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ABSTRACT

Machine learning (ML)/deep learning (DL) has shown
tremendous success in data-driven predictive maintenance
(PdM). However, operators and technicians often require
insights to understand what is happening, why it is happen-
ing, and how to react, which these black-box models cannot
provide. This is a major obstacle in adopting PdM as it can-
not support experts in making maintenance decisions based
on the problems it detects. Motivated by this, several re-
searchers have recently utilized various post-hoc explanation
methods and tools, such as LIME, SHAP, etc., for explaining
the predicted RUL from these black-box models. Unfor-
tunately, such (post-hoc) explanation methods often suffer
from the disagreement problem, which occurs when multiple
explainable AI (XAI) tools differ in their feature ranking.
Hence, explainable PdM models that rely on these methods
are not trustworthy, as such unstable explanations may lead
to catastrophic consequences in safety-critical PdM appli-
cations. This paper proposes a novel framework to address
this problem. Specifically, first, we utilize three state-of-
the-art explanation methods: LIME, SHAP, and Anchor, to
explain the predicted RUL from three ML-based PdM mod-
els, namely extreme gradient boosting (XGB), random forest
(RF), logistic regression (LR), and one feed-forward neural
network (FFNN)-based PdM model using the C-MAPSS
dataset. We show that the ranking of dominant features for
RUL prediction differs for different explanation methods.
Then, we propose a new metric trust score for selecting the
proper explanation method. This is achieved by evaluating
the XAI methods using four evaluation metrics: fidelity,
stability, consistency, and identity, and then combining them
into a single trust score metric through utilizing Kemeny
and Borda rank aggregation methods. Our results show that
the proposed method effectively selects the most appropriate
explanation method from a set of explanation methods for
estimated RULs. To the best of our knowledge, this is the
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first work that attempts to address and solve the disagreement
problem in explainable PdM.

1. INTRODUCTION

Data-driven predictive maintenance (PdM) approaches based
on black-box machine learning (ML)/deep learning (DL)
models have achieved remarkable success in terms of
predictive accuracy and capability of modelling complex
systems (Cummins et al., 2021; Keleko, Kamsu-Foguem,
Ngouna, & Tongne, 2022; Chen, Hong, & Zhou, 2022a;
Jayasinghe, Samarasinghe, Yuenv, Low, & Ge, 2019). How-
ever, the complete repair plan and maintenance actions that
must be performed based on the detected symptoms of dam-
age and wear often require complex reasoning and planning
processes involving many actors and balancing different
priorities–which cannot be fully automated in many cases.
Therefore, operators, technicians, and managers require in-
sights to understand what is happening, why it is happening,
and how to react. The decisions black-box PdM models
make are often difficult for human experts to understand and
act upon. Thus, adding explainability to these models can
provide several benefits, such as (i) helping in improving the
model’s understanding and providing insight into why and
how the model arrived at a specific decision and (ii) can help
reliability engineers to develop more accurate PdM models
by identifying the important features in a model.

Motivated by this, a new research direction has recently
emerged, leveraging black-box ML/DL models with explain-
able artificial intelligence (XAI), which explains the pre-
dicted remaining useful life (RUL) (Vollert, Atzmueller, &
Theissler, 2021; Khan, Ahmad, Khan, Khan, & Ahmad,
2022; Hong, Lee, Lee, Ko, Kim, & Hur, 2020; M. Baptista,
Mishra, Henriques, & Prendinger, 2020; Hong, Lee, Lee, Ko,
& Hur, 2020). But, unfortunately, the state-of-the-art XAI
methods often suffer from the disagreement problem (Krishna
et al., 2022), which occurs when two (or more) explanation
methods do not agree on a model’s feature ranking. For
instance, let us consider explaining a feed-forward neural
network (FFNN) PdM model trained using the C-MAPSS
(FD001 for this example) dataset (Saxena, Goebel, Simon, &
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Figure 1. For a single prediction, the local explanations are chosen when there is a disagreement between (a) SHAP, and (b)
LIME explanation method.

Eklund, 2008). Let us use two different state-of-the-art XAI
tools, SHapley Additive Explanations (SHAP) (Lundberg &
Lee, 2017), Local Interpretable Model-Agnostic Explana-
tions (LIME) (Ribeiro, Singh, & Guestrin, 2016), to ex-
plain this PdM model. Figure 1 shows the explanation, and
we can clearly observe disagreements. Specifically, in Fig-
ure 1a, SHAP identifies features such as SensorMeasure9,
SensorMeasure14, and SensorMeasure11 as most influential
features ranked as 1,2, and 3, respectively, for RUL estima-
tion. On the other hand, LIME identifies features such as
SensorMeasure12, SensorMeasure4, and SensorMeasure9 as
most influential features ranked as 1,2 and 3, respectively, for
RUL estimation. It is worth mentioning that the effective-
ness of PdM systems often depends less on the accuracy of
the alarms the AI models raise than on the relevancy of the
actions operators perform based on these alarms. Therefore,
such disagreement can easily misguide the required insights
by the operators and technicians to understand what is hap-
pening, why it is happening, and how to react, which can
lead to catastrophic consequences in safety-critical applica-
tions. Indeed, this disagreement in explainable PdM raises a
fundamental question: how to choose the correct explanation
method for PdM models?

To answer the above question and resolve the disagreement
problem in PdM, in this paper, we propose a novel framework
for selecting the proper explanation method from a set of ex-
planation methods given a batch of RUL estimations from a
PdM model. Our contributions in this paper can be summa-
rized as follows.

• First, we develop three ML-based and one DL-based

PdM model. Specifically, we use extreme gradient
boosting (XGB), random forest (RF), logistic regres-
sion (LR), and one simple FFNN to predict RUL using
the C-MAPSS dataset (Saxena et al., 2008). Then we
employ three post-hoc explanation techniques, namely
SHAP (Lundberg & Lee, 2017), LIME (Ribeiro et al.,
2016), and Anchors (Ribeiro, Singh, & Guestrin, 2018)
to explain the predicted RUL. Our results reveal that the
ranking of dominant features for RUL prediction dif-
fers for different explanation methods. In addition to es-
tablishing and demonstrating the disagreement problem,
this also indicates that no specific explanation method
can perform optimally for a given RUL estimation.

• We propose a method to quantitatively measure PdM
disagreement problems based on the quality of explana-
tions. Specifically, we apply four explainability evalua-
tion metrics: fidelity, stability, consistency, and identity,
to evaluate the disagreement among XAI methods.

• Finally, to resolve the PdM disagreement problem, we
propose a novel trust score metric by combining the XAI
evaluation metrics into a single metric to select the best
RUL explanation method from a set of given explanation
methods. Specifically, we use Kemeny rank aggrega-
tion (Cachel, Rundensteiner, & Harrison, 2022) and
Borda rank aggregation (Lestari, Adji, & Permanasari,
2018) methods for aggregating the rankings induced
by these evaluation metrics. Our results show that the
computed trust score can effectively select the accu-
rate explanation method from a set of PdM explanation
methods.
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Our experimental results indicate that disagreement in
explanation is more likely to occur due to their lack of
a common foundational goal among these methods, and
the models being explained are complex and highly non-
linear. Moreover, we also observe that no explanation
methods could consistently provide an accurate explana-
tion. For example, for some samples, SHAP may per-
form better; for others, LIME or Anchors may perform
better. For the case of the C-MAPSS dataset, we show
that SHAP achieves a higher trust score in most cases for
the predicted RUL explanation. To the best of our knowl-
edge, our proposed method is the first work to pave the
way for selecting the most trustworthy PdM explanation
method.

2. RELATED WORKS

State-of-the-art ML/DL methods have shown great success
in RUL prediction due to their ability to model highly non-
linear, complex, and multi-dimensional systems with little
prior prognostic experience. A brief overview of these works
can be found in (Serradilla, Zugasti, Rodriguez, & Zurutuza,
2022; Wen, Rahman, Xu, & Tseng, 2022). However, as pre-
viously mentioned, these models are black-box without of-
fering insights into their working mechanism and the rea-
sons behind their decisions (M. Baptista et al., 2020). Hence,
several researchers have attempted to apply XAI to explain
PdM decisions in recent years (Vollert et al., 2021; Torcianti
& Matzka, 2021; Ferraro, Galli, Moscato, & Sperlı̀, 2022;
Hong, Lee, Lee, Ko, & Hur, 2020; M. Baptista et al., 2020;
Hong, Lee, Lee, Ko, Kim, & Hur, 2020; Khan et al., 2022;
Cohen, Huan, & Ni, 2023; Arya, Saha, Hans, Rajasekharan,
& Tang, 2023; M. L. Baptista, Goebel, & Henriques, 2022).

The discipline of XAI, which studies the development of ex-
planation methods, has two main approaches: (i) designing
inherently interpretable models such as rule lists, decision
trees, etc., (ii) employing post-hoc explanation methods, i.e.,
SHAP, LIME, etc., to explain a black-box ML/DL model lo-
cally (for a specific sample) or globally (for the entire model
space). For instance, Jakubowski et al. (Jakubowski, Stanisz,
Bobek, & Nalepa, 2022) applied an inherently interpretable
ML model, namely an Explainable Boosting Machine (EBM)
for RUL prediction of a turbofan engine (C-MAPSS dataset)
and provided explanations for their predictive RUL decision.
However, this inherently interpretable model did not perform
well regarding stability (Jakubowski et al., 2022), meaning
that similar points showed different explanations. Moreover,
inherently interpretable models typically depend on the dif-
ferent data properties and thus suffer from the dimensional-
ity problem (Schmitt & Jula, 2007). Another limitation of
their proposed EBM model is that it requires a higher train-
ing time (Nori, Jenkins, Koch, & Caruana, 2019), which
is not feasible for real-world PdM applications. To tackle
these problems and provide more meaningful explanations,

researchers in (Hong, Lee, Lee, Ko, & Hur, 2020; Khan et
al., 2022; Cohen et al., 2023) used different post-hoc expla-
nation methods to explain the predicted RUL. For instance,
authors in (Khan et al., 2022) applied different black-box
models such as Gradient Boosting, MLP, and SVM for RUL
prediction. Next, they employed post-hoc explanation meth-
ods, specifically SHAP and LIME, to explain the predicted
RUL using the C-MAPSS datasets. On the other hand, Hong.
et.al (Hong, Lee, Lee, Ko, & Hur, 2020) used SHAP for
explaining the 1D-CNN, LSTM, and bidirectional LSTM-
based PdM models predicted RUL. Then it was shown that
SHAP’s force plot and decision plot could help decision-
makers understand which feature significantly affects increas-
ing/decreasing the predicted RUL. A more detailed treatment
of XAI in the PdM system is provided in this comprehensive
survey article (Vollert et al., 2021). However, one of the prob-
lems with these explanation methods is that they often suffer
from the disagreement problem (Krishna et al., 2022). From a
conceptual standpoint, the misalignment of goals among ex-
planation methods leads to an inconsistent view of explana-
tions. For instance, the SHAP method is based on game the-
oretic concepts (Lundberg & Lee, 2017), whereas LIME is
motivated by the function approximation method (Ribeiro et
al., 2016). Such differences lead to conceptual and practical
challenges to understanding and using explanation methods,
thwarting progress in the explainable AI field and raising the
question of which explanation method to use and when. Sur-
prisingly, the disagreement problem in the explainable PdM
domain is vastly under-explored.

Only a few works exist when it comes to evaluating the
quality of the explanation of PdM models. For instance,
Jakubowski et al. (Jakubowski et al., 2022) measured the sta-
bility and consistency of the generated explanation for the
predicted RUL for the C-MAPSS dataset. Unfortunately,
their proposed approach did not consider how to choose an
accurate and trustworthy explanation for explaining the pre-
dictive RUL. This is important since unstable and inconsis-
tent explanations may lead to an untrustworthy PdM model
for the end-users. The authors in (Jakubowski et al., 2022)
also showed that explanation methods such as LIME and
SHAP might generate inconsistent and unstable explanations.
However, their work does not explain to what extent this dis-
agreement problem occurs in practice and how to resolve it.
In another work (Arya et al., 2023), the authors proposed
a two-stage global explanation method where explanations
from the first explainer are explained by the second one to
enable more explainability in RUL explanations. Though this
work effectively explains the predicted RUL, it can not evalu-
ate the trustworthiness of the generated explanation. Instead,
it solves a binary classification problem by converting the im-
portance weights of the features to binary values, which could
lead to instability in the RUL explanation and information
loss.
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Indeed, it is essential to understand and quantify how often
explanations produced by state-of-the-art methods disagree
with each other and examine how reliability engineers can
address such differences. Moreover, there is no single metric
using which XAI methods can be evaluated comprehensively
to select the most accurate explanation method for a given
RUL. Thus, in this work, we propose an approach that inte-
grates XAI evaluation metrics into a single metric trust score.
More specifically, we apply a novel robust rank aggregation
method for combining these multiple XAI evaluation metrics
into a single explanation model selection criterion that pro-
vides a trustworthy explanation of the predicted RUL.

3. METHODOLOGY

This section presents our proposed methodology for a trust-
worthy PdM system as illustrated in Figure 2. First, the
dataset from sensor obtained data is divided into training and
testing datasets. Then we use the training dataset to train four
ML/DL algorithms, specifically XGB, RF, LR, and a simple
FFNN for RUL estimation. These four trained PdM models
are then used to predict the RUL from the test dataset. The
next phase in the framework uses post-hoc (local) explanation
tools, specifically SHAP, LIME, and Anchors, to explain the
predicted RUL by identifying dominating features for indi-
vidual predicted RULs. Next, to evaluate the trustworthiness
of the XAI tool, we calculate their respective trustworthiness
metrics, also known as surrogate evaluation metrics: fidelity
(FI), stability (SI), identity (ID), and consistency (CO). Con-
sequently, we rank them using robust rank aggregation (RRA)
methods for combining multiple surrogate explanation evalu-
ation metrics into one metric. This enables us to choose the
trustworthy XAI method on-the-fly for RUL estimation.

3.1. RUL Prediction Model Development

The initial step of our proposed methodology is to develop
a PdM model for RUL estimation. Researchers have already
published tons of work in this area, and a brief survey of them
can be found in (Zhang, Si, Hu, & Lei, 2018; Lipu et al.,
2018; Cummins et al., 2021; Chen, Hong, & Zhou, 2022b).
It is worth mentioning that though this is the first step of our
methodology, developing a PdM model does not capture this
paper’s main contribution. Instead, this work is more focused
on evaluating the trustworthiness of these models so that a
trustworthy PdM model can be devised. To build accurate
PdM models, we use three ML models, namely XGB, RF,
LR, and one simple FFNN. We chose these models as they
are common in RUL estimations (Jafari & Byun, 2022; Jiao
et al., 2023; Sharma & Bora, 2022; Ni, Ji, & Feng, 2022;
Tong, Miao, Mao, Wang, & Lu, 2022; Rauf, Khalid, & Ar-
shad, 2022; Wu, Zhang, & Chen, 2016). We train them using
the C-MAPSS dataset (Saxena et al., 2008). We use the grid
search method (Shekar & Dagnew, 2019) for the hyperparam-
eter tuning of these models. For training the FFNN model,

we use the learning rate of 0.001. Furthermore, to prevent
the FFNN model from overfitting, we use an early-stopping
strategy with a patience value of 30 while training. Further-
more, we use a 10 fold cross-validation technique to validate
the performance of these ML and DL-based PdM models.

In addition to RUL estimation, we also use the same PdM
models for classification by converting the RUL values into
a classification problem similar to the work (Remadna, Ter-
rissa, Al Masry, & Zerhouni, 2022), where the class labels
are: good condition, moderate condition, and warning condi-
tion. We will need the RUL classification results to calculate
the explanation evaluation metrics, which require the corre-
sponding label of the predicted RUL. To assign the labels, we
define the engine’s condition with the life ratio (LRO), the ra-
tio between the current and end cycles. LRO = 0 indicates
that the component has just started its degradation, whereas
LRO = 1 means it has completely degraded. We labeled the
good condition as 0 if LRO <= 0.6, the moderate condition
as 1 if 0.6 < LRO ≤ 0.8, and the warning condition as 2 if
LRO > 0.8.

3.2. RUL Explanation

This section discusses how the explanation block provides
predicted RUL explanations with feature importance scores
for individual samples during predictions. Explanations in
XAI can be generally categorized as global and local expla-
nations. A global explanation aims to identify features cru-
cial for the overall prediction, whereas a local explanation
identifies features dominating an individual sample’s predic-
tion. However, our work focuses on the local explanation
method in which samples are randomly chosen from the test
dataset containing all the features. To calculate the feature
importance score, we use three post-hoc explanation tools,
namely, LIME (Ribeiro et al., 2016) and (SHAP) (Lundberg
& Lee, 2017)), Anchor (Ribeiro et al., 2018). SHAP is a fea-
ture importance explanation approach that assigns a feature
significance value to each prediction. As previously men-
tioned, it is based on the mathematical foundation of Shap-
ley values from cooperative game theory (Lundberg & Lee,
2017). For a given set of input samples and ML/DL mod-
els, the goal of SHAP is to explain the prediction of input
samples by calculating the contribution of each feature to
the prediction. On the other hand, the LIME-based expla-
nation method generates explanations by approximating the
underlying model with an interpretable one to show what fea-
ture contributed to the output from that single sample. More
specifically, LIME trains an interpretable model on a newly
generated dataset consisting of perturbed samples around the
original data point and the corresponding predictions. Then,
LIME weights the proximity of sampled data points to the
original data and generates an explanation. Consequently,
Anchor explains the prediction in the form of rules which ac-
curately capture the important factors driving a given predic-
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Figure 2. An overview of a trustworthy RUL explanation from a set of explanation methods of explainable predictive mainte-
nance framework.

tion. The assumption is that the prediction is always the same
for the given instances on which the anchor holds. However,
as previously mentioned, one of the problems with these ex-
planation methods is they often suffer from the disagreement
problem (Krishna et al., 2022). Thus, it is crucial to investi-
gate whether different explanation methods can produce the
same or different explanations that are inconsistent and inac-
curate. To find the answer to this question, we evaluate the
performance of these explanations using a diverse set of ex-
planation metrics in the next section.

3.3. RUL Explanation Evaluation Metrics

The researchers have proposed several metrics to measure the
explainability of AI models (Elkhawaga, Elzeki, Abuelkheir,
& Reichert, 2023; Nauta et al., 2023). A comprehensive
survey of these metrics for evaluating explanation methods
is available (Zhou, Gandomi, Chen, & Holzinger, 2021).
Their survey highlights two characteristics of a high-quality
explanation: how well it approximates the model and how
human-understandable it is. Our work focuses on four ex-
planation evaluation metrics: fidelity, stability, identity, and
consistency. We choose these four metrics because they of-
fer a comprehensive evaluation framework for XAI methods
and are widely adopted by researchers and practitioners to
assess the strengths and limitations of different explanation
methods (Elkhawaga et al., 2023; Zhou et al., 2021). Thus,
these metrics help us measure the accuracy and fairness of the
generated explanation for a predicted RUL and how easily a
user understands the explanation. Evaluating these metrics
helps to measure the XAI disagreement problem in a princi-
pled manner.

Fidelity: When evaluating an explanation method, the most
common question is “To what extent does it accurately rep-
resent the underlying decision-making process?” In other
words, do the important features highlighted in the expla-
nation represent the most important features of the model?
Explanations that precisely identify the most dominating fea-

tures of the underlying models for RUL prediction have high
fidelity. More specifically, fidelity is the concordance of the
predictions between the applied XAI methods and the com-
plex black-box ML/DL models, which can be defined as:

F(x,f,ϵ) =
|top(k,W) ∩ top(k,w)|

k
(1)

In Equation (1), w represents the ground truth weights of
a black-box model f for a given input x and explanation
method ϵ. The fidelity metric F is defined as the percent of
the top k features from explanation W, which are also in the
top k features (where k is a function that returns the indices
of the k largest elements of a given input x) from w. Note,
W is the given local explanation for the predicted RUL and
is denoted as (W = ϵ(x, f)). The main idea behind this fi-
delity metric is that slight modifications to unimportant fea-
tures k should not significantly impact the black-box model
f prediction. If the model prediction changes significantly,
the explanation has low fidelity and fails to capture important
features that are crucial to the model prediction. Note, an ex-
planation with a low fidelity score can be useless (Carvalho,
Pereira, & Cardoso, 2019).

Identity: The second metric used to evaluate the XAI expla-
nation is identity. It assumes that if there are two identical
instances, such as the actual and predicted RUL classes, they
must have identical explanations (Parimbelli et al., 2023). If
this is not the case, then either the explanation model gen-
erates an explanation that is not identical or the PdM model
predicted the wrong RUL class.

Stability: The idea that similar observations should receive
similar explanations means that small changes in the observa-
tions will lead to low changes in the explanations. This prop-
erty is known as the explanation model’s stability or robust-
ness. We use the Lipschitz indicator proposed by Alvarez-
Melis and Jaakkola (Alvarez-Melis & Jaakkola, 2018) to
measure an explanation method’s stability or robustness. This
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Lipschitz indicator provides the robustness of the explanation
methods to endure slight perturbations to the input that do not
affect the model’s prediction represented as:

LX(xi) = max
xjϵNε(xi)≤ϵ

||fi − fj ||
||xi − xj ||

(2)

In Equation (2), LX(xi) represents the stability of the data
point xi from test set X where xi ϵ X , fi and fj are the fea-
ture importance score of the instances xi and xj . Nε(xi) is
the neighborhood or ball of radius ϵ centered at xi, which is
defined as all data points that have L2 norm distance to data
point xi is smaller than ϵ.The general idea behind measuring
an explanation’s stability at a point xi is that we add some
noise to xi to generate similar points and then find the neigh-
borhood of the point xi and the maximum dissimilarity. Then
take the average Euclidean distance between the xi data point
explanation and those of similar data points. A lower stability
value indicates that the model performs better in explanation.

Consistency: The consistency metric quantifies the similar-
ity between the explanations generated by various explana-
tion methods for predictions of different black-box models.
The main intuition behind this metric is that if an explanation
for a single observation is measured multiple times, each of
the measured explanations should be similar. If this is not
the case, then either the black-box model is not making a
good prediction or the explanation method is not providing a
proper explanation. To measure the consistency of a given in-
stance, we compute numerous explanations for that instance
and then measure the average L1 distance between the orig-
inal explanation and each of the new explanations similar to
the work (Bobek, Bałaga, & Nalepa, 2021). The consistency
metric can be expressed as follows:

C(Gi1 , Gi2) =
1

||Gi1 −Gi2 ||2 + 1
(3)

where C(Gi1 , Gi2) is the measured consistency of ith obser-
vation and Gi1 and Gi2 are the feature importance of the ith

observation for the given two explanation models.

3.4. Robust Rank Aggregation

In previous sections, we discussed how explanation evalua-
tion metrics provide more insight into the generated expla-
nations from the explanation methods. However, these ex-
planation methods often generate disagreeing explanations in
practice and lack a principled approach for reliability engi-
neers/managers to select suitable explanations. Thus, there
is a need to derive a method that can be used to select the
most accurate explanation method for a given observation
(predicted RUL) from a set of explanation methods. For this,
we take advantage of extensive research that has been con-
ducted on the topic of rank aggregation in ML and their appli-

cations in different fields (Klementiev, Roth, & Small, 2008;
Dwork, Kumar, Naor, & Sivakumar, 2001; Waad, Brahim, &
Limam, 2013). This section formalizes the robust rank aggre-
gation framework for selecting suitable explanation methods
by utilizing Kemeny rank aggregation (Cachel et al., 2022)
and Borda rank aggregation (Lestari et al., 2018) methods.
We use these two methods to combine multiple XAI evalu-
ation metrics into a single metric trust score as an accurate
explanation model selection criterion.

We use Kemeny rank aggregation to find a barycentric or
median ranking by picking a distance on the set of rank-
ings, known as the Kemeny-Young problem (Waad et al.,
2013). However, despite having many desirable qualities,
Kemeny rank aggregation may suffer from NP-hard prob-
lems (Baumeister & Rothe, 2016). Thus, as an alternative,
we use the Borda rank aggregation methods to find an effi-
cient approximate solution in which each explanation model
receives awards from each evaluation metric (e.g., fidelity,
stability, consistency). For instance, let us assume a set of
candidate explanation methods E = {e1, e2, ....., eN} where
N > 0 represent the total number of explanation meth-
ods. Let us also assume a set of XAI evaluation metrics
M = {m1,m2, ....,mJ}, where J > 0 is the total number
of evaluation metrics and each mi ∈ M represents an N di-
mensional vector where each vk ∈ mi contains the quantita-
tive evaluation of metric mi. To choose the best explanation
method, we calculate the trust score based on given E and
M using robust rank aggregation function F which can be
defined as: F (.) : M → R, where each element ri ∈ R
(R is set with N elements ) represents the aggregated evalu-
ation metric value associated with each explanation method.
We calculate the trust score for each rank aggregation method
(Kemeny and Borda) by quantifying the agreement between
the aggregated rankings and the ground truth or a reference
ranking. This trust score (TS) provides a fair ranking on the
performance of aggregated rank and selects the best explana-
tion method for a given predicted RUL, which can be defined
as follows:

TS =
1

J

N∑
p=1

N∑
q=1

Rank agrscore(p, q) (4)

In Equation (4), Rank agrscore(p, q) represents the pairwise
agreement score between explanation methods p and q in the
aggregated rankings and the reference ranking. More specifi-
cally, it measures how consistently two rankings agree with
each other. Moreover, it combines or merges multiple in-
dividual rankings into a single aggregated ranking. We cal-
culate the Rank agrscore(p, q) between two rankings using
Kendall’s tau (τ) distance. Kendall’s tau (τ) distance mea-
sures the number of pairwise disagreements between the two
rankings. A higher trust score indicates better agreement be-
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tween the aggregated and reference rankings, suggesting a
more reliable and trustworthy rank aggregation method.

4. DATASET & EXPERIMENTAL SETUP

This section explains the experimental setup and data we
used to validate our proposed method. We used Scikit-
Learn (Pedregosa et al., 2011) to train the ML models and
TensorFlow-2.4 (Sergeev & Del Balso, 2018) to train and
evaluate our FFNN model. We use 50, 100, and 200 nodes in
each consecutive layer, ReLU activation, categorical cross-
entropy and mean squared error loss function, Adam opti-
mizer, and 300 training epochs. For explaining the ML/DL-
based PdM models, we used the SHAP (Lundberg & Lee,
2017), the Anchor (Ribeiro et al., 2018), and the InterpretML
(for LIME) (Nori et al., 2019) library. The ML/DL-based
PdM models were trained on an Intel Core i9 Processor and
32GB RAM option with NVIDIA GeForce RTX 3080 Ti
GPU.

4.1. Dataset

To validate the effectiveness of the proposed approach, we
use the Commercial Modular AeroPropulsion System Simu-
lation (C-MAPSS) dataset (Saxena et al., 2008). This dataset
comprises 22 different features from the sources, such as
pressure, fan speed, fuel, coolant flow, temperature, etc., and
3 operational parameters (settings). The dataset consists of
four fleets of engines FD001, FD002, FD003, and FD004, in
which each fleet has an approximately equal number of train
and test instances, as shown in Table 1. The training data
capture run-to-failure trajectories, whereas the testing data
preserves sensor readings of engines up to a given point in
time with a known RUL. The RUL at a given point for each
turbofan engine can be determined based on the total num-
ber of completed cycles. We used the 70% samples from this
dataset for training the ML/DL-based PdM models and their
remaining 30% samples for testing.

4.2. Evaluation Metrics

We use the most widely used error performance metrics to
evaluate the RUL estimation accuracy: Root Mean Squared
Error (RMSE) and Mean Absolute Error (MAE). Similarly,
to evaluate the performance of classification models, we
use standard metrics such as balanced accuracy and F1-
score (Brodersen, Ong, Stephan, & Buhmann, 2010). We
choose balanced accuracy instead of accuracy as balanced ac-
curacy is known to perform better with imbalanced data, and
converting regression problems to classification problems of-
ten suffers from class imbalance problem (Brodersen et al.,
2010). Therefore, we used balanced accuracy to avoid such
situations.

Table 1. Number of train and test engine units in each fleet of
the C-MAPSS dataset

FD001 FD002 FD003 FD004
Train 100 260 100 249
Test 100 259 100 248

Op. cond./fault modes 1/1 6/1 1/2 6/2

5. RESULTS

This section presents the results obtained from evaluating the
performance of PdM models, RUL local explanation, XAI
methods performance, and robust rank aggregation.

Table 2. Performance of 10-Fold Cross Validation on C-
MAPSS dataset in RUL prediction

Model MAE RMSE
FD001 FD002 FD003 FD004 FD001 FD002 FD003 FD004

XGB 13.75 15.72 14.43 18.45 14.05 16.32 14.67 17.95
RF 13.34 15.91 14.87 19.64 13.84 22.15 15.31 21.05
LR 17.55 18.71 16.23 25.87 17.76 23.03 18.32 26.92
NN 9.98 11.73 10.54 12.89 12.11 14.81 13.13 14.64

Table 3. Performance of 10-Fold Cross Validation on C-
MAPSS dataset in Classification Task

Model Balanced Accuracy% F1-Score
FD001 FD002 FD003 FD004 FD001 FD002 FD003 FD004

XGB 91.5 90.3 89.7 89.3 92.6 91.4 91.2 92.5
RF 89.5 88.7 88.1 87.5 91.8 90.8 91 92.1
LR 87.2 86.8 84.5 85.1 90.3 89.2 88.9 89.5
NN 92.7 91.5 90.4 91.5 93.4 93.5 92.3 93.1

5.1. Performance of PdM Models

Table 2 shows the performance of the developed PdM mod-
els. The FFNN model performs better than other ML models
for regression (RUL estimation) and classification. For in-
stance, the FFNN model’s RMSE score is 9.98, 11.73, 10.54,
and 12.89 for FD001–FD004 datasets. In contrast, the XGB
model’s RMSE score is 13.75, 15.72, 14.43, and 18.45. The
MAE scores for these models also show the same trend. For
classification, the performance of the FFNN and XGB models
are quite close to each other. For instance, the balanced accu-
racy score of the FFNN model is 92.70%, 91.50%, 90.40%,
and 91.50% for FD001–FD004 datasets. In contrast, the bal-
anced accuracy score of the XGB model is 91.50%, 90.30%,
89.70%, and 89.30%. Overall, the NN model performs better
for regression and classification tasks than other ML models
due to their high predictive performance capabilities.

5.2. Explanation of RUL

The results of the RUL (local) explanation utilizing SHAP for
the FFNN and XGB models and FD001 dataset are shown in
Figure 3. In Figure 3, the yellow and green bars denote pre-
dicted RUL probabilities and the mean absolute score (MAS)
for that individual outcome. MAS is actually calculated as
logits or log odds. To convert these logits into a probabil-
ity, we sum them up and pass them through the logistic link
function (Zou, Hu, Tian, & Shen, 2019). This logistic link
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Figure 3. For a single prediction in the FD001 dataset, the local explanations provided by SHAP in which the actual value of
RUL of the component is 114 while the predicted value is 111.87 (a) FFNN, (b) and XGB model.
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Figure 4. For a single prediction in the FD001 dataset, the local explanations provided by LIME in which the actual value of
RUL of the component is 114 while the predicted value is 111.87 (a) FFNN, (b) and XGB model.

Table 4. The fidelity metric of SHAP, LIME, and Anchor
methods computed for 10 randomly selected test samples
from the FD001–FD004 datasets for LR, XGB, RF, and NN
models.

XAI methods Models FD001 FD002 FD003 FD004

SHAP
LR 0.875 0.843 0.795 0.892

XGB 0.975 0.953 0.925 0.898
RF 0.912 0.905 0.883 0.934
NN 0.998 0.956 0.986 0.971

LIME
LR 0.910 0.905 0.918 0.886

XGB 0.904 0.953 0.925 0.898
RF 0.943 0.937 0.856 0.892
NN 0.912 0.889 0.898 0.893

Anchor
LR 0.863 0.843 0.795 0.892

XGB 0.890 0.878 0.892 0.879
RF 0.881 0.907 0.887 0.865
NN 0.924 0.905 0.894 0.934

Table 5. The identity metric of SHAP, LIME, and Anchor
methods computed for 10 randomly selected test samples
from the FD001–FD004 datasets for LR, XGB, RF, and NN
models.

XAI methods Models FD001 FD002 FD003 FD004

SHAP
LR 0.032 0.0054 0.0019 0.00056

XGB 0.242 0.437 0.295 0.159
RF 0.465 0.513 0.503 0.485
NN 0.798 0.752 0.787 0.734

LIME
LR 0.0 0.0 0.0 0.0

XGB 0.0242 0.0193 0.0157 0.172
RF 0.0805 0.081 0.061 0.074
NN 0.08 0.053 0.079 0.071

Anchor
LR 0.0 0.0 0.0 0.0

XGB 0.0 0.0 0.0 0.0
RF 0.0 0.0 0.0 0.0
NN 0.018 0.014 0.009 0.012
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IF “Operational setting_2” ≥ 0.0034 AND “SensorMeasure12”> 522.49
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AND “SensorMeasure14” ≥ 8135.95 AND “SensorMeasure7” > 551.60

AND “SensorMeasure11” < 48.05 AND “SensorMeasure21” ≤ 23.29

AND “SensorMeasure15” ≥ 8.38 AND “SensorMeasure3” > 1595.65

THEN PREDICT “RUL” = 111.87

WITH precision = 0.832 AND Coverage = 0.232
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IF “SensorMeasure20”> 14.03AND “SensorMeasure14”< 9.41
AND “SensorMeasure9”≥ 8775.60 AND “SensorMeasure3”> 1365.21
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THEN PREDICT “RUL” = 111.87
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Figure 5. For a single prediction in the FD001 dataset, the local explanations provided by Anchor in which the actual value of
RUL of the component is 114 while the predicted value is 111.87 (a) FFNN, (b) and XGB model.

Table 6. The stability metric of SHAP, LIME, and Anchor
methods computed for 10 randomly selected test samples
from the FD001–FD004 datasets for LR, XGB, RF, and NN
models.

XAI methods Models FD001 FD002 FD003 FD004

SHAP
LR 0.416 0.429 0.443 0.427

XGB 0.339 0.353 0.331 0.319
RF 0.302 0.325 0.336 0.317
NN 0.273 0.295 0.301 0.289

LIME
LR 0.507 0.537 0.525 0.519

XGB 0.473 0.493 0.498 0.465
RF 0.406 0.443 0.418 0.425
NN 0.387 0.415 0.395 0.408

Anchor
LR 0.786 0.797 0.811 0.792

XGB 0.687 0.703 0.719 0.749
RF 0.745 0.762 0.716 0.704
NN 0.642 0.669 0.638 0.655

Table 7. The consistency metric of SHAP, LIME, and An-
chor methods computed for 10 randomly selected test sam-
ples from the FD001–FD004 datasets for LR, XGB, RF, and
NN models.

XAI methods Models FD001 FD002 FD003 FD004

SHAP
LR 0.0014 0.0009 0.0008 0.001

XGB 0.189 0.176 0.183 0.165
RF 0.332 0.315 0.216 0.197
NN 0.063 0.095 0.031 0.089

LIME
LR 0.143 0.106 0.125 0.113

XGB 0.103 0.89 0.98 0.95
RF 0.166 0.153 0.147 0.175
NN 0.0087 0.059 0.0755 0.0418

Anchor
LR 0.0001 0.0001 0.0001 0.0001

XGB 0.0032 0.0034 0.0064 0.0009
RF 0.0143 0.0117 0.0122 0.0091
NN 0.00 0.00 0.00 0.00

Table 8. Performance evaluation of the XAI methods for
the top-1 selected model (NN-based RUL prediction) in the
FD001 dataset for 10 randomly selected test samples.

SHAP LIME Anchor
Fidelity 0.953 0.923 0.913
Stability 0.351 0.328 0.531

Consistency 0.09 0.082 0.0002
Identity 0.753 0.612 0.094

function is calculated for the feature ranking, where logits
represent the sigmoid’s midpoint for a sample. The features
with large MAS values are classed as important as they have a
higher average impact on the model output. The x-axis repre-
sents the model’s output MAS (the probabilities of feature im-
portance in RUL prediction), and the y-axis lists the model’s
features. In other words, the features in the green color mean
that the condition of the component is good (the reason be-
hind the high RUL value), while the yellow indicates that the
conditions of the component are degraded (contributed to the
reduction of the predicted RUL value). It is worth mentioning
that MAS values in the SHAP explanation are also known as
absolute Shapley values. From Figure 3a, it is observed that
features such as SensorMeasure12, SensorMeasure15, etc.,
are the most influential features for RUL prediction, which
has positive probabilities of 0.3 indicating that the condition
of the component is good. On the other hand, features such as
SensorMeasure9 and SensorMeasure14 have negative proba-
bilities that indicate that when the RUL degrades, these fea-
tures have a higher impact on the RUL prediction. Likewise,
the local explanation of the predicted RUL using XGB model
is shown in Figure 3b. From Figure 3b, it is observed that fea-
tures such as SensorMeasure9, SensorMeasure4, SensorMea-
sure9 etc., are the most dominating features for RUL predic-
tion, which has positive probabilities of 0.5 and features such
as SensorMeasure12, SensorMeasure20, etc., have negative
probabilities for RUL value degradation.

The results of the local explanation utilizing LIME for the
same samples from the FD001 dataset for the FFNN and
XGB models are shown in Figure 4. Like SHAP, LIME
explanations are also composed of several values, including
the predicted RUL value (i.e., 111.87). In Figure 4a, the
features such as SensorMeasure11, SensorMeasure15, Sen-
sorMeasure4, etc., on the right side in orange color are the
ones that contribute to increasing the prediction RUL val-
ues, while the ones in blue color are the features that have a
negative effect or decrease the predicted RUL value. For ex-
ample, features such as SensorMeasure15, SensorMeasure13,
SensorMeasure6, SensorMeasure7 on the right side indicate
that the machine component is in good condition and its
RUL is supposed to be high. However, the features such as
SensorMeasure11, SensorMeasure4, SensorMeasure8, Sen-
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Figure 6. Performance of the top-1 selected model (NN-based RUL prediction). Box plots of the measured trust score of the
explanation method selected by XAI evaluation metric sets (a) FD001, (b) FD002, (c) FD003, and (d) FD004 dataset.

sorMeasure9 on the left side in blue color indicate that the
condition of the component is degraded and thus reducing the
predicted RUL value. On the other hand, in Figure 4b, fea-
tures such as SensorMeasure2, SensorMeasure4, SensorMea-
sure9,etc., appear to be the most predictive features for in-
creasing the predicted RUL value and features such as Sen-
sorMeasure15, OpSet1, SensorMeasure6, etc., are the most
influential features for reducing the predicted RUL value for
the XGB model.Interestingly, the SHAP and LIME explana-
tion methods provide different feature rankings for the same
sample in the predicted RUL explanation, which leads to
disagreement problems in the explanation. A disagreement
problem occurs when two explanation methods do not agree
on the feature ranking (Krishna et al., 2022). For instance, in
Figure 3a, SensorMeasure9 is the most influential feature for
decreasing the predicted RUL value in the SHAP explanation,
while SensorMeasure11 is the most influential feature for de-
creasing the predicted RUL value in the LIME explanation as
shown in Figure 4a.

Next, we analyze the relation between top features and the
FFNN and XGB models output utilizing an Anchor-based lo-
cal explanation to provide a deeper insight into the predicted
RUL explanation. Figure 5 presents the results of the top fea-

ture for the FFNN and XGB models and FD001 dataset. We
observe that the conditions necessary for the RUL prediction
are very specific. For instance, as shown in Figure 5a, if fea-
tures such as Operational setting 2, SensorMeasure12, Sen-
sorMeasure14, SensorMeasure7, etc., contribute with given
measurement values and conditions, then the FFNN model
predicts the RUL of 111.87 with a precision of 0.832 and
coverage of 0.232. On the contrary, if features such as
SensorMeasure20, SensorMeasure14, SensorMeasure9, etc.,
contribute with given measurement values and conditions,
then the XGB model predicts the RUL of 111.87 with a pre-
cision of 0.752 and coverage of 0.192 (Figure 5b). A reliabil-
ity engineer can use these conditions to observe the features’
contribution and corresponding values for the specific RUL
prediction. Like LIME and SHAP explanation methods, An-
chor explanation methods also provide different features with
corresponding values for predicted RUL explanations through
a set of conditions. One key point we observe from these
three explanation methods is that they may disagree with each
other for the same sample. However, different explanation
methods have different goals, leading to an inconsistent view
of explanation (Krishna et al., 2022). Thus, only looking at
the feature ranking does not provide sufficient disagreement
with the predicted RUL explanation. Therefore, we use four
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XAI evaluation metrics to capture the intuitions behind the
predicted RUL explanation disagreement. These metrics cap-
ture specific aspects of the explanation disagreement concern-
ing their corresponding feature importance score. In the next
section, we will evaluate the XAI methods against these met-
rics.

5.3. Performance of RUL Explanation

In this section, we evaluate the performance of SHAP, LIME,
and Anchor for generating RUL explanations fidelity, stabil-
ity, identity, and consistency metrics. To perform the evalua-
tion and show the disagreement problem, we randomly select
10 samples from the test dataset. Table 4 summarizes the
fidelity scores of predicted RUL explanations using SHAP,
LIME, and Anchor FD001–FD004 datasets. We observe that
SHAP performs better regarding the FFNN model across the
sub-dataset. For instance, the RUL explanation using the
SHAP method for the FFNN model and FD003 dataset ex-
hibits a 0.986 fidelity score, almost 1.09x, and 1.12x higher
than that of the LIME and Anchor methods. This indicates
that minor explanation disagreement occurred with LIME and
Anchor explanation methods. However, we notice that for the
LR model, SHAP does not perform well compared to LIME
for the RUL explanation across the sub-datasets. This is be-
cause LR is built on linear models, and LIME is also a local
function approximation method; thus, if the LR model pre-
dicted inaccurate RUL, as a consequence, the local surrogate
model also predicted the inaccurate RUL(Lundberg & Lee,
2017). However, this is not true for other classes of ML/DL
models.

Furthermore, Table 5 summarizes the identity metric of
benchmark methods in the RUL explanation. From Table 5,
we observe that SHAP performs relatively consistently and
has a higher identity score across the sub-datasets. This in-
dicates that two identical instances always have the same ex-
planation generated by SHAP. This is not the case for either
LIME or Anchor, highlighting that these methods generate
potentially unstable explanations. For instance, SHAP per-
forms with an identity score of 0.798 for the FFNN model
and FD001 dataset, which is approximately 9.98x and 44.5x
higher than LIME and Anchor, highlighting an identical ex-
planation.

Therefore, Table 6 summarizes stability metrics scores for
the explanation methods. We observe that the SHAP method
achieves higher stability in the model explanation. The FFNN
model for all of the sub-datasets with the SHAP explanation
achieves the lowest stability value. For instance, the RUL ex-
planation using the SHAP method results in a stability score
of 0.273, 0.302, 0.339, and 0.416 for the FFNN, RF, XGB,
and LR models, respectively, for the FD001 dataset. This is
indeed 1.41x, 1.34x, 1.39x, and 1.21x lower than the LIME
and 2.35x, 2.47x, 2.02x, and 1.58x lower than the Anchor

methods for the FFNN, RF, XGB, and LR models, respec-
tively for the FD001 dataset. This indicates that SHAP per-
forms better in predicted RUL explanations, highlighting that
this method generates potentially stable explanations. Fur-
thermore, Table 7 presents the mean consistency between
ML/DL models. We observe that the consistency scores are
relatively far from the ideal value of 1.0, which indicates the
explanation methods are inconsistent, raising the disagree-
ment problem. The highest consistency value is observed be-
tween the three pairs of models: RF and XGB with SHAP,
RF with LIME, and LR with LIME. Overall, the explana-
tions of the same model with different explanation methods
give lower consistency, which strongly indicates that no sin-
gle explanation method provides a faithful explanation for a
given predicted RUL.

To elucidate further, we evaluated the fidelity, stability, iden-
tity, and consistency score of the XAI methods for the FNNN
model using 10 more samples from the FD001 dataset. The
results are shown in Table 8. We observe that the SHAP
achieves higher fidelity, consistency, and identity values,
while LIME achieves higher stability values for the same.
Unfortunately, Anchor does not perform well in this case be-
cause of their set of if-then rules to explain the predicted RUL.
These results show that different methods may generate un-
stable explanations for different batches of samples, leading
to disagreement among explanation methods.

5.4. Calculating Trust Scores for Identifying the Best
Suitable Explanation

In the previous section, we observed that no explanation
method could consistently provide an accurate explanation.
For example, for some samples, SHAP may perform better,
and for others, LIME may perform better. Moreover, there
is no single metric using which XAI methods can be evalu-
ated in a comprehensive manner. Thus, combining the XAI
method evaluation metrics into a single metric trust score is
important to select the best explanation method (from a set of
explanation methods) for a given set of samples. We obtain
the trust score by applying the robust rank aggregation meth-
ods, namely Kemeny and Borda rank aggregation method. Fi-
nally, it is worth mentioning that we used the FFNN model
for this analysis because it showed the best performance in
predicting the RUL.

Figure 6 shows the trust scores for all sub-datasets. In each
box plot, we compare the distribution of the average trust
scores for Borda and Kemeny’s aggregation method with re-
spect to each explanation method for the FFNN model. Our
results show that SHAP performs relatively well in generat-
ing a stable and consistent explanation compared to the LIME
method in all cases. In contrast, Anchor often generates in-
consistent explanations compared to SHAP and LIME meth-
ods. For instance, as shown in Figure 6 a and b, the RUL
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Figure 7. An overview of a trustworthy RUL explanation from a set of explanation methods of explainable predictive mainte-
nance framework.
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Figure 8. Performance of the top-1 selected model (NN-based
RUL prediction). Box plots of the measured trust score of the
explanation method selected by the XAI evaluation metric set
for the next 10 selected test samples for the FD001 dataset.

explanation based on SHAP performs better with Borda and
Kemeny methods, while LIME and Anchor do not. In ad-
dition, we observe that the distribution of trust score for the
SHAP explanation method has the highest median score for
both rank aggregation methods, whereas LIME and Anchor
have the lowest median. On the other hand, from Figure 6
c, we observe that LIME performs comparatively better than
SHAP methods and has the highest median score for both
Borda and Kemeny rank aggregation methods. Interestingly,
Anchor also achieved the lowest median for both Borda and
Kemeny rank aggregation methods.

To evaluate our proposed method further, we randomly
choose 10 more samples from the FD001 dataset and provide
their average trust scores using Borda and Kemeny’s aggrega-
tion method, as shown in Figure 8. We observe that the LIME
explanation method performs better than the SHAP and An-

chor explanation methods. Thus, the proposed trust score
provides insight into choosing the best suitable explanation
method for a specific RUL prediction. Indeed, the proposed
trust score works better than any randomly chosen individ-
ual explanation evaluation metric. One interesting fact that
we observe is that when performing robust rank aggregation
for trust score calculation using all evaluation metrics for a
batch size of 10 (10 samples from the dataset), the Borda rank
aggregation method performs better than the Kemeny rank
aggregation method while aggregating the evaluation metrics
and quantifying the trust score. The reason behind that is
the fact that some metrics have ranking performance worse,
such as identity and consistency, which contain lots of 0 value
(see Tables 5 and 7), leading to incomplete or biased rankings
and affecting the overall quality of the Kemeny rank aggrega-
tion (Cachel et al., 2022).

Finally, to demonstrate how the proposed trust score can help
in RUL estimation, we plot the RUL estimations using the
FFNN model and FD001 dataset in Figure 7. For each batch
of RUL values (10 RUL values/batch), we calculate the trust
score of SHAP, LIME, and Anchor and then select the best
one to label the batch in Figure 7. We observe that in most
cases, SHAP is selected more often than the LIME and An-
chor explanation methods. Unsurprisingly, Anchor is selected
only once in the whole dataset due to their poor performance
in the RUL explanation, as discussed in Section 5.3. For reli-
ability engineers, such trust scores can guide them in choos-
ing the most suitable and accurate explanation methods to
enable trustworthy and explainable predictive maintenance.

6. LIMITATIONS OF THE PROPOSED METHOD

Although our proposed framework sheds light on a unique
problem that poses a critical challenge in adopting explain-
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able predictive maintenance, our approach also has a few lim-
itations. For instance, we validated our proposed approach
only on three ML and one simple DL model. However, with
promising PdM use cases, we have yet to apply our proposed
method on more complex DL architectures such as LSTM,
GRU, Transformer Networks, etc. Furthermore, we applied
three post-hoc explanation methods and four XAI evaluation
metrics in our work. These metrics do not provide informa-
tion on the source of bias in explanations. Thus, in future
work, it would be interesting to develop novel evaluation met-
rics that can help reliability engineers readily discern a reli-
able explanation from an unreliable one when there is a dis-
agreement. Moreover, we only applied feature importance-
based explanation methods in this work. Therefore, in the
future, we plan to conduct further research with other expla-
nation methods such as example-based explanation, counter-
factual explanation, visual explanation, etc.

7. CONCLUSION

In this work, we proposed a trustworthy RUL explanation
framework by demonstrating and solving the disagreement
problem among the state-of-the-art XAI tools. Specifically,
we first developed three ML- and one DL-based PdM mod-
els. Then we applied three post-hoc explanation methods:
SHAP, LIME, and Anchor, to explain the predicted RUL
to demonstrate and evaluate their disagreement using four
evaluation metrics, i.e., fidelity, consistency, stability, and
identity. Finally, to solve this disagreement, we proposed a
novel trust score by combining their rankings using a robust
rank aggregation approach from different explanation evalu-
ation metrics for selecting the best explanation method for a
given batch of RUL samples. We illustrated the effectiveness
of our proposed method using NASA’s turbofan engine C-
MAPSS dataset. Our results showed that the SHAP explana-
tion method performed relatively well compared to the LIME
method. Our results also showed that the Borda rank aggre-
gation method performed better than the Kemeny method in
selecting a suitable explanation method, with the highest trust
score. We believe our proposed method can help identify the
proper explanation method to guide reliability engineers in
making correct decisions in safety-critical PdM applications.
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