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ABSTRACT

Battery and starter are crucial vehicle components, whose
failures may cause customers to be stranded. To enhance
customer satisfaction and improve dealership serviceability,
the failure prognosis and fault isolation for battery or starter
are very important. In order to develop a robust diagnostic
and prognostic solution, in this work, the feature extraction
algorithms are developed to extract two fault signatures,
namely battery charging resistance equivalent and battery
cranking resistance ratio. The algorithms are based on the
equivalent circuit model for the battery and starter system, the
battery empirical model, and the field knowledge about the
driver’s behavior and battery management system. The
proposed solution is a passive approach, and does not require
any additional sensors for GM wvehicles, or expensive
computing hardware. Therefore, it is suitable for both
onboard and off-board implementation. The solution has
been validated with large fleet of vehicles under different
scenarios, and implemented for selected GM vehicles
through the OnStar™ Proactive Alerts service.

1. INTRODUCTION

An internal combustion engine has to be rotated by external
force before it’s able to run with its own power. Such a
process is called cranking, which is performed by the vehicle
starting system. The vehicle starting system normally
consists of a battery, a starter, multiple electronic control
units (ECUs) and other components. Here, the modern starter
is a permanent magnet direct current motor with a relay-like
solenoid mounted on it. The battery, commonly a 12V lead-
acid battery, drives the starter motor to crank the engine. With
the fuel injected and ignited, the engine is able to run
sustainably. Malfunction of a component in the starting
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system may cause vehicle no-start, and consequently lead to
walk-home scenarios for customers.

The wear-out of 12V battery is one of the leading reasons of
customer dissatisfaction in the automotive industry. To
enhance customer ownership experience, GM developed and
launched OnStar™ Proactive Alerts service in 2015 on
selected GM vehicles. This service predicts the incoming
failures of several critical vehicle components, including 12V
battery and starter, before the vehicle performance is
affected.

Failure prognosis has positive impacts to original equipment
manufacturer (OEM) warranty cost as well. Modern vehicle
design is very complex. It is increasingly challenging to
identify root cause of vehicle failures. As a result, many
healthy components are replaced at repair shops
unnecessarily, which causes a high rate of incidence of no
trouble found (NTF). A pre-requisite of failure prognosis is
the accurate identification of root cause of potential failures,
which will reduce NTF.

In the area of battery and starter prognosis, many research
papers and patents have been published, mainly in four
categories, battery SOH estimation, battery state of charge
(SOC) estimation, state of function (SOF) estimation for
starting system, and remaining useful life (RUL) estimation
(Cuma & Koroglu, 2015) (Farmann, Waag, Marongui, &
Sauer, 2015) (Berecibar, et al., 2016). A diagnostic and
prognostic scheme always includes two critical steps, feature
extraction and reasoning. For the first step, the useful sensor
data, which are correlated to the system failures, are
identified and selected from all available signals. The
features, i.e. the fault signatures, are developed or extracted
from the selected sensor signals. The battery internal
resistance or impedance is a common feature for battery SOH
estimation. It’s generally estimated using an equivalent
circuit model (Pilatowicz, Marongiu, Drillkens, Sinhuber, &
Sauer, 2015) or an electrochemical model (Zhang, Du, &
Salman, Battery state estimation with a self-evolving
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electrochemical ageing model, 2017). Other features to
predict failures are also employed in different literature, e.g.
the back EMF (electromotive force) voltage for SOC
estimation (Coleman, Lee, Zhu, & Hurley, 2007), “coup de
fouet” for SOC estimation, OCV-SOC mapping table for
SOC estimation (Zhang, Du, & Salman, Battery state
estimation with a self-evolving electrochemical ageing
model, 2017), and minimum cranking voltage for SOF
estimation (Zhang, Grube, Shin, Salman, & Conell, 2011).
The reasoning logic is to map feature data to the exact failure
mode, provide trending analysis and final prognostic
decisions. The logic can be a heuristic decision tree, a data-
driven black box or a physical model. The reasoning
approaches found in the literature include sample entropy and
sparse Bayesian predictive modeling approach (Hu, Jiang,
Cao, & Egardt, 2016) for RUL estimation, Lebesgue-
sampling-based battery state of health (SOH) diagnosis (Yan,
Zhang, Wang, Dou, & Wang, 2016), Kalman filter for SOC
estimation (Wang, Fang, Wang, & Liu, 2016), prognosis of
gear failures in DC starter motors using hidden Markov
Models (Zaidi, Aviyente, Salman , Shin, & Strangas, 2011),
Heo Observer for SOC estimation (Zhang, Liu, Fang, &
Wang, 2012), and artificial neural network for starter motor
diagnosis (Bayir & Bay, 2004). In GM R&D, the vehicle
health management group has done substantial work in this
area (Zhang, Grube, Shin, Salman, & Conell, 2011) (Shin &
Sabahi-Kaviani, Diagnosis and Prognosis of Cranking
Systems: A Parameter Based Approach, 2010) (Shin &
Salman, Evidence theory based automotive battery health
monitoring, 2010). Various new fault signatures, including
delta voltage, cranking energy, cranking time are proposed,
and the least-square-based filtering algorithms are developed
to extract these features. The Dempster-Shafer evidence
theory and the parity approach are proposed to detect and
isolate failures for the vehicle starting system.

However, there is still no accurate and reliable production
solution to predict battery or starter failures in the automotive
industry before OnStar™ Proactive Alerts. There are various
reasons. First, certain existing approaches require excess
excitations (Cugnet, et al., 2010), which are available in the
laboratory environment or electrical vehicles, but not for
conventional vehicles with an internal combustion engine.
During driving, the conventional vehicles charge the battery
most of time, which means there is not enough data to
evaluate the battery discharging performance. Cranking is a
good source but it only takes about 1 second. The sensor to
rapidly capture all the data during cranking is expensive.
Second, the vehicle lead-acid battery is highly dynamic. The
phenomenon of surface charge and acid stratification may
impact fault signatures, e.g. battery resistance or battery open
circuit voltage, which may lead to false alerts. The
performance of a lead acid battery is impacted by the driving
behavior and environment as well. A battery, not used for a
couple of months, may exhibit similar performance as a
battery at the end of the life. However, such a battery can

perform normally after several ignition cycles.

To develop a robust prognostic algorithm and address all
these challenges, the key is the big data from the field. The
data can help us to better understand the system, calibrate and
refine algorithms accordingly. Recently, the telematics
technology grows rapidly, and the vehicle data from a large
fleet of vehicles can be collected and processed easily with
low cost. In GM R&D, this direction has been explored since
2010 (Zhang, Du, & Salman, Peer-to-peer collaborative
vehicle health management —the concept and an initial study,
2012) (zZhang & Du, Automatic field data analyzer for
closed-loop vehicle design, 2014). A collaborative vehicle
health management system is proposed to adaptively
calibrate the estimation algorithm at run time based on the
V2X technology after the vehicle deployment. The
preliminary experiment results using several test vehicles
shows the effectiveness of this scheme. With the OnStar™
gen 10 module equipped in the vehicle, 4G LTE technology
can be employed to quickly transmit vehicle data to back
office. All these changes make a robust starting system
prognosis become possible.

As the first step, in this work, several fault signatures are
proposed and the robust algorithms to extract these features
are developed. The proposed solution only utilizes existing
vehicle signals, and doesn’t require any additional sensors or
onboard changes. The proposed approaches are validated
using more than 600,000 vehicle data with about 1 year
driving. The remainder of this paper is structured as follows.
The development of the fault signature cranking resistance
ratio is presented in Section 2. The fault signature charging
resistance equivalent is described in Section 3. The
conclusion and future directions are discussed at the end.

2. CRANKING RESISTANCE RATIO

When the internal resistance of a battery is increased, the
battery can’t provide enough power to drive the starter motor.
On the other hand, when the starter resistance is increased,
the current through the starter motor is decreased, and the
torque that the starter can provide is reduced as well. Both
scenarios may lead to a no-start event. Therefore, the battery
resistance and the starter resistance during cranking is an
important indicator to predict the battery or starter failures.

2.1. Modeling and Analysis

For a typical cranking process, the battery voltage starts at
around 12.5 volts, and decreases rapidly once the ignition
starts. The voltage reaches the minimum value around 7.5V
at 0.1 second. At the same time, the discharging current
reaches its maximum value. At this particular timestamp, the
derivative of the current is close to 0, and the starter doesn’t
spin. Therefore, the voltage induced by back EMF can be
ignored. The battery and starter circuit can be simplified as a
pure resistance network, shown in Fig. 1.
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Figure 1. The equivalent circuit model for the battery and
the starter when the cranking voltage is at its minimum
value.

Based on the equivalent circuit model, the battery current can
be calculated as follows,
OCV =V i Vini

Imax = Rbmln = ::lsln (1)
where R, is battery resistance, R, is starter resistance, Vi,
is the minimum cranking voltage, and I,,,, is the battery
current at the time stamp of minimum cranking voltage.
Generally I,,,,, is not available from the vehicle, therefore,
the battery resistance and the starter resistance can’t be
calculated, respectively. From the right two terms of the
equation (1), the minimum cranking voltage can be calculated
as below,
~ _OCVxRs _ _OCV
M Rp+Rs Rb/RS+1

Vin (2)

The ratio between the battery resistance and the starter
resistance is defined as cranking resistance ratio r, that is,

R a . _ OCV
b/RS =r= Vinin h 1 (3)

From the basic physical characteristics of batteries and
starters, both the battery resistance and the starter resistance
are impacted by temperature. When the temperature
decreases, the battery internal resistance increases, and the
starter resistance decreases. Therefore, we can normalize the
cranking resistance ratio to the temperature using the
following empirical equation,
1+B(Ts—25)

Ty =7 X
0 1-a(Tp—25)

(4)
where T is the estimated starter temperature, and T,, is the
estimated battery temperature. The battery temperature is
available in the vehicle as a PID. The starter temperature is
not available. But it can be estimated using a Lumped thermal
mass model as follows,

T = {Tb +aeltorf ift,; < Thl

5
Ty, iftoss > Thl ®)

where @ and 8 are temperature coefficients for the battery
and the starter, respectively. a and b are fitting coefficients.
Thlis a predefined threshold. ¢, is the engine off time.
This empirical model is developed based on the field
knowledge. The starter is attached to the engine, and made of
metal. Therefore, its specific heat capacity is low. The
majority of materials of a lead-acid battery are sulfuric acid,
whose specific heat capacity is high. When the engine-off
time is long enough (greater than Thl ), the starter
temperature is closed to the battery temperature, which is
closed to the ambient temperature. If the engine-off time is
short, the starter temperature is higher than the battery
temperature since the engine temperature is higher than the
battery temperature.

In addition to the equation (5), the empirical model can also
be, but not limited to, the following two models,

Linear model: f(Ty, tor) = aTp + btyss + ¢ (6)

Lumped thermal mass model with linear approximation:
f(Tytops) =Ty +ator +b (7)

where a, b and c are fitting coefficients.

2.2 Algorithms

Based on the above analysis, an algorithm is developed to
estimate the normalized cranking resistance ratio. The
algorithm is triggered every ignition cycle. After the vehicle
cranks, the battery start-up SOC, the battery estimated
temperature, the engine-off time, and the minimum cranking
voltage are collected. From our test results, the data collection
should not happen right after the cranking since it takes some
time for ECUs to update their PID values. For the data used
in this work, the data are collected after five minutes of
cranking.

Once the data are collected, a filtering algorithm is executed
to remove outliers. For example, one outlier at 11V is found
among continuous more than 300 sessions from a vehicle
driving history. All other data points are normal between 8V
and 9V. Since both the battery and the starter are in a healthy
state for the whole period based on all vehicle signals and
warranty transaction records, the data point at 11V is
obviously an outlier. The outlier may be due to the sensing
circuit error, software bugs or other reasons. The outlier has
to be removed since it may trigger false positive. To remove
the outlier, the current minimum cranking voltage needs to be
compared to the previous values. If the current minimum
cranking voltage value is too high or too low, which is
physically impossible, or marginally high but apparently
different from the neighboring points, the point can be
identified as an outlier.

After removing all outliers, if the data are not enough (e.g.
the number of the data is less than 3) to calculate the cranking
resistance ratio, a predefined value, which represents this
scenario, will be assigned to the ratio. If the data is sufficient,
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the start-up SOC needs to be checked if it’s a default value.
In various scenarios, e.g. low SOC, cable disconnect, extreme
low voltage, the start-up SOC may be reset to a default value.
In this case if the minimum cranking voltage is also very low
the battery is likely to be a bad battery. Therefore, a pre-
defined high value is assigned to the cranking resistance ratio
to increase the algorithm coverage.

If all required signals are available and not default, the OCV
in equation (3) should be calculated using the start-up SOC
and the OCV-SOC mapping table. This is because the OCV
value saved in vehicle is updated during ignition-off, which
is not equal to the actual OCV during cranking.

With the OCV and the minimum cranking voltage, the
cranking resistance ratio can be calculated using equation (3).
The starter temperature during cranking can be estimated
using the equation (5). The normalized cranking resistance
ratio can be calculated using equation (4).

2.3 Performance Evaluation and Comparison

In order to evaluate the performance of the cranking
resistance ratio algorithm, a metric, called range-standard-
deviation-ratio R/a, is employed. It’s similar to the signal-
noise-ratio. Here, the range R is defined as the distance
between the mean of healthy data and the mean of faulty data.
Higher R means easier to isolate the fault. o is the standard
deviation of the data corresponding to the healthy state.
Smaller ¢ indicates the signal is not noisy, and unlikely
causes a false positive. Therefore, the larger R/o is, the
better the isolation performance with this feature is.

Table 1 compares the R/o metrics for the data from 121
MY 12/13 Equinox/Terrain vehicles with a LFX engine using
different normalization methods. The percentage in bracket
for each method is the improvement comparing to the
baseline method (the cranking resistance ratio for the
standard deviation, and the minimum cranking voltage for the
range-standard-deviation-ratio). We can’t use the minimum
cranking voltage as the baseline for the standard deviation
comparison since the unit is different between the voltage and
the ratio. One can easily observe that the proposed approach,
normalized cranking resistance ratio using both estimated
battery temperature and estimated starter temperature
(equation 5) is the best among all methods, and is 113% better
than the minimum cranking voltage, in terms of the range-
standard-deviation-ratio.

To further illustrate the performance of these methods, the
data for the cranking resistance ratio, the normalized cranking
resistance ratio using the estimated battery temperature only,
and the normalized cranking resistance ratio using both the
estimated battery temperature and the estimated starter
temperature from one vehicle are plotted in Fig. 2. The
temperature dependency can be clearly observed for the
original cranking resistance ratio. The standard deviation for
the proposed method is the smallest.

Table 1 Performance comparison between different
approaches in terms of the cranking resistance ratio and the
minimum cranking voltage.

Signals o R/o

Min Cranking Voltage 9.52 (0)
Cranking Resistance Ratio 0.0329 (0) 14.49 (52%)
Normalized Ratio with Battery Temp 0.0281 (15%) 16.17 (70%)
Normalized Ratio with Equation 6 0.0213 (35%) 19.79 (108%)
Normalized Ratio with Equation 5 0.0214 (35%) 20.25 (113%)
Normalized Ratio with Equation 7 0.0214 (35%) 20.11 (111%)

The normalized cranking resistance ratio with the estimated
battery temperature and the estimated starter temperature
minimizes the temperature dependency. An alternative
consideration is to normalize the ratio with the coolant
temperature since the coolant temperature is close to the
engine temperature and starter temperature. However as
shown in Fig. 3, the temperature dependency for the original
ratio is similar to the dependency for the normalized ratio
with the coolant temperature.

Figs. 4-8 show the time series data from four vehicles for the
raw cranking resistance ratio, the ratio normalized by the
battery temperature, and the ratio normalized by both battery
temperature, and the ratio normalized by both estimated
battery temperature and estimated starter temperature. All the
cranking resistance ratio data are normalized to 0 to 1 since
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Figure 2. Comparison of cranking resistance ratio
distribution for original cranking resistance ratio,
normalized cranking resistance ratio using estimated battery
temperature only, and normalized cranking resistance ratio
using both estimated battery temperature and estimated
starter temperature. The estimated battery temperature is
normalized to 0 to 1.
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Figure 3. Comparison among the cranking resistance ratio,
the cranking resistance ratio normalized with the estimated
battery temperature, and the cranking resistance ratio
normalized with the coolant temperature. The estimated
battery temperature is normalized to O to 1.

the data are sensitive. The red vertical line indicates the repair
date in each figure. One can observe that right before the
repair, the ratio is very high and after the repair the ratio is
normal. In addition, the standard deviation for the proposed
approach in the healthy region is the smallest among all these
approaches.
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Figure 4. Comparison between different cranking resistance
ratio calculation methods from the field data (Case 1) . The
blue line is the original ratio, red solid line is the ratio
normalized by the battery temperature and the blue dot line
is the ratio normalized by battery and starter temperature.
The red vertical line indicates the repair date and the green
line indicates the healthy region. The cranking resistance
ratio is normalized to 0 to 1. All apply to Figs. 5-8 as well.
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Figure 5. Comparison between different cranking resistance
ratio calculation methods from the field data (Case 2).
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Figure 6. Comparison between different cranking resistance
ratio calculation methods from the field data (Case 3).
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Figure 7. Comparison between different cranking resistance
ratio calculation methods from the field data (Case 4).
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ratio calculation methods from the field data (Case 5).

3. CHARGING RESISTANCE EQUIVALENT

When a battery is at the end of its life, it becomes hard to be
charged. Therefore, the charging resistance is a potential fault
signature for a battery. Not like the cranking resistance ratio,
which is affected by both battery and starter, this feature only
indicates the battery failure. Please note that battery charging
resistance depends on the charge acceptance, therefore, it’s
not a sufficient condition to determine battery failures. A
battery with extremely high SOC also has low charge
acceptance, although the battery may be good. Therefore, it’s
more meaningful to normalize the charging resistance by
SOC. Please also note that the charging resistance is different
from the cranking resistance that is discussed in Section 2, or
the battery discharging resistance since the electrochemical
reaction is different between charging and discharging.

3.1 Modeling Battery Charging Resistance Using
Shepherd Equation

The battery charging process can be modeled with Shepherd
equation (Shepherd, 1965) (Schiffer, et al., 2007),

1(t)
U(t) = Up—g(1-50C() +pc- +
I(t) soc(t)
¢ e Me s 500 vI(t) >0 8

where I(t) is the battery current, p, is the charging resistance
equivalent (Q - Ah), also called aggregated internal resistance
in some references (Schiffer, et al., 2007), Cy is the rated
battery capacity, g is the electrolyte proportionality constant,
M, is the charge-transfer overvoltage coefficient (nominal
value, 0.88), C, is normalized capacity (1 is for a new
battery), U(t) is the battery terminal voltage, and U, is the
open-circuit voltage for the fully charged battery. Since U, —
g(1—=150cC(t)) is the battery OCV at the current SOC,
Shepherd equation can be rewritten in the estimation form as
follows,

u(t)-ocv Cn
= 9
Pe 1(t) (1+M57655_05%(?(t)) ©)

The charging resistance equivalent p, can then be calculated
from Equation (9). In order to better understand this equation,
we replace U(t) — OCV by I(t) x R + Uy, where R is the
battery internal charging resistance, and U, is the voltage
difference between the OCV under discharging and the OCV
under charging (normally about 0.6 V). The equation (9)
becomes,

p. = I(t)R+Up Cn _ ( +U_D) Cn
c — socl) | — SOC(t)
1(t) (1+Mfcc—so¢:(:)) 1(t) (1+Mfcc—so¢:(:))

(10)

To better investigate the behavior of p., we consider a few
simulated examples. For a brand-new battery with full
charge, the SOC is around 100%. Take SOC = 100% into the

equation (10), 1 + M, c S_OSCO(;)(t) becomes a very high value. If

I(t) is not a value close to 0, p. will be very small. This is
consistent with our assumption that the battery SOH is high.

When the SOC is low, there are two possibilities, the battery
is with low SOC but high SOH, or with low SOC and low

SOH. Assume SOC = 0%, 1+ M, Ccs_osf)‘ézt) =1, p,

RCy + 1% Cy- Ifthe SOH is high, the charging current should

be very high since this is a low SOC battery. Assume Cy =
80,U, = 0.6, I(t) =10 and R =0.005Q, p, is calculated
as 5.2. On the other hand, if the SOH is low, the battery
charging current should be low too. Assume I(t) = 2 and
R =0.008Q, p, iscalculated as 24.6.

When the SOC is medium, assume the SOC is 0.6, p, =
(RCN+%CN)/2.32. When the battery SOH is high,
assume I(t) =10and R = 0.005Q, p, is2.2. When the

45 e cummee T

1A) soc
Figure 9. The illustrative relationship between the charging
resistance equivalent, SOC and charging current when M, =
0.8, R = 0.005Q and U, = 0.6V.
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Figure 10. The illustrative relationship between the charging
resistance equivalent, SOC and charging current when M, =
5, R = 0.005Q and U, = 0.6V.

battery SOH is low, assume I(t) =2 and R = 0.008Q
p. is 10.6.

In summary, when SOC = 1, no matter what the value of M,
is, p. is almost 0. When SOC = 0, no matter what the value
of M, is, p. only depends on the current. When SOC and
charging current are medium, a higher M, will lead to a
higher p., which are shown in the Figs. 9 and 10. The low
charging current is associated with the high charging
resistance equivalent. And the high current is associated with
the low charging resistance equivalent.

Please note the current I(t) is in the denominator of the
equation (10). When the current is very small and other
signals, e.g. voltage and SOC, are not accurately measured or
estimated, p., may be calculated abnormally high even
though the battery is healthy. This will result in false positive
decisions. To ensure the algorithm robustness, the low
current data need to be filtered before the charging resistance
equivalent is estimated.

3.2 Algorithms

With above analysis, an algorithm is developed to calculate
the charging resistance equivalent described as below. The
inputs include the battery SOC, the battery OCV, battery
terminal voltages, and battery currents.

Multiple samples of voltages and currents may be out of order
or some values may be missing due to data transmission. In
this scenario, we need to align the voltage and current so that
they are in the right order. First of all, all the points are stored
in two vectors, EngName for the PID name (1 is used in the
code for the voltage and 2 for the current) and EngValue for
the PID value. If the length of two vectors is 0, the empty
vector is assigned to the aligned output vectors, BatV and
Batl. Otherwise, an index vector I, is calculated to store the

indexes for all points, whose EngName is equal to 1. Then for
each point, whose EngName is equal to 1, if the next point is
the current, this pair of voltage and current data is saved to
the output vector BatV and Batl. The algorithm ends once all
data points are processed.

After the alignment, if the data are not enough (e.g. the
number of the data is less than 3), a default value, which
represents this senario, is assigned to the charging resistance
equivalent. Otherwise, the effective battery voltages and the
effective battery currents are calculated by filtering out the
points whose current value is less than the threshold Th,,.
The charging resistance estimate is more robust after filtering
out the data with low current, which are shown in Figs. 11
and 12. If the number of data points after filtering are not
enough, it indicates the battery current is very small. In this
scenario, certain BCM reset conditions should be checked
since the battery is likely not in a good condition, and may
result in a reset.

In the scenario that the amount of effective battery voltage
and current data is enough, equation (10) (the state estimation
form) is applied to calculate the charging resistance
equivalent.

3.3 Performance

The proposed algorithm has been validated using MY12/13
Equinox/Terrain vehicles with a LFX engine. Some of cases
with the battery high resistance fault are shown in the Figs.
13, 14 and 15. The battery charging resistance is increased
before the repair date, and becomes very small after the
repair, which demonstrates this feature is effective to predict
battery failures. Please note that the charging resistance
estimate data are further normalized to O to 1 since the data
are sensitive.
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Figure 11. The battery charging resistance equivalent when
there is no current filtering, i.e. Th,. = 0. The small figure
shows a detailed view after the replacement.
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Figure 12. The battery charging resistance equivalent when
the cut off threshold is equal to 1 A. The small figure shows
a detailed view after the replacement
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Figure 13. The trend of the battery charging resistance
equivalent from one field case (Case 6).
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Figure 14. The trend of the battery charging resistance
equivalent from one field case (Case 7).
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Figure 15. The trend of the battery charging resistance
equivalent from one field case (Case 8).

4, CONCLUSION

Battery and starter failures are common in the field and
challenging to predict. Main reasons include, but are not
limited to, part-to-part variations, non-linear system
dynamics, limited onboard measurements, vulnerability to
environment and usage dependent. In this work, the battery
cranking resistance ratio and the battery charging resistance
equivalent are identified as the fault signatures to predict the
battery or starter failures. The robust algorithms to extract
these fault signatures are developed and validated with large
amount of the field data.

The proposed solution has been used in OnStar™ Proactive
Alert service for selected MY16 or beyond GM North
America vehicles and received very positive feedback from
our customers. In the future, our research focus will be on the
algorithm and architecture optimization to achieve better
performance, and system efficiency.

REFERENCES

Bayir, R., & Bay, O. (2004). Serial wound starter motor faults
diagnosis using artificial neural network. IEEE
International Conference on Mechatronics.

Berecibar, M., Gandiaga, 1., Villarreal, I., Omar, N., Mierlo,
J., & Bossche, P. (2016). Critical review of state of
health estimation methods of Li-ion batteries for real
applications. Renewable and Sustainable Energy
Reviews, vol. 56, pp. 572-587.

Coleman, M., Lee, C., Zhu, C., & Hurley, W. G. (2007).
State-of-Charge Determination From EMF Voltage
Estimation: Using Impedance, Terminal Voltage,
and Current for Lead-Acid and Lithium-lon
Batteries. IEEE Transactions on Industrial
Electronics , vol. 54, no. 5, pp.2550-2557.

Cugnet, M., Sabatier, J., Laruelle, S., Grugeon, S., Sahut, B.,
Oustaloup, A., & Tarascon, J.-M. (2010). On lead-
acid-battery resistance and cranking -capability
estimation. IEEE Transactions on Industrial
Electronics, vol. 57, no. 3, pp. 909-917.

Cuma, M., & Koroglu, T. (2015). A comprehensive review
on estimation strategies used in hybrid and battery
electric vehicles. Renewable and Sustainable
Energy Reviews, vol. 42, pp. 517-531.

Farmann, A., Waag, W., Marongui, A., & Sauer, D. U.
(2015). Critical review of on-board capacity
estimation techniques for lithium-ion batteries in
electric and hybrid electric vehicles. Journal of
Power Sources, vol. 281, pp. 114-130.

Hu, X., Jiang, J., Cao, D., & Egardt, B. (2016). Battery Health
Prognosis for Electric Vehicles Using Sample
Entropy and Sparse Bayesian Predictive Modeling.
IEEE Transactions on Industrial Electronics, vol.
63, no. 4, pp. 2645-2656.

Pilatowicz, G., Marongiu, A., Drillkens, J., Sinhuber, P., &
Sauer, D. (2015). A critical overview of definitions
and determination techniques of the internal



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2018

resistance using lithium-ion, lead-acid, nickel
metal-hydride batteries and electrochemical double-
layer capacitors as examples. Journal of Power
Sources, vol. 296, pp. 365-376.

Schiffer, J., Sauer, D. U., Bindner, H., Cronin, T., Lundsager,
P., & Kaiser, R. (2007). Model prediction for
ranking lead-acid batteries according to expected
lifetiime in renewable energy systems and
autonomous power-supply systems. Journal of
Power Sources, vol. 168, pp. 66-78.

Shepherd, C. M. (1965). Design of primary and secondary
cells. J. Electrochem. Soc., vol. 112, no. 7, pp. 657-
664.

Shin, K.-K., & Sabahi-Kaviani, R. (2010). Diagnosis and
Prognosis of Cranking Systems: A Parameter Based
Approach. General Motors Global Research &
Development.

Shin, K.-K., & Salman, M. A. (2010). Evidence theory based
automotive battery health monitoring. SAE
International Journal of Passenger Cars-
Electronic and Electrical Systems, vol. 3, pp. 10-16.

Wang, Y., Fang, H., Wang, B., & Liu, H. (2016). Highly
precise determination of the state of charge of
vehicular battery. Instrumentation Science &
Technology, vol. 44, no. 5, pp. 445-457.

Yan, W., Zhang, B., Wang, X., Dou, W., & Wang, J. (2016).
Lebesgue-Sampling-Based Diagnosis and
Prognosis for Lithium-lon Batteries. IEEE
Transactions on Industrial Electronics, vol. 63 no.
3, pp. 1804-1812.

Zaidi, S., Aviyente, S., Salman , M., Shin, K.-K., & Strangas,
E. (2011). Prognosis of Gear Failures in DC Starter
Motors Using Hidden Markov Models. IEEE
Transactions on Industrial Electronics, vol. 58, no.
5, pp.1695-1706.

Zhang, F., Liu, G., Fang, L., & Wang, H. (2012, 2).
Estimation of Battery State of Charge With Hoo
Observer: Applied to a Robot for Inspecting Power
Transmission Lines. IEEE Transactions on
Industrial Electronics, vol. 59 no. 2, pp. 1086-1095.

Zhang, X., Grube, R., Shin, K.-K., Salman, M., & Conell, R.
(2011). Parity-relation-based state-of-health
monitoring of lead acid batteries for automotive
applications. Control Engineering Practice, vol. 19
no. 6, pp. 555-563.

Zhang, Y., & Du, X. (2014). Automatic field data analyzer
for closed-loop wvehicle design. Information
Sciences, vol. 259, pp. 321-334.

Zhang, Y., Du, X., & Salman, M. (2012). Peer-to-peer
collaborative vehicle health management — the
concept and an initial study. Annual Conference of
Prognostics and Health Management Society 2012,
3. Minneapolis, Minnesota, USA.

Zhang, Y., Du, X,, & Salman, M. (2017). Battery state
estimation with a self-evolving electrochemical

ageing model. International Journal of Electrical
Power & Energy Systems, vol. 85, pp. 178-189.

BIOGRAPHIES

Xinyu Du received B.Sc. and M.Sc.
degrees in automation from Tsinghua
University, Beijing, China, in 2001 and
2004, respectively, and a Ph.D. in electrical
engineering from Wayne State University,
MI, USA, in 2012. He has been working at
General Motors Global R&D Center,
Warren, MI, since 2010, and currently holds the senior
researcher position in the vehicle system research lab. His
research interests include fuzzy hybrid system, vehicle health
management, deep learning and data analytics. He has
published more than 30 peer review papers and holds 33
patents or patent applications. He has been serving as an
associate editor for Journal of Intelligent and Fuzzy Systems
from 2012 and IEEE Access from 2018. He received the Boss
Kettering Award from General Motors for his contribution in
integrated starting system prognosis in 2015.

Yilu Zhang is a GM Technical Fellow and
the group manager of vehicle health
management at General Motors Global
R&D center, Warren, Michigan. He
received B.S. and M.S. degrees in

electrical engineering from Zhejiang
Unlversny, Chma in 1994, and 1997, respectively; and a
Ph.D. in computer science from Michigan State University,
East Lansing, MI, in 2002. His research interests include
statistical pattern recognition, machine learning, signal
processing, and their applications, including integrated
vehicle health management and human machine interactions.
Dr. Zhang’s R&D team worked with a cross-functional team
to launch the industry-first OnStar™ Proactive Alerts service
in 2015. This customer care service can predict when certain
components need attention, and notify drivers before vehicle
performance is affected. This technology is one of the
supporting practices that won the INFORMS award for
General Motors in 2016.



