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ABSTRACT

The development of new modes of transportation such as elec-
tric vertical takeoff and landing aircraft and the use of drones
for package and medical delivery have increased the demand
for reliable batteries. Capacity degradation and discharge
behavior can vary from battery to battery and can also be
influenced by changes in load due to internal thermal stress.
Therefore, predicting the degradation of a battery’s state-of-
health (SOH) and state-of-charge (SOC) is a crucial task to
ensure high reliability standards and prevent failures during
operation. At the same time, recent advanced in physics-
informed machine learning models have demonstrated poten-
tial to model both SOC and SOH, merging physics-derived
equations and data-driven kernels in a hybrid model trained
with back-propagation.

In this paper, we enhance a hybrid physics-informed machine
learning version of a Li-ion battery model we presented in pre-
vious works. The enhanced model captures the effect of wide
variation of load levels, in the form of input current, which
causes large thermal stress cycles. The cell temperature build-
up during a discharge cycle is used to identify temperature-
sensitive model parameters. We also extend the aging model
built upon cumulative energy drawn by introducing the effect
of load levels. We then map cumulative energy and load level
to battery capacity with Gaussian process regression.

To validate our approach we use a battery aging dataset col-
lected on a self-developed testbed, where we used a wide
current level range to age battery packs in an accelerated fash-
ion. Prediction results show that our model can be successfully
calibrated and generalizes across all applied load levels.

Kajetan Fricke et al. This is an open-access article distributed under the terms
of the Creative Commons Attribution 3.0 United States License, which per-
mits unrestricted use, distribution, and reproduction in any medium, provided
the original author and source are credited.

1. INTRODUCTION

The market for electric drive train powered vehicles such as
electric cars and, in the near future, eVTOL drones is grow-
ing with noticeable speed. One main cost driver of electric
vehicles is hereby the battery pack, contributing up to 40% to
the overall vehicle cost (Lutsey & Nicholas, 2019). Reliable
prediction methods for battery state of charge and health could
enable usage optimization for operators of electric powered
vehicle fleets, and be crucial for safe and reliable operation.
Electrochemistry-based models can accurately predict SOC
and SOH with adequate precision, but can be computationally
expensive and, therefore, suitable for in-time monitoring only
to a limited extend. Furthermore, large variations in operating
conditions impose a challenging framework for high-fidelity
electrochemistry-based models, due to the main challenges of
model parameter optimization, which is usually performed for
a specific operating point and might lead to sub-optimum pre-
dictions further away from the primary design point. Reduced
order models, on the other hand, can be suitable for online
prediction due to low computational cost. They are recognized
as a powerful tool in prognostics applications for industrial
equipment, at the cost of some accuracy loss.

The use of purely data-driven approaches for surrogate mod-
eling requires a constant tracking of the input-output relation
through sensors or indirect estimates which, in many engineer-
ing applications, is not feasible nor economically beneficial.
Critical useful data are usually scarce, thus invalidating one of
the key requirements of traditional machine learning models.

In order to mitigate the drawbacks of the aforementioned ap-
proaches, in this paper, we present an enhanced version of
a hybrid modeling approach for state of charge and health
prediction of lithium ion batteries. Our approach builds on top
of a combined electrochemistry based battery SOC and SOH
model, which was initially introduced by (Daigle & Kulkarni,
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2013), with a data-driven approach presented in (Nascimento,
Corbetta, Kulkarni, & Viana, 2021a). This hybrid physics-
informed machine learning approach implements reduced or-
der models based on the Nernst and Butler-Volmer equations
and utilizes a data-driven layer to reduce the remaining dis-
crepancy between actual and predicted battery voltage during
discharge. It is placed within an recurrent neural network
(RNN) cell in order to predict the voltage on a discharge time
series. This model approach proved its prediction capabilities
on low level discharge loads up to 4 A (Nascimento, Corbetta,
Kulkarni, & Viana, 2021b), (Bole, Kulkarni, & Daigle, 2014).

In order to predict the SOC for batteries subjected to a wide
range of load levels, as real-world applications will require, we
improve the hybrid approach by adapting both the data-driven
and electrochemistry based model portions to capture a large
variety of load levels and the effect of temperature build-up
during discharge caused by such load variations. Furthermore,
we aim to forecast battery aging through the prediction of
model parameters correlated with the battery residual capacity,
which we describe informally as aging parameters. We use
Gaussian process models to predict such aging parameters
as function of cumulative energy and discharge load levels.
With the cost associated to real world data acquisition in mind,
we build the models in order to be able to predict battery
discharge and degradation with only few early life data points,
and degradation information gathered from a fleet of similar
batteries subjected to different load levels.

The dataset used in this research is extracted from battery
life cycle tests carried out at the Probabilistic Mechanics
Laboratory at the University of Central Florida, using a self-
developed battery life cycle test bed. Results show that the
extension of our hybrid battery model can help to improve
predictions of SOC on wide load level ranges for both constant
and variable loading conditions. Battery aging resulting from
usage and affected by load level variations can be captured by
the hybrid model and could potentially help operators to track
the state of health of batteries operated in large fleets. Our
model is implemented using Python, applying the deep learn-
ing package Pytorch (Paszke et al., 2019) and the Gaussian
process package GPyTorch (Gardner, Pleiss, Bindel, Wein-
berger, & Wilson, 2018).

The remaining of this paper is organized as follows. Section
2 offers a brief literature review and Section 3 presents the
battery life cycle dataset used in this research. Section 4
introduces the improved hybrid model approach and Section
5 outlines the model used for aging prediction and highlights
the achieved SOC prediction results. Section 6 offers a brief
summary and discusses potential future work.

2. BACKGROUND AND LITERATURE REVIEW

This section provides a short overview of the existing liter-
ature on battery SOC and SOH prognosis, where we want

to highlight key studies and different modeling approaches
that provide necessary context for our own work. Here, we
divide these modeling approaches in two groups: 1) purely
electrochemistry and first principle-based models, purely data-
driven, and 2) hybrid modeling approaches that combine both
aforementioned techniques.

Recent works in the field of data-driven models include the
contribution of (Zhang, Xiong, He, & Liu, 2017), where au-
thors employ a long short-term memory (LSTM) cell within a
RNN for battery remaining useful life prediction. Battery cell
capacity degradation data is used to train the LSTM cell pa-
rameters until a certain life threshold; the model is then used to
predict capacity degradation until reaching end-of-life (EOL).
The optimization of model parameters is performed using the
RMSprop. Tampier and collaborators (Tampier Cotoras et
al., 2015) compare particle filter and unscented Kalman filter
algorithms both fused with feedback correction loops for SOC
estimation and end-of-discharge (EOD) prediction. Authors
identified advantages of a particle filter based estimation when
deployed on a battery system model that lacks precision and
further findings suggest better SOC prediction capabilities for
the unscented Kalman filter in combination with a feedback
loop if applied on a high fidelity model.

As an example of first principle-based models, Dubarry and
collaborators (Dubarry, Truchot, & Liaw, 2012) presented a
mechanistic model for battery prognosis. The synthetic ap-
proach models the specific electrode behavior and cell degra-
dation in between both electrodes as a function of loading
ratio. The model can distinguish between different cell aging
processes depending on various degradation modes and can
predict cell performance and degradation taking into account
operating conditions and cell design. One main advantage of
this approach is the flexibility regarding model adjustment
for deployment on different battery chemistries, cell sizes and
geometries, as well as aging conditions.

A hybrid model for battery SOH estimation was proposed by
(Lyu, Wang, & Gao, 2021), where a multi-kernel relevance
vector machine is trained to map battery aging features to
capacity which was obtained through quantitative evaluations.
The aging features are then decomposed in signals of different
frequencies and modeled through a LSTM or feedforward
neural network. Using the aforementioned neural network
models, the battery SOH can be estimated online and EOL can
be forecasted from the obtained aging feature predictions.

3. DATA

In this work we use a battery life cycle dataset collected on
a self-developed battery test bed. The test bed provides con-
tinuous battery cycle capabilities for up to 6 batteries with
acquisition of current, voltage and cell temperature throughout
the entire cycle process. The batteries used in this research are
composed of two 18650 Li-ion cells assembled in series (2S)
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with a battery pack voltage ranging from 8.4 V to 5.0 V cut-off
voltage. For life cycle testing, the batteries were divided in
two different groups. One group was subject to constant load
levels during discharge and the second group was discharged
at variable loads. The constant current levels are 9.3 A, 12.9
A, 14.3 A, 16.0 A and 19.0 A, whereas the two variable load
levels ranged from 12.9 A-16.0 A and 16.0 A-19.0 A, in order
to keep the discharge current within the maximum current rat-
ing of 20 A (‘‘Introduction of INR18650-25R’’, 2013). Two
battery packs were cycled for each load condition, for a total
of 14 batteries.

In order to determine battery capacity degradation during the
life cycle process, after completing intervals of 20 high load
discharge cycles, each of the batteries were discharged at a
constant current level of 2.5 A, which is equivalent to the
rated capacity of 2.5 Ah (1C). This slow-paced, constant load
discharge ensures precise battery capacity estimate due to low
temperature build-up and small Li-ion concentration gradients
in the electrolyte of the positive and negative electrode. All
batteries were subject to identical charging and resting pro-
cedures, with a charging current of 3 A during the constant
current charging phase and resting phases of 10 A between
each charging and discharge cycle. The battery aging proce-
dure was carried out until reaching end of life (EOL), which
corresponds to the failure of at least one of the two battery
cells that make up a pack.

Figure 1 shows a constant and variable load discharge cycle
each, chosen from the dataset, where the current levels applied
to the battery is shown on the top and the corresponding battery
voltage on the bottom plot. The variable load levels consist
of missions with random portions of constant current applied
for an interval within a 40-80 seconds range and with direct
step input current switches to the following current level. The
voltage discharge curve shows an instant initial drop from the
fully charged voltage due to the applied high load levels. After
a linear discharge trend the battery voltage then drops sharply
right before reaching EOD at 5 V.

4. HYBRID PHYSICS-INFORMED NEURAL NETWORKS
MODEL FOR BATTERY PROGNOSIS

In this research work, the electrochemistry based battery model
presented by (Daigle & Kulkarni, 2013) serves as a baseline.
Our goal is to enhance an extended approach of a hybrid
model presented in (Nascimento, Fricke, & Viana, 2020) that
incorporates two trainable parameters and two data-driven
components. The trainable parameters are correlated with
battery aging and will be discussed in more detail later in this
section. Two multi-layer perceptrons (MLP) serve as data-
driven components of our model, and are used to estimate the
non-ideal voltage on the positive and negative electrode.

In order to simulate the state transformation at each step of
the time series, we leverage the similarity between recurrent

Figure 1. Examples of constant (red) and variable (brown)
loading discharge cycles extracted from the accelerated battery
life cycle dataset and a summary of the applied load levels
(table on top).

neural networks (RNN) and Euler’s forward integration to
model the time dependent response of the system. Using the
input and previous state a RNN cell computes the current state
(which then becomes the previous state for the next time step),
and estimates the output at the current time step. Equation (4)
defines the state transformation performed through the RNN
cell, where t is time, y is the cell output, h is the internal state
and u is the input to the RNN cell.

[yt, ht]
⊤ = f(ut,yt−1,ht−1) .

The internal state vector contains the ohmic and surface over-
potentials as well as the available Lithium-ions on each elec-
trode divided in bulk and surface volume. The applied current
and cell temperature are model inputs, while voltage is the
model output:

h = [V0, Vη,n, Vη,p, qb,n, qb,p, qs,n, qs,p]
⊤ ,

u = [i, T ] , and y = y = V .

The RNN cell design is presented in Fig. 2, where we combine
the reduced-order electrochemistry based model portions (blue
blocks) with a data-driven portion (green block), that are used
to reduce the prediction error between model predictions and
observed data, and aging parameters (yellow block) that are
set as trainable parameters and intend to capture aging effects.
Under ideal conditions the equilibrium potential on each elec-
trode is estimated through the Nernst equation as described
in (Daigle & Kulkarni, 2013), and the voltage drop due to the
surface overpotential is estimated through the Butler-Volmer
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model. Furthermore, the rate of change of the lithium-ion
concentrations on the electrode surface and bulk volumes is
estimated based on electrochemistry principles as function
of the diffusion rate. For a more detailed description of the
reduced order electrochemistry based equations, the interested
reader is referred to Appendix A.

In order to compensate for the prediction error remaining after
estimating the voltage by adding the equilibrium potential,
surface overpotential Vη and ohmic overpotential Vo, two
non-ideal voltage multi-layer perceptrons are implemented
to estimate the internal voltage on the positive and negative
electrode:

Vni,p = MLPp(xp, i;wp,bp) .

The MLP on the positive side receives the mole fraction xp and
the discharge current i as input in order to capture discharge
effects resulting from a wide load level range. Neuron weights
and biases are collected in vectors wp and bp. This MLP
is build with two hidden layers with 8 neurons in the first
layer and 4 in the second. The activation for both hidden
layers is the hyperbolic tangent. The non-ideal voltage MLP
for the negative side consists of only one neuron with linear
activation function, since empirical analysis suggest a linear
relation between the mole fraction xn and Vint, and therefore
only the mole fraction is used as input:

Vni,n = MLPn(xn;wn,bn) .

The battery aging parameters in this model are represented
through the maximum number of available ions qmax as well
as the base internal resistance at reference temperature Rb.
Those parameters are trainable in order to capture the aging
effects of the batteries during life cycling. Before starting the
aging process, the battery cells used in this research have a
total of 1.5·104 C available ions, which decreases over time as
discussed later in Section 5.2. In our model we implemented
the change of internal resistance not only as function of aging,
but also within a single discharge cycle due to temperature
build-up, using Arrhenius’ law:

Ro = Rb · e
Rτ (

1
T − 1

Tref
)

,

where Rb represents the base resistance value that increases
during aging but remains constant within a discharge cycle.
Value Rτ drives the temperature-dependent change of internal
resistance. T is the cell temperature measured in Kelvin and
Tref the reference temperature in Kelvin, which is commonly
defined as ambient air temperature of 293 K. We set the ini-
tial value of the base internal resistance Rb to 30 mΩ, as per
Samsung INR18650-25R datasheet. Parameter Rτ is tuned on
initial discharge curves for all load levels in order to comply
with the physical law of decreasing resistance due to tempera-
ture increase. Both internal resistance parameters are trained

Figure 2. Physics-informed RNN cell incorporating electro-
chemistry baseline model and data-driven modeling of non-
ideal voltage.

on early life discharge curves to characterize battery-to-battery
variations. We used the same Arrhenius’ law to model the
effect of temperature on the diffusion constant, as shown in
the Appendix. Since the battery packs used in this research
consist of two cells connected in series (2S), we utilize the
assumption the output voltage of the entire pack can be ob-
tained through adding up the voltages of the cells connected
in series.

5. LOAD LEVEL-DEPENDENT APPROACH TO DEGRA-
DATION MODELING

5.1. Model Training on Constant Current Discharge

In order to train the hybrid physics-informed model, we first
selected the constant-loading discharge curves from the life
cycle data. This subset of the whole dataset consists of five
load levels ranging from 9.3A to 19.0A, with two batteries
cycled at each level. Figure 3 shows the training data selected
from the four initial discharge cycles at each load level. The
upper graph of the plot shows the measured voltage discharge
curves from fully charged to maximum depletion at 5 V cut-
off voltage. Each load level shows an initial voltage drop right
after the load is applied, which turns out to be larger the more
aggressive the loading conditions are. The main portion of the
discharge curve follows a linear trend until a sharp drop right
before reaching the cut-off voltage. As expected, the EOD
time is reached earlier for more aggressive load levels.

The model training consists of: (i) initialization of the non-
ideal voltage MLP parameters, using an approximate solution
for the non-ideal voltage output, and (ii) the actual training of
the MLPs on the early life training dataset on the discharge
curves while keeping the aging parameters at their initial val-
ues. From our observations, we believe the non-ideal voltage
relation to current and mole fraction remains approximately
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Figure 3. Constant current training data with wide load level
range from 9.3 A to 19 A (top). Model predictions on training
data plotted as dashed curves (bottom).

constant throughout the aging process, and therefore, the non-
ideal voltage MLP weights and biases are frozen after being
trained on early-life data. The next step consists of aging pa-
rameters (qmax, Rb) training on the early life (4 initial cycles)
discharge curves for each constant load level, while keeping
the trained MLP parameters frozen. This allows us to identify
aleatory uncertainty on the aging parameters within the battery
fleet, as load level variations show their effect later on in the
battery life cycle but are negligible in the beginning.

After the model is trained on the early life training dataset,
we performed predictions on the training data to assess the
performance of the trained model. The dashed curves in the
bottom subplot of Fig. 3 show the model predictions on top of
the ground truth data, showing good agreement between the
two. For quantitative performance validation, we use the root
mean squared error (RMSE) over the entire discharge curve,
as it is also used as metric in the loss function. Averaged for
all load levels, the RMSE is 2.19 · 10−2 V.

As important metric for model performance assessment is the
EOD time, defined as the time necessary to reach a minimum
voltage of 5.4 V. This limit was determined by including a
reasonable safety margin over the actual battery EOD hap-
pening at the cut-off value of 5 V. This metric determines
whether a model properly predicts the remaining usage time
of a battery until reaching the end of safe battery operation.
Figure 4 shows the predicted EOD over actual EOD for the 5
different constant-current load levels included in the training
dataset. The EOD time covers a wide range from roughly 450
seconds (19 A discharge) to above 900 seconds (9.3 A dis-
charge), where four different EOD time predictions for each
load level are plotted. It can be observed that the predictions
of EOD align closely with the actual EOD for all load levels,
as all points fall within a 3% error band. The RMSE for EOD

Figure 4. End-of-discharge: Prediction against actual EOD
for constant current training data. The dashed lines represent
a +/- 3% error band.

time is 3.7 s with a discharge time range of 450-900 seconds.

In order to validate the performance of the discharge predic-
tion model, variable loading curves that are not used in the
training dataset serve as validation dataset. Figure 5 shows the
variable load discharge curves for the range 16 A - 19 A in the
top row and for 12.9 A - 16 A in the bottom row. The solid
gray lines represent the measured discharge curve, whereas
the dashed lines show the model prediction. Two different
discharge curves for each battery are shown in the plot. Pre-
dictions on the aggressive load profile in the top row follow
the linear discharge trend fairly well and also capture the EOD
quite accurately within a 1% error interval. Some predictions
on battery 2 struggles to replicate the staircase-like discharge
behavior resulting from the variable loading conditions. The
predictions for the batteries subject to less aggressive variable
discharge profiles, shown in the bottom row, accurately follow
the linear discharge trend and predict EOD also within a 1% er-
ror interval. Here, the model shows a quite precise prediction
alignment with the actual data, where only minor deviations
(e.g. battery 4) from the staircase-like voltage curves are ob-
served. Assessing the prediction results quantitatively shows
that the RMSE remains within 1.08×10−1 V for all presented
battery predictions, which means an RMSE of less than 2% of
the ground truth voltage.

Once the non-ideal voltage MLP and the aging parameters
have been trained on early life curves across all load levels,
predictions on later life stages can be performed to determine
model performance on aged batteries without updating the
model parameters. By so doing, model parameters that require
adjustment due to aging effects can be identified. Figure 6
shows the discharge curve prediction for one of the batteries
subjected to variable load between 12.9 A and 16 A, early in
life (left column) and with increasing age in 20 cycle intervals,
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Figure 5. Prediction of discharge curves under variable loading conditions during the early stages of battery life for two batteries
cycled within a load level of 16 - 19 A (top row) and a load level of 12.9 A - 16 A (bottom row).

where the x-axis represents total cycle time in hours. The
top row shows the discharge currents, whereas the bottom
row shows the corresponding voltage discharge curves. Early
in the battery life, the prediction aligns closely to the actual
discharge curve, which suggests proper initial training of the
aging parameters (qmax, Rb), as well as for the non-ideal
voltage MLP. As batteries age, the prediction deviates from
the ground truth. This suggests that the aging parameters qmax,
which mainly influences the rate of discharge for the same
current level, and Rb, which mainly influences the voltage
drop on the linear discharge portion, deviate from their early-
life values due to battery degradation. On the other hand, the
staircase-like behavior of the voltage curve during discharge is
capture fairly well also in later stages, which suggests a correct
prediction of the non-ideal voltage throughout the battery life.
We conclude the non-ideal voltage MLP weights can remain
fixed after training on early life data and used for predictions
later in life. To capture aging effects, the focus is hereby
directed to the parameters qmax and Rb.

5.2. Load Level-Dependent Aging Model

In order to accurately predict voltage discharge curves of
aged batteries, it is necessary to learn the aging parameters
at different stages of life1. Since the batteries are subject
to a wide range of different load levels, which drives large
variation in temperature build-up and Li-ion concentration
gradients, we identified the discharge current level as one of
the main factors that drives cell aging. To determine qmax

and Rb as function of age in form of cumulative energy and
loading conditions in form of discharge current, the parameter
pair is updated using constant-current discharges picked at
regular intervals from the training dataset. In Fig. 7 one can

1It should be remembered that this is a phenomenological-based, approximate
representation of the aging mechanisms

see the decrease of qmax over cumulative energy for each of
the five different load levels, highly correlated with battery
capacity determined through reference discharges at the same
age levels than the qmax values. We chose to show the qmax

and capacity values in 20 cycle intervals until reaching 100
missions and in 100 cycle intervals thereafter, in order to
achieve greater clarity and readability of the qmax and capacity
relation.

One of the main observations from this plot is the dependency
of the aging rate on the load level, where high current leads
to more aggressive aging and earlier cell failure. As it can
be clearly seen, the cell failure at 19 A occurs at 2.15 Ah
capacity, whereas at 9.3 A the battery end of life is reached
at approximately 1.8 Ah capacity. The aging trend between
capacity and qmax closely align and, therefore, qmax can be
expressed as function of capacity where only a multiplying
factor is needed for conversion. Parameter Rb shows a sim-
ilar aging trend to qmax, as expected, due to internal aging
mechanisms increasing throughout the aging process.

Once qmax and Rb are identified at regular intervals over
the lifetime, the model can be updated and predict EOD at
different aging levels. As we show in Figure 8, where we
compare model predictions with outdated (early-life) and up-
dated model parameters, this is a fundamental step for accurate
EOD predictions. It can also be corroborated by the results in
Fig. 6 where, by using outdated aging parameters, the model
struggles to predict both the portion of the discharge curve that
follows a linear trend and the non-linear final discharge por-
tion, which results in a larger EOD prediction error. Updating
the aging parameters helps the model to predict the discharge
curve more accurately with minor deviations at larger load
level steps. Especially, the non-linear voltage drop right be-
fore EOD is captured more accurately with updated model
parameters.
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Figure 6. Prediction of discharge curves under variable load at different stages of battery life, from left to right, where the model
aging parameters qmax and Rb are kept frozen to the original values learned during the first discharge cycles, showing how these
parameters affect the model error later in life.

Figure 7. Degradation of battery capacity (solid dots, left y-
axis) and qmax (circles, right y-axis) as function of cumulative
energy for constant current loading.

5.3. Aging Parameter Updating with Gaussian Process
Regression

With the goal of forecasting discharge curves outside of the
training dataset, we chose a Gaussian process regression im-
plemented using the GPyTorch package to build a model that
can be used for interpolation and extrapolation while also
providing confidence intervals for uncertainty quantification.
Figure 9 illustrates the Gaussian process model for qmax and
Rb on the left and right plots, respectively. The circle are the
data points at different load levels, while the solid lines and
corresponding shaded areas represents the GP mean and 95%
confidence intervals.

In order to minimize the effect of aleatoric uncertainty, the

Figure 8. Discharge curve prediction with outdated and up-
dated aging parameters for a 1kWh aged battery.

data was normalized through dividing each data point by the
initial value at 0 kWh for each load level. Since this dataset
is intended to focus on load level variations, the battery-to-
battery variation is difficult to capture due to different aging
curves over life time, since only two batteries were aged at
each level. Nevertheless, at the very beginning of the battery
life cycle process (at or close to 0 kWh) the effect of different
load levels on the aging parameters is negligible.

Advancing further into the battery life, different load levels
take the predominant role with regards to variation in battery
aging, where the GP model captures the load level variation as
function of age while providing enough flexibility to smooth
out outlier values.

Both GP models for qmax and Rb are built with linear mean
functions to capture the linear trend that can be seen for each
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load level after a sharper initial drop of the parameter values.
Aligned with our expectations, the sharper increase of Rb on
more aggressive load levels compared to milder current levels
is clearly visible. In the next step, the GP model is validated
on unseen data. For this purpose we perform a cross-validation
study by excluding one load level from the training dataset
and using it as a test case.

Figure 10 shows an excerpt of the performed cross-validation
study, where the top row shows constant current prediction
results on 9.3 A, the middle row constant current prediction on
12.9 A, and the bottom row shows variable current prediction
results for a load level with range 12.9 A - 16 A. The two
leftmost columns show prediction results without any early
life data of the predicted load level, whereas the two rightmost
columns use updates with early life data, where the full circles
are included and empty circles excluded from the training data.
The data points included in the model training are plotted
using a gray-scale.

The constant-current prediction on 9.3 A without early life
data shows some significant deviation from the ground truth.
The prediction preformed until 11 kWh is far outside the
cumulative energy range of data included in the training set,
which is bounded at 7 kWh through the closest load level at
12.9 A. Updating the model with early life data until 6 kWh
significantly improves the prediction results for both qmax

and Rb. The mean of the GP model adheres more closely to
the 9.3 A data points and the 95% confidence intervals shrink
significantly even for prediction.

On the other hand, as shown in the second row, constant
current level predictions on data within the bounds of the
training dataset yield quite precise results, even in the case
without including early life data, as the GP model does a fairly
good job of matching the qmax values of the entirely excluded
load level of 12.9 A. A slightly larger deviation can be seen
for the Rb prediction, where later in life (3 kWh and older) the
model shows a minor over-prediction. Adding early life data
until 3 kWh to the model training gives a visible improvement,
especially by narrowing the 95 % confidence interval for qmax

close to the actual EOL and considerably improving the mean
prediction of Rb.

The cross-validation study for the variable load cases with
current limits between 12.9 A - 16 A shows similar results,
as the variable load level remains within the bounds of the
included training data. Both cases, with and without early
life data, show close alignment with the ground truth data for
both parameters, qmax and Rb. Since the prediction for this
load level shows already good results, the inclusion of early
life data for the aging parameters until 3 kWh does not show
major improvements.

From these results, it can be concluded that predictions far
outside the included training data require an early life update

in order to align with the ground truth data, but predictions
performed within the bounds of the training data achieve good
results even without including early-life data points.

5.4. Discharge Curve Forecast using Aging Parameter
Model

We performed discharge predictions on aged batteries using
the predicted aging parameters from the GP models with and
without early life data. Figure 11 shows the prediction of the
voltage discharge curve at different aging levels under both
constant and variable loading. Constant-current prediction
results are shown for 9.3 A and 12.9 A on the top two rows,
and for 12.9 A - 16 A random loading conditions on the bottom
row. The predictions are performed at 4, 6 and 8 kWh for
the 9.3 A case and 3, 4 and 5 kWh for the remaining two
cases, where the model aging parameters qmax and Rb used
for the voltage prediction are themselves predicted from the
Gaussian process model at the same age level, shown in Fig.
10. On the one hand, only observed predictions from cross
validation interpolations are used and on the other hand prior
information, where the qmax and Rb values until a certain age
level (e.g. 1 kWh), are used for predictions at a later stages of
life. The predictions for the 9.3 A discharge curves without
early life data (blue curves) deviate from the measurements at
all 3 predictions at 4 kWh, 6 kWh and 8 kWh. Here, the qmax

values are over-estimated, e.g. 0.94 compared to actual 0.9 at
4 kWh, and the Rb values under-estimated, e.g. 1.37 to actual
1.51 at 4 kWh. Performing predictions with aging parameters
using early life data until 3 kWh improve prediction results
significantly (orange curve).

All predictions for the 12.9 A discharge case follow the linear
discharge portion closely and predict the non-linear portion
shortly before reaching the cut-off voltage at 5.0 V, close to
satisfy an end-of-discharge prediction within an 1 % window.
Here both cases, with and without early life data used for
the aging parameter predictions, yield good prediction results
when compared to the ground truth discharge curves.

Similar prediction results can be observed in the variable load-
ing discharge case where at 3 kWh, 4 kWh and 5 kWh the
model prediction with and without early life aging parameter
information follow the discharge curves closely. The voltage
prediction shows minor deviation form the staircase-like dis-
charge behavior but the EOD prediction is also within an 1 %
window for all cases. Also in the variable loading case, the
improvement achieved through adding early life data to the
aging parameter predictions is marginal.

A general observation holding for all prediction cases is that
predictions farther ahead in the battery life show larger dis-
crepancies than in early life. We speculate the latter to be
caused by training the MLPs with early-stage life data, and
the model might need further refinement to fully capture the
aging behavior beyond the parameters (qmax, Rb) we chose.
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Figure 9. Gaussian process regression model for qmax and Rb as function of loading conditions and cumulative energy. Both
quantities are normalized with respect to their initial estimates.

Figure 10. Forecast of qmax and Rb as function of cumulative energy for constant current at 9.3 A (top panels) and 12.9 A
(middle panels) and variable current at 12.9 A - 16 A (bottom panels). Predictions are done without (two left-most columns) and
with (two right-most columns) updates of qmax,Rb with early life data. The solid curves represent the mean function and the
shaded areas cover the 95% confidence intervals.
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Therefore, minor non-linearities might not be captured.

5.5. Discussion on Assumptions and Drawbacks

Our approach in this paper is based on the assumption that
data from a fleet of batteries subjected to a wide level of
discharge currents is available and their capacity as well as
aging parameters were estimated at regular intervals. Without
a fleet-wide aging parameter characterization or with a narrow
operating window, the prediction uncertainties would increase
for batteries outside of the observed operating range.

We want to address the model sensitivity decrease when ap-
proaching the outer limits of the load range batteries were
subjected to in this research. Discharge predictions for vari-
able load cases from 16 - 19 A that reach the maximum current
used in this dataset show precision loss in terms of tracking the
staircase-like voltage behavior, especially later in the battery
life. This drawback can be an artifact of the non-ideal voltage
MLP training that, in order to capture the outer limits of the
dataset, might require more data points covering corner cases.

Lastly, we want to point out that the model discharge predic-
tions in the first few seconds after the load is applied show
some deviation from the actual data. Here, the non-linear ini-
tial voltage drop grows with larger applied currents and shows
also more distinct drops later in life. While the model can
cover some of the initial non-linearities for lower load levels
and especially for predictions at early life stages, forecasts
on higher load levels, especially performed on aged batteries,
show a significant deviation in the first seconds of discharge.
This issue can possibly be addressed through a more complex
architecture for the non-ideal voltage MLP, or by adaptations
to the electrochemistry-based model equations.

6. SUMMARY AND CLOSING REMARKS

In this paper we presented an enhanced hybrid physics-informed
machine learning model for discharge and aging prediction on
a battery fleet covering a wide range of load levels. We based
our approach on a reduced-order electrochemistry discharge
model that was previously introduced in combination with a
data-driven machine learning kernel to predict voltage curves
during discharge, and further improved this approach by ac-
counting for the effects of a large variety of applied current
levels and temperature build-up during discharge cycles.

Furthermore, we built a Gaussian process model to predict the
battery aging parameters qmax and Rb as function of cumu-
lative energy and discharge current levels. The model uses
data from a fleet of similar batteries subjected to different load
levels to predict aging parameters without the need to per-
form parameter identification via reference discharge cycles
at regular intervals.

The proposed hybrid discharge model aims at improving dis-
charge predictions for battery fleets subjected to a large variety

of mission profiles. The GP aging model helps to further im-
prove predictions of discharge curves further ahead in the
battery life, by using aging parameter estimates from a fleet
of similar batteries subjected to different loading profiles. The
laboratory-generated dataset helped us train and validate the
models using simplified, yet representative, variable loading
profiles. Future work will comprise further model design opti-
mization, with the intent to capture initial non-linear voltage
drop and discharge curves from loading conditions close to
the boundaries of the available dataset.
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A. REDUCED-ORDER MODEL

The reduced-order, electrochemistry-based model developed
in (Daigle & Kulkarni, 2013) is based on the high-fidelity
model presented in (Karthikeyan, Sikha, & White, 2008). In
this appendix a brief summary of the model is provided. The
overall output voltage is estimated by:

V = VU,p − VU,n − V0 − Vη,p − Vη,n ,

The equilibrium potential on the positive and negative elec-
trode VU is based on the Nernst equation:

VU,i = U0 +
RT

mF
ln

1− xi

xi
+ Vni,i ,

where the electrode (negative or positive) is indicated by the
subscript i = {n, p}; U0 is the reference potential; R is the
universal gas constant; T is the electrode temperature; m
is the number of electrons transferred in the reaction; F is
the Faraday constant; x is the mole fraction for the Lithium-
intercalated host material; and Vni,i is what has been defined
in (Daigle & Kulkarni, 2013) as ‘‘internal’’ voltage, an activity
correction term null in ideal conditions. Details about Vni will
be provided hereafter.

The mole fraction represents the ratio between the number of
ions in each electrode and the maximum number of available
ions in both electrodes combined:

xi = qi/q
max , and qmax = qn + qp .

As there is a Li-ion concentration gradient between the surface
and the bulk of each electrode, which is amplified with larger
loading conditions a Li-ion diffusion rate is defined:

q̇bs,i =
1

D
(cb,i − cs,i) ,

where D is the diffusion parameter and subscripts refer to bulk
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Figure 11. Forecast of voltage discharge curves for constant 9.3 A (top row) and 12.9 A (middle row) and variable loading
conditions 12.9 A - 16 A (bottom row). From left to right, the predictions are done at 4 kWh, 6 kWh and 8 kWh (9.3A) as well
as 3 kWh, 4 kWh and 5 kWh (12.9 A and 12.9 A - 16 A). Each prediction uses forecasts of qmax and Rb values from fleet
observations only or including early life data until 3 kWh (9.3 A) and 1kWh (12.9 A and 12.9 A - 16 A). The solid line represents
the prediction mean and the shaded areas cover the 95% confidence intervals.
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b, surface s, and negative or positive electrode i, respectively.
The diffusion parameter is significantly influenced by the cell
temperature, which we address by applying the Arrhenius’
law:

D = Db · e
Dτ (

1
T − 1

Tref
)

,

where Db is the base diffusion rate at ambient temperature, Dτ

the diffusion parameter handling the influence of temperature,
T represents the cell temperature and Tref the reference tem-
perature, commonly defined as 293 K. Differently from R0,
we fix the parameters Db and Dτ based on early-life discharge
cycles and do not model them as a function of cumulative en-
ergy drawn (i.e., aging effects on D are neglected).

The baseline electrochemistry model estimates the non-ideal
voltage through the Redlich-Kister expansion (Karthikeyan et
al., 2008):

VINT,i(xi; Ai) =
1

mF

Ni∑
k=0

Ak,i(
(2xi − 1)k+1 − 2xik (1− xi)

(2xi − 1)1−k

)
.

The mole fraction xi represents the input to the non-ideal volt-
age estimation, whereas the coefficients Ak,i are identified
through data-fitting, and the number of elements in the sum Ni

is empirically-derived. This polynomial expansion is substi-
tuted by the MLPs in the proposed hybrid model, as discussed
in this paper and in (Nascimento et al., 2021a, 2021b).

The solid-phase Ohmic resistance, electrolyte Ohmic resis-
tance, and current collector resistance can be lumped together
into R0 to calculate the voltage drop: V0 = iapp R0, where
iapp is the discharge current. Here, we also use Arrhenius’
law for the estimation of R0 as function of cell temperature as
described in 4.
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