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ABSTRACT

Performance of digital twins (DTs) in smart manufacturing is
heavily data dependent, especially when physics-based com-
putational models are not available or difficult to obtain in
practice, as it’s the case in most modern manufacturing sce-
narios. However, in manufacturing applications the availabil-
ity of data is often limited and involves high dimensional sig-
nals. In this work we present the Data AuGmentation GEneR-
ative (DAGGER) framework, which is a deep-learning-based
tool combining the strengths of autoencoders (AEs) and gen-
erative adversarial networks (GANs) to robustly, efficiently
and reliably augment the available sensor data to train the
data-based computational models of DTs for smart manu-
facturing. The DAGGER framework uses the learned latent
space from an AE into the training process of the generator in
a GAN. This provides increased stability in the convergence
of the GAN’s discriminator/critic when working with very
small training data sets, and helps the GAN’s generator to
more accurately and robustly capture the structure in the sen-
sor data. We corroborate the efficacy of the DAGGER frame-
work in two ways, one in which we directly contrast the syn-
thetically generated time series samples with real ones from
publicly available sensor data in a manufacturing application
(using performance metrics based on the similarity of mean
signals, variance signals, KL divergence, signals in Fourier
domain, auto-correlation signals, etc.), and one in which we
evaluate the adequacy of the synthetically generated time se-
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ries samples to perform system identification of a black box
dynamic system. In all the cases we compare the results from
the DAGGER with those from a Riemannian Hamiltonian
Variational AE (RHVAE). We show that the DAGGER’s per-
formance is in general satisfactory, and comparable with that
of the RHVAE in all the considered evaluation scenarios.

1. INTRODUCTION

As industries transition into the Industry 4.0 paradigm and in-
creasingly incorporate smart manufacturing practices in their
operation, the relevance and interest in concepts like DT are
at an all-time high. DTs offer direct avenues for industries
to make more accurate predictions, rational decisions, and
informed plans, ultimately reducing costs, increasing perfor-
mance and productivity. The adequate operation of DTs in
the context of smart manufacturing relies on an evolving data-
set relating to the real-life object or process, and a means of
dynamically updating the computational model to better con-
form to the data (Wright & Davidson, 2020). This reliance on
data is made more explicit when physics-based computational
models are not available or difficult to obtain in practice, as it
is the case in most modern manufacturing scenarios. For data-
based model surrogates to “adequately” represent the under-
lying physics, the number of training data points must keep
pace with the number of degrees of freedom in the model,
which can be on the order of thousands. However, in niche
industrial scenarios like those in manufacturing applications,
the availability of data tend to be limited (on the order of a few
hundred data points, at best) (Diez-Olivan, Del Ser, Galar, &
Sierra, 2019), mainly because a manual measuring process
typically must take place for a few of the relevant quantities,
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e.g., level of wear of a tool. In other words, notwithstanding
the popular notion of big-data, there is still a stark shortage of
ground-truth data when examining, for instance, a complex
system’s path to failure. In this work, we present a frame-
work to alleviate this problem via modern machine learning
tools, where we show a robust, efficient and reliable pathway
to augment the available data to train the data-based compu-
tational models.

Small sample size data is a key limitation in performance
in machine learning, in particular with very high dimen-
sional data (Goodfellow, 2016). Current efforts for synthetic
data generation typically involve either Generative Adversar-
ial Networks (GANs) or Variational Autoencoders (VAEs)
(Figueira & Vaz, 2022; Demir, Mincev, Kok, & Paterakis,
2021), and both have been used in numerous applications, in-
cluding those with very high dimensionality, e.g., 3D MRI
images. However, there remain hurdles to overcome in the
context of smart manufacturing:

• Paradoxically, these methods fall under the umbrella of
deep learning and therefore themselves require vast num-
bers of hyperparameters to optimize (Hutter, Lücke, &
Schmidt-Thieme, 2015). Traditional GAN and AE ar-
chitectures therefore require large data sets for adequate
training. Thus, new network architectures that can be
effectively trained with very small data sets (e.g., a few
hundreds of data points) need to be developed.

• Most applications of GANs and AEs target image anal-
ysis and synthesis (Smith & Smith, 2020; Doersch,
2021), which renders traditional network architectures
poorly suited for time-series data generation. Although
there has been recent work on augmentation techniques
for time series data with GANS and/or VAEs (Iglesias,
Talavera, González-Prieto, Mozo, & Gómez-Canaval,
2023; Yang, Li, & Zhou, 2023), the problem remains
large open, especially regarding the efficiency of both
the training and the generation operations. Consequently,
robust and efficient architectures tailored to time-series
sensor data generation must be defined.

• Standalone GAN or VAE architectures inherently bring
along a few difficulties. For example, GAN models are
susceptible to mode collapse, training instability, and
high computational costs when used for high dimen-
sional data creation (Khanuja & Agarkar, 2023, Ch. 13).
On the other hand, the encoding of VAEs greatly reduces
dimensional complexity of data and can effectively regu-
larize the latent space, but often produces poor represen-
tational synthetic samples (Shao et al., 2020). Thus, al-
ternative neural network architectures that alleviate such
practical issues need to devised.

In light of these challenges, here we present the Data AuG-
mentation GEneRative (DAGGER) framework, which corre-
sponds to a hybrid AE+GAN architecture specifically con-

ceived to generate synthetic high dimensional time series data
when the training data sets are very small. The DAGGER
scheme uses the learned latent space from an AE in the train-
ing process of the generator of a GAN, increasing robustness
and stability in both training and synthetic sample generation.

2. PROBLEM STATEMENT

A data set S contains K time series signals that come from
a sensor in a manufacturing device (e.g., a vibration sensor
placed at the spindle on a milling machine). The k-th el-
ement in S is the time series signal xk containing N time
samples; i.e., xk = [xk(t1), xk(t2), . . . , xk(tN )]. Our objec-
tive is to obtain new time series signals that “resemble” those
in S. More concretely, if we interpret every xk as a sample
drawn from a probability distribution pdata(X), in principle
we simply wish draw new samples from pdata(X). The prob-
lem, however, is that pdata(X) is unknown, and we have to
first devise a model for it.

To that end, let us define a probability distribution
pmodel(X;θ) that approximates pdata(X), with θ representing
the set of defining parameters of pmodel. With a slight abuse
of notation, our first step is thus defined by the following
optimization problem (Goodfellow, 2016):

θ∗ = argmin
θ

D
(
pdata({X = xk}Kk=1),

pmodel({X = xk}Kk=1;θ)
)
, (1)

where D(·, ·) represents some measure of distance between
two probability distributions (e.g., Kullback-Leibler diver-
gence). Once θ∗ is found, we obtain a new time series signal
x̂ by sampling from pmodel(X;θ∗).

Now, for manufacturing systems, the number of time series
signals available for “training” is typically very small (in the
order a few hundreds), and the number of time samples in a
time series is large (in the order of several thousands), i.e.,
N ≫ K. Consequently, the problem in (1) must be solved
under those constraints: high-dimensional data with very few
samples for “training”. Here we present a robust framework
to address these challenges.

3. AE+GAN ARCHITECTURE: DAGGER FRAME-
WORK FOR SYNTHETIC TIME SERIES GENERATION

In this section, we describe the methodology developed to
solve the problem described in the previous section. The
methodlogy is dubbed the DAGGER framework. The DAG-
GER corresponds to the combination of two different deep
neural network architectures working in tandem to produce
synthetic samples of time series signals under the constraints
of high dimensionality and very few samples for training,
which are typical in manufacturing scenarios. The two net-
work architectures defining the DAGGER framework are an

2



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2023

AE network and a GAN, the former dealing with the transfor-
mation of the original data to and from a lower dimensional
space, and the latter dealing with the generation of the syn-
thetic samples. A schematic view of the DAGGER frame-
work is shown in Figure 1.

Following the process illustrated in Figure 1, first the (trained)
AE network of the DAGGER takes the original time series
data (i.e., set S) and transforms it into a considerably lower
dimensional space via its encoder network. The output of the
encoder is then fed to the critic network of the GAN, along
with synthetic samples produced by the generator network
of the GAN, and the critic simply provides a rating on how
real it considers them to be. The performance of the critic
when differentiating real samples from synthetically gener-
ated ones is measured, and this information is then used to
update the defining parameters of both the critic and the gen-
erator networks of the GAN. This process is repeated until
an acceptable level of performance is reached (when the syn-
thetic samples are indistinguishable from the real ones to the
critic). Lastly, the synthetic samples produced by the genera-
tor network are transformed back to the space of the original
data by the decoder network of the AE.

The reasons for using the hybrid AE+GAN architecture for
the DAGGER framework are twofold. First, current efforts
for synthetic data generation typically involve either GANs
or Variational AEs (VAEs). However, as mentioned, such
standalone efforts result in serious practical difficulties. Our
hybrid architecture can exploit the strengths of both AEs and
GANS, while avoiding their weaknesses: the AE part signif-
icantly reduces the dimensionality of the real data, and the
GAN produces quality synthetic samples when operating in
the low dimensional data space, which helps with its stability
issues in the training process. Second, our hybrid architec-
ture directly addresses the main constraints imposed by the
application scenario, as the AE part takes care of the high di-
mensionality of the data, and the GAN part can then operate
with a number of defining parameters comparable to that of
the number of signals for training (i.e., a few hundreds).

We provide details about the AE and the GAN in the DAG-
GER framework next.

3.1. Autoencoder (AE)

An AE is an unsupervised learning scheme, in the present typ-
ically implemented via neural networks, that are trained to re-
construct their inputs (Bank, Koenigstein, & Giryes, 2020). A
standard AE architecture consists of two neural networks, an
encoder network and a decoder network. The encoder trans-
forms the input into a lower dimensional signal, “compress-
ing” its information content to a reduced but meaningful set of
features, which define what is commonly known as the latent
space of the AE. The decoder performs the opposite transfor-

mation, taking a signal in the latent space and transforming it
back out into its original space representation.

For the DAGGER framework the AE network follows a stan-
dard architecture, with the encoder formed by an input layer
matching the length of the real time series signals (i.e., a few
thousands), and a number of hidden linear layers, with rec-
tified linear units (ReLU) as activation functions, that pro-
gressively reduce the size of the signal down to a couple of
hundreds. The decoder follows exactly the same architecture
but in the reverse order.

3.2. Wasserstein Generative Adversarial Network
(WGAN)

GANs are semi-supervised and unsupervised learning tech-
niques that attempt to capture the distribution of a set of
true examples and generate new (unseen) samples out of it
(Creswell et al., 2018; Gui, Sun, Wen, Tao, & Ye, 2021). The
most common incarnation of a GAN in the present involves
two neural networks arranged adversarially: a generator net-
work that transforms a noise signal into one resembling the
true data, and a discriminator network that tries to discrim-
inate between real and synthetic data samples as accurately
as possible (Gui et al., 2021). The two networks are trained
at the same time and in competition with each other, as the
generator tries its best to dupe the discriminator, and the dis-
criminator tries its best not to let that happen (Creswell et al.,
2018).

In the DAGGER framework, the GAN part doesn’t strictly
follow the standard architecture (as first conceived by Good-
fellow et al. in 2014 (Goodfellow et al., 2014)), and instead
takes the form of a Wasserstein GAN (WGAN) (Arjovsky,
Chintala, & Bottou, 2017), which corresponds to a few minor
practical modifications (although with deep theoretical con-
notations) to the traditional GAN operation to alleviate some
of its weaknesses (Shmelkov, Schmid, & Alahari, 2018):

• In the traditional GAN the generator tries to minimize
Ex[log(D(x))] +Ez[log(1−D(G(z)))] (with D(·) rep-
resenting the discriminator and G(·) the generator, and x
and z representing respectively a full data sample and a
noise signal), and the discriminator tries to minimize it;
in the WGAN, the generator tries to minimize D(G(z)),
and the discriminator, now called critic, tries to mini-
mize D(x)−D(G(z)). The reason that the discriminator
changes its name in the WGAN is the fact that its output
is not longer a number in [0, 1] (with 0.5 as the decision
boundary between real or synthetic samples), and instead
is any real number, which can be interpreted as a mech-
anism that rates the “realness” of the samples, instead of
simply classifying them between real and synthetic.

• After every gradient update on the critic function (i.e.,
D(·)), the defining weights of the critic are kept bounded
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Figure 1. Schematic of DAGGER framework for synthetic time series generation in manufacturing application scenarios.

inside a small range of values, as opposed to allowing
them to take any value.

• The optimizer of the critic switches from the traditional
momentum based methods, like Adam, to RMSProp,
which tries to resolve the problem that gradients may
vary widely in magnitudes for the different weights of
the critic. It does so by adapting the step size individu-
ally for each weight.

• The generator is trained less frequently than the critic is
(e.g., 1 training cycle for the generator every 5 training
cycles for the critic).

3.3. Training and Querying the DAGGER

The schematic shown in Figure 1 suggests that the two main
components of the DAGGER (the AE and the WGAN) op-
erate simultaneously, without much distinction between the
specifics of the training process and those of the generation
of synthetic samples. Strictly speaking, however, the differ-
ent parts of the two main networks are employed at different
times, depending on whether training or synthetic data gener-
ation is taking place, in an asynchronous fashion.

3.3.1. Training

The training of the DAGGER, in the traditional sense of the
term (i.e., a process taking place a priori, with the sole pur-
pose of finding the “optimal” values for the defining hyperpa-
rameters of the model), mainly involves the AE network. In
other words, the real time series data is used to train the AE
network, involving both the encoder and the decoder, without
involving the WGAN. Then, once convergence has occurred
(the loss is below an acceptable threshold), the original data is
passed through the encoder network of the AE, and its output
is then used to “train” the WGAN.

The training of the WGAN, like with most traditional GANs,
occurs while synthetic data is being generated, adjusting its
hyperparameters at every “training” step. This takes place
until an acceptable level of performance is reached. Once
that point is reached, the DAGGER can be queried for new
synthetic time series samples.

3.3.2. Querying

Querying the DAGGER for synthetic data samples corre-
sponds to simply having the generator of the WGAN produce
synthetic latent space samples, and subsequently having the
decoder network of the AE transform them from the latent
space to the space of the time series data.

4. PERFORMANCE EVALUATION

In this section we present the performance evaluation results
for the DAGGER framework. For this we consider two dif-
ferent assessment mechanisms, one directly analyzing the
“closeness” of the synthetic data to the real data via numer-
ous evaluation tools (like the means per time sample, the
variances per time sample, DFT, KL distance, etc.), and the
other one indirectly assessing the quality of the synthetic data
through its ability to produce approximate system matrices
when performing system identification for input-output sig-
nal pairs of a dynamical system.

4.1. Comparison with Riemannian Hamiltonian Varia-
tional AE (RHVAE)

Variational autoencoders (VAEs), first introduced by
(Kingma & Welling, 2013) and (Rezende et al., 2014), are
AE systems that can generate synthetic data by perturbing the
original data in the latent space through, for example, ran-
dom noise addition, and then mapping the resulting data back
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to the original space via the decoder network. In the VAE
research world, a few works have emerged directly tackling
the data augmentation problem under the constraints of small
training data set and very high dimensional data: (Chadebec,
Mantoux, & Allassonnière, 2020; Chadebec & Allassonnière,
2021; Chadebec, Thibeau-Sutre, Burgos, & Allassonnière,
2022). Their general approach is based on improvements to
two of the key procedures in the VAE operation, one being
the structure of the latent space, and the other one being the
sampling procedure carried out in the latent space to generate
the synthetic data.

Regarding the geometry of the latent space, the latest of
works listed above ((Chadebec et al., 2022)) propose what
the authors refer to as the Riemannian Hamiltonian Varia-
tional AE (RHVAE), and it configures the latent space as a
Riemannian manifold with a specific metric G. Noting that
defining the metric using standard avenues (i.e., involving
the Jacobian of the generator function) results in consider-
able computational difficulties in practice, Ref. (Chadebec et
al., 2022) defines a scheme to learn the metric G as a func-
tion of an artificial variable z, from the data and the struc-
ture of the neural network. To then navigate and sample the
resulting Riemannian latent space, (Chadebec et al., 2022)
defines a multivariate zero-mean Gaussian random vector v,
with covariance matrix given by G(z). Then, the “explo-
ration” of the Riemannian latent space is based on Hamil-
tonian dynamics, with z being the position and v the veloc-
ity: the Hamiltonian is found by adding the resulting poten-
tial energy and kinetic energy, which are functions of z and
v. With this, a leapfrog integrator scheme is defined to it-
eratively compute the evolution in time of z and v from the
Hamiltonian expression, which ensures that the target distri-
bution is preserved, and that the update procedure is volume
preserving and time reversible. This iterative process then
configures a Markov Chain (MC) on z, with transition prob-
abilities given by particular functions of the metric G (which
is in turn a function of the current values of z and v). The
defined MC is said to converge to a distribution ptarget, which
is used to efficiently estimate the relevant distributions from
where the synthetic data samples are ultimately drawn. This
approach is then shown in (Chadebec et al., 2022) via exten-
sive numerical analyses to be able to handle very high dimen-
sional data (since the operation essentially occurs in the latent
space, which is considerably lower dimensional), and to ef-
fectively operate with very few training samples (as the sam-
pling scheme is defined over more meaningfully constructed
distributions).

Considering how well the RHVAE framework fits the prob-
lem outlined in Section 2, we utilize it as the main contrast
medium for the DAGGER in the performance evaluation sub-
sections below.

4.2. Direct Performance Assessment

To validate the performance of the DAGGER with the
RHVAE, six time-series sensors from a milling environment
were compiled from (Teubert, 2022) (referenced as mill data
set). Each sensor had a training set composed of 146 runs of
9000 length time steps. The majority of the discussion fo-
cuses on three signals: AC motor current, spindle vibration,
and table vibration. The AC motor current was chosen due
to it being the only signal having a periodic nature while the
spindle vibration was chosen due to its more random transient
properties. The table vibration had similar properties as the
remaining three signals with well defined transients and mod-
erate noise being present. A toy data composed of a sinusoid
containing a random phase shift and amplitude enveloping
per run (referenced as modulated sinusoid) was also used for
model training.

The metrics for performance evaluation of the generative
models included: mean and variance comparisons, K-L di-
vergence, auto-correlation of mean and variance signal, and
discrete Fourier transformations (DFT). These metrics were
chosen to better quantify the DAGGER’s ability to capture
important time series characteristics such as: multiple tran-
sient properties, probability density evolution over time, fre-
quency information, and statistical properties. Error between
the synthetic and real data was calculated using mean abso-
lute percentage error (MAPE) and is provided in the figures
for the auto-correlation section and expected value/variance
section of the results.

4.2.1. Statistical Moments

The first statistical analysis technique determines the mean
and variance of each signal. This metric allows for quantifi-
cation of the DAGGER’s ability to capture basic statistical
properties of the real data sets. Both the variance and ex-
pected value were calculated for each time step of the entire
data set. This methodology analyzes how well DAGGER cap-
tures both transient properties and the evolution of statistical
properties as the run progresses.

DAGGER was robust in accurately producing data that cap-
tured the spread of possible values for the modulated sinu-
soids, shown in Figure 2. This is evident from the variance
signal generated by DAGGER having 19.8% less MAPE er-
ror than the RHVAE. Both models were comparable in cap-
turing the expected value with DAGGER having 3.4% error
(0.2% less than RHVAE). Although having almost identical
performances, DAGGER produced smoother signals and bet-
ter captured significant trends present in the real data set’s
expected value signal.

DAGGER had similar performance to the RHVAE for gener-
ating synthetic data when training on the mill data set. Fig-
ure 3 displays this with only slight error differences being
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Figure 2. The DAGGER (left column) and RHVAE (right column) generated/real expected value and variance signal for the
modulated sinusoid. Note: The graph for the real data is sometimes presented in gray due to the overlap from the graph of the
synthetic data.

present for most of the signals. The main exception is with
spindle vibration signal with the RHVAE poorly capturing the
expected value signal having 27.1% higher error than DAG-
GER. Excluding that signal, both models performed equally
well in capturing major trends present in remaining signals in
the mill data set.

In Figure 4 the variance signal of the same three signal shown
in Figure 3 are given, DAGGER performed well with cap-
turing trends and variance values for the majority of the sig-
nals. DAGGER did have some issues when attempting to cap-
ture the variance of the AC motor current as compared to the
RHVAE. However, the RHVAE saw issues when modeling
the properties of the table vibration and was outperformed by
DAGGER. The difference in the nature of these two signals is
likely the cause for the noted discrepancies as the AC motor
current is a periodic signal while the spindle vibration signal
is notably more random and noisy in nature.

4.2.2. KL Divergence

The second metric employed was the Kullback-Leibler (KL)
divergence. This metric measures the quality of the synthetic
data by comparing how similar the probability densities are

for every time step within the training data. This metric al-
lows for the direct comparison of probability distributions
over the time evolution of the signal. A KL divergence of
zero indicates that the probabilities are identical where as a
higher values would indicate less similarity. The bin size for
the histograms remained constant for each case and all data
sets were normalized ([0, 1]) prior to histogram generation.

DAGGER performance was comparable to that of the
RHVAE for the modulated sinusoid case with similar trends
and values for the KL divergence (Figure 5). Figure 5 de-
picts similar trends with the main differences being noticed
at t0 = 0 ms and tf = 9000 ms. However, DAGGER’s
performance is slightly improved with the majority of KL
divergence values at or below 0.2 while the RHVAE was
close to 0.25 for nearly 1000 ms.

For four of the six signals, similar performance between the
RHVAE and DAGGER was observed. The largest variations
occurred with the AC motor current and table vibration as
shown by Figure 6. The KL divergence for the AC small
motor current was at or below 0.2 for the majority of the syn-
thetic DAGGER data set while the RHVAE kept KL diver-
gence under 0.05 a part from a few time steps. Referencing
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Figure 3. The DAGGER (left column) and RHVAE (right column) generated/real expected value signal for the AC current
signal (top row), spindle vibration (middle row), and table vibration (bottom row), present in the mill data set. Note: The graph
for the real data is sometimes presented in gray due to the overlap from the graph of the synthetic data.

Figure 4, DAGGER saw issues with capturing the variance
of this signal thereby leading to this discrepancy. DAGGER
outperformed the RHVAE for the table vibration generations
with the KL divergence of DAGGER hovering near 0.1 while
the RHVAE was near 0.2.

4.2.3. Auto-correlation

The next metric used for performance measurement was the
auto-correlation of the variance and expected value signal.

For time series signal cases, auto-correlation shows trends
present in the signal as the lag increases. Comparing the auto-
correlation of the generated data’s expected value and vari-
ance signal with that of the real data reveals how well the gen-
erative models will be able to capture the change of dynamics
over time. The mean absolute percentage error (MAPE) can
then be calculated for these signals as a metric for perfor-
mance between DAGGER and RHVAE via:
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Figure 4. DAGGER (left column) and RHVAE (right column) generated/real variance signal for: AC motor current, spindle
vibration, and table vibration, present in the mill data set. Note: The graph for the real data is sometimes presented in gray due
to the overlap from the graph of the synthetic data.

M =
1

n

n∑
t=1

∣∣∣∣At − Ft

At

∣∣∣∣× 100 (2)

where n is the number of simulated time steps, At the real
signal, and Ft the synthetic data.

Both DAGGER and RHVAE showed issues with capturing
the time trend of the modulated sinusoid with MAPE errors
above 1000% for the expected value signal (Figure 7). The

large MAPE error is caused by the real data having near 0 val-
ues for a considerable number of time samples, which trans-
lates into near 0 denominator values in the percentage calcu-
lations. Both DAGGER and RHVAE show improved perfor-
mance when capturing trends in the variance, with DAGGER
outperforming the RHVAE by having 9.1% less MAPE er-
ror. This improvement can be explained through DAGGER
having less variance present throughout the auto-correlation
signal.
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Figure 5. DAGGER (left column) and RHVAE (right column) KL divergence for the modulated sinusoid

Figure 6. DAGGER (left column) and RHVAE (right column) KL divergence for the AC small motor current (top row) and
table vibration (bottom row)
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Figure 7. DAGGER (left column) and RHVAE (right column) auto-correlation for the expected value (top row) and variance
(bottom row) signals. Note: The graph for the real data is sometimes presented in gray due to the overlap from the graph of the
synthetic data.

DAGGER and RHVAE show similar performance in captur-
ing the trends of the expected value for the mill sensors (Fig-
ure 8). When capturing trends in the AC motor current, per-
formance degrades with MAPE errors in excess of 600%.
As mentioned in the variance signal analysis, this large er-
ror is caused by near 0 values in the real data, which goes in
the denominator of the error calculations. For the remain-
ing signals, both models demonstrate nearly identical per-
formance capturing the lagged trends of the expected value
signal. DAGGER’s and RHVAE’s auto-correlated expected
value signals reflect noisy trends when compared with the
training data set for the spindle vibration. This was most
likely caused from high noise content present throughout the
spindle vibration signal. The remaining signals had similar
auto-correlated expected value signals as the table vibration.
In general, DAGGER and RHVAE had similar performance
in both capturing signal trends and similar MAPE errors for
these signals.

Shown in (Figure 9), DAGGER maintained similar perfor-
mance to the RHVAE in capturing the lagged trends in the
variance for both the AC motor current and table vibration.
DAGGER captured the lagged trends of the variance for the

noisy spindle vibration signal with 68.7% less MAPE error
than the RHVAE.

4.2.4. DFT

The final metric used was the discrete Fourier transform. This
was chosen due to the DFT’s ability to transform a time series
signal into a frequency domain representation that can capture
both frequency and amplitude information. Using this metric
on the synthetic and real data allows for a visual compari-
son of the performance of DAGGER in capturing frequency
information.

DAGGER captured the main frequency and amplitude infor-
mation present throughout the training set, but incorrectly ex-
cluded the high frequency behavior (Figure 10). This per-
formance was comparable to the RVHAE with both captur-
ing the low frequency behavior. Both DAGGER and RHVAE
also contain a low amplitude noise floor that is not present
throughout the modulated sinusoid.

One should note DAGGER’s ability in capturing the major
frequency and amplitude components present in the mill sig-
nal as shown by Figure 11. DAGGER and RHVAE performed

10
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Figure 8. DAGGER (left column) and RHVAE (right column) generated/real auto-correlation signal for the expected value
signal of the AC motor current (top row), spindle vibration (middle row), and table vibration (bottom row). Note: The graph
for the real data is sometimes presented in gray due to the overlap from the graph of the synthetic data.

similarly for the AC motor current with a DC component
(caused by data normalization) and the main AC current fre-
quency being depicted. Both models also have shown similar
performance in capturing the high and low frequency compo-
nents present in the table vibration signal.

4.3. Indirect Performance Assessment

Here we consider the quality of the synthetically generated
data by measuring its effectiveness when building black box

models out of it. For this we use the model of a simple dy-
namic system typically studied in the context of control the-
ory, and then use synthetic input-output signal pairs generated
by DAGGER and RHVAE to perform system identification.
The quality of the synthetic data is established by comparing
the resulting model matrices with those built with the original
data.

The direction to take two pills every 8 hours can be con-
sidered as a control problem and is modeled via a system

11
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Figure 9. DAGGER (left column) and RHVAE (right column) generated/real auto-correlation signal for the variance of the AC
motor current (top row), spindle vibration (middle row), and table vibration. Note: The graph for the real data is sometimes
presented in gray due to the overlap from the graph of the synthetic data.

known as compartment models (Åström & Murray, 2010). A
schematic to illustrate the idea of the model is shown in Fig-
ure 12 (Åström & Murray, 2010). Major components of the
human body such as the blood, tissues, and lungs are viewed
as compartments separated by membranes. The flow rates
between compartments are proportional to the concentration
differences in each compartment.

Simplifying the left half of Figure 12 into two compartments
as well as assuming there is perfect mixing between com-

partments and that transport is driven by concentration differ-
ences yields (Åström & Murray, 2010):

V1
dc1
dt

= q(c2 − c1)− q0c1 + c0u, c1 ≥ 0, (3a)

V2
dc2
dt

= q(c1 − c2), c2 ≥ 0, (3b)

y = c2 (3c)

12
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Figure 10. DAGGER (left column) and RHVAE (right column) discrete Fourier transform for the synthetic data of the mod-
ulated sinusoid. Note: The graph for the real data is sometimes presented in gray due to the overlap from the graph of the
synthetic data.

Figure 11. DAGGER (left column) and RHVAE (right column) discrete Fourier transform for the synthetic data for the AC
motor current (top row) and table vibration (bottom row). Note: The graph for the real data is sometimes presented in gray due
to the overlap from the graph of the synthetic data.

where c1 and c2 are drug concentrations in each compartment
and V1 and V2 are the compartment volumes, which is shown
on the right half of Figure 12. Equation (3) can be written
in state-space form through the introduction of k0 = q0/V1,
k1 = q/V1, k2 = q/V2, and b0 = c0/V1 giving (Åström &

Murray, 2010):

dc

dt
=

[
−k0 − k1 k1

k2 −k2

]
c+

[
b0
0

]
u, y =

[
0 1

]
c (4)
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Figure 12. Compartment Modeling Schematics

For the test case here, k0 = 0.1, k1 = 0.1, k2 = 0.5,
b0 = 1.5, c1 = 0, and c2 = 1. Four random instances (ex-
periments) of the real normalized [0, 1] input signal u are de-
picted in top left of Figure 13 whereby a sinusoid of random
amplitude between a : [1, 5], random phase ϕ : [0, 1/3π] and
increasing frequency ω : [1, 2π±1/4π] for a simulated mixing
duration of 50min is defined. The corresponding output sig-
nal of the data is shown on the upper right. Similarly, four
random instances of the synthetic normalized input-output
signals for the DAGGER and RHVAE platforms are shown
on in the middle and bottom row of Figure 13. As both the
real and synthetic input signals are random, an indirect quan-
titative comparison will be performed here. However, look-
ing closely at the DAGGER and RHVAE signals, note the
noisy behavior of both the inputs and outputs as compared to
the real data set. To perform a indirect comparison, one can
turn to system identification to generate corresponding matrix
equations of similar form to Eq. (4).

For the system identification problem, 150 experimental in-
put signals were generated using the sinusoidal inputs as de-
fined above and passed through Eq. (4). It should be noted
that in order to generate both the input signal and output data
simultaneously through DAGGER and RHVAE for system
identification, the signals were concatenated. This approach
was chosen to maintain some connectivity in the system de-
fined by Eq. (4). This data set was then treated as the seeds
for training DAGGER and RHVAE. Subsequently, the plat-
forms generated 150 augmented experimental signals, a few
of which are shown in Figure 13. System identification at-
tempts to identify the A, B, C, and D matrices shown by the
generic state-space form given below:

ẋ = Ax+Bu (5a)
y = Cx+Du (5b)

with A =

[
−k0 − k1 k1

k2 −k2

]
, B =

[
b0
0

]
, C =

[
0 1

]
, and

D = 0 for the real data generated via Eq. (4). Leveraging the
DAGGER and RHVAE experimental data and a generic sub-
space method within the time-domain for system identifica-
tion, the platforms’ A, B, C, and D matrices can be compared
to the real matrices also passed through an identical system
identification algorithm. It should be noted that both the real
and synthetic data sets were normalized between [0, 1], which

Figure 13. Compartment Model (Eq. (3)) Input-Output Visu-
alization

explains the mismatch between the matrices given by Eq.(4)
and those shown here in Table 1.

By inspection, the A, and B matrices appear relatively close
to another. In fact, the distance between AReal and ADAG as
measured by the Frobenius norm is: ||AReal − ADAG||F =
0.0719 and ||BReal −BDAG||F = 1.8311× 10−4. This cor-
responds to DAGGER adequately capturing the sinusoidal in-
put signal. Similarly, for the RHVAE ||AReal − ARH ||F =
0.0397 and ||BReal − BRH ||F = 8.3009 × 10−5 where one
could also conclude the input signal has been adequately cap-
tured. In contrast, ||CReal − CDAG||F = 420.0466 and
||CReal − CRH ||F = 422.1737 meaning the output signal
is partially degraded when compared to the result from the
input. This is likely due to the required concatenation of the
input-output signal prior to training DAGGER and RHVAE
causing an abrupt transition between signal behavior at the
junction between the left and right hand sides of Figure 13.
While the networks can be trained independently for both the
input and output signals, one would lose the corresponding
connectivity required for system identification. That is, inde-
pendent networks would match random inputs with random
outputs thereby violating the dependence needed for system
identification.
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Table 1. State-Space Comparison: Real vs. DAGGER vs. RHVAE

Real DAGGER RHVAE

A
[
0.9956 0.004
−0.011 1.0014

] [
0.9996 0.0113
−0.0044 0.9303

] [
0.9996 −0.0044
0.0119 0.9703

]
B

[
−5.4097× 10−5

−1.2996× 10−4

] [
−2.4676× 10−6

4.5728× 10−5

] [
−5.3345× 10−7

−6.6542× 10−5

]
C [−112.1032 −45.5782] [305.0968 −3.2411] [307.7099 0.9949]

D [0] [0] [0]

5. CONCLUSION

In this paper, we presented the DAGGER framework, which
corresponds to a hybrid AE+GAN deep neural network archi-
tecture specifically conceived to produce synthetic high di-
mensional time series data with very small training data sets,
which are characteristic of traditional manufacturing applica-
tions.

We evaluated the effectiveness of the DAGGER framework
by analyzing the quality of the synthetically generated data
through both direct and indirect performance assessment
methods. In the former, for toy artificial and real sensor data
(a publicly available benchmarking data set containing sensor
readings from a milling machine), we employed performance
metrics based on the similarity between original data and syn-
thetic data in terms of mean, variance, KL divergence, behav-
ior in Fourier domain, and auto-correlation. Regarding the
indirect performance assessment, we evaluated the adequacy
of the synthetically generated time series samples to perform
system identification of a black box dynamic system. In all
the cases, we compared the results from DAGGER with those
from a RHVAE, which is a recently published data augmen-
tation framework specifically designed to handle very small,
high dimensional data sets.

Direct analysis methods revealed similar performance be-
tween the DAGGER and RHVAE regarding ability to cap-
ture frequency, statistical, and time trend information. Both
models captured the transient properties present in the signal
with low MAPE error but had difficulty capturing trends in
the expected value and variance for noisy signals. Overall,
the DAGGER had no significant performance differences in
comparison to the RHVAE.

Regarding the indirect performance assessment procedures,
DAGGER and RHVAE demonstrated similar results when
identifying a compartment model system. Both platforms
adequately captured input signal behavior at the detriment
to output signal performance. Aside from further hyperpa-
rameter tuning within both DAGGER and RHVAE, an al-
ternative to the abrupt transition between the concatenated

input-output signals required for system identification will
also be addressed to improve synthetic data generation. The
similarly between DAGGER and the RHVAE results is sup-
ported throughout the direct performance assessment as well
whereby both platforms exhibit comparable characteristics
during the examination of different synthetically generated
signals. That is, the results showed that DAGGER’s perfor-
mance is in general satisfactory, and comparable with that of
the RHVAE in all the considered evaluation scenarios. From
our tests, the area DAGGER performed better was in the du-
ration of the training process, with it achieving convergence
empirically in at least an order of magnitude less time then the
RHVAE. This requires a deep and careful exploration, how-
ever, and it is thus part of our future explorations.

Looking ahead, optimization of the DAGGER architecture
is planned with implementing lower reconstruction error au-
toencoder networks and tuning parameters of the GAN. Fur-
thermore, software tools will be completed to advance im-
provements in analyzing techniques to increase understand-
ing of latent space modeling and exploration for the GAN.
Different generative models beside the RHVAE will be ex-
plored as a benchmark against improved DAGGER architec-
ture.
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