.3)
are performed until the performance is acceptable (black dia-
mond at 14th timestep directly below the blue circle). At this
point forecasting resumes and continues to the end without
again exceeding the threshold. It is unsurprising that errors
between prediction and truth increase with time.

Note the key difference between interpretation of errors be-
tween Fig. (5) and Fig. (6): in the former, the error is
measured after the simulation is complete (posterior analy-
sis) against ground truth (measurement data). In the latter,
the error is measured during the simulation against the surro-
gate dynamics (Sec.(3.4)) in the sense of Eq.(6) using boot-

Figure 5. Predicted versus Actual Flank Wear for Set
Threshold of 0.1 µm.

Figure 6. Accuracy of AMC Prediction over Simulation
Time: Set Error Threshold Shown in Red.

strapping. Consequently, the former shows a secular growth
in error (depicted by the growing gap between the blue and
red lines) as the data-driven surrogate model does not cap-
ture the ground truth completely and the gap between the two
causes prediction errors to grow over time. On the other hand,
the errors in the latter stay upper bounded by the threshold
(solid bold red line in Fig.(6)) because in this case, the errors
are measured against the surrogate. This point is important
because the overall fidelity of the digital twin is dependent
on all aspects: the data, the machine learning and the uncer-
tainty quantification. In future work, we will establish feed-
back learning that channels uncertainty forecasting error (the
difference between Figs.(5) and (6)) to enable model adap-
tations in the surrogate dynamics. This will help the surro-
gate model to evolve and become better over time. Of course,
this step does not replace continuous learning of the surrogate
model as new data becomes available from the physical sys-
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Figure 7. Error Between Predicted and Actual Flank Wear
for Set Threshold of 0.05 µm.

tem. This step supplements continuous learning and makes it
better integrated with the uncertainty forecasting step.

Figure 8. Accuracy of AMC Prediction over Simulation
Time: Set Error Threshold Shown in Red (0.05 µm).

As the accuracy threshold is made tighter, the simulation
requires ensemble enhancements at numerous time steps
throughout propagation (See Figs.(8) and (10)). In all the
cases, blue circles in the accuracy plots show the time stamps
where the simulation was found to be above the prescribed
error threshold. Particles were then added and the accuracy
improved until within tolerances once again (corresponding
black diamond mark directly underneath the blue). Not sur-
prisingly, the number of ensemble adaptations (particle addi-
tions) necessary to meet the prescribed bounds varies across
the different cases of accuracy thresholds, with stricter accu-
racy bounds demanding a higher number of adaptations. The
case with threshold at 0.005 µm requires frequent adaptations
- almost at every time step in the prediction process. This
behavior is typical in uncertainty propagation, as tighter un-

Figure 9. Predicted versus Actual Flank Wear for Set
Threshold of 0.005 µm.

certainty bounds require finer sampling (i.e., more particles)
of the probability distribution on the state of the system (and
consequently, the QoIs) to be able to guarantee a higher level
of certainty around the QoI estimates.

Figure 10. Accuracy of AMC Prediction over Simulation
Time: Set Error Threshold Shown in Red (0.005 µm).

For the cases of accuracy thresholds set at 0.05 µm and =
0.005 µm respectively, error between the mean forecast flank
wear and ground truth flank wear are shown in Figs.(7) and
(9) respectively. Similar to Fig.(5), the error depicted here
grows monotonically. This is again attributed to the differ-
ence/gaps between the “true” flank wear evolution and its
data-driven surrogate. In the case of accuracy threshold set
at 0.005 µm, the difference between the mean prediction and
ground truth (Fig.(9)) reaches a maximum of roughly 2 µm
(1.2% relative error) at the end of the simulation. It is also
apparent that the prediction error shown in these graphs with
respect to the ground truth does not show any significant dif-
ferences. This is attributed to the fact that we have already
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reached the ceiling of prediction accuracy possible using the
surrogate flank wear dynamic model built using this data.
Further increase in QoI accuracy will only improve prediction
error with respect to the surrogate model (i.e. Fig.(8), (10))
but not with respect to the ground truth. To achieve further
improvements, a better surrogate model must be constructed.

5. CONCLUSION

This paper presents a precise framework for a smart manu-
facturing prognostic digital twin by integrating dynamic data-
driven degradation models with an adaptive uncertainty fore-
casting framework based on closed-loop Monte Carlo simu-
lations. The quality of uncertainty forecasting is controlled
by defining application specific quantities of interest (in this
case, flank wear) and associated bounds on its forecasting er-
ror to maintain trustworthiness. Three sub-modules constitute
the twin: i.) the uncertainty quantification engine, combin-
ing the AMC platform with a machine emulator, ii.) the dy-
namics learning engine providing a surrogate dynamic model
of flank wear evolution, iii.) the sensing module that pre-
processes multi-modal sensing data and identifies key fea-
tures for building surrogate dynamics and the machine emu-
lator. The current iteration of the digital twin includes simple
regression-based sub-modules for feature selection (LASSO),
surrogate dynamic modeling (LASSO) and machine emula-
tion (ARIMA). Further validation of the framework is neces-
sary using larger datasets, in particular to refine the feature
selection and dynamics emulation modules. Another direc-
tion of research is to combine the digital twin framework with
data-augmentation tools in scenarios where dense datasets are
not available.
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