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ABSTRACT

To ensure resilience, systems must be endowed with capabil-
ities for rapid detection, response, and recovery to disruptive
events. In this paper we focus on faults as disruptive events
and use a diagnosis engine for their detection and isolation. In
particular we use model-based diagnosis, where the diagnosis
engine is provided with a model of the system, nominal val-
ues of the parameters of the model and values of some of its
inputs and outputs. However, there is no guarantee that the
information measured by sensors is sufficient to distinguish
between multiple root-causes. We address this challenge us-
ing an optimal control approach: we design control inputs
such that the similarity between outputs in ambiguous fault
modes is reduced. We show that under certain assumptions on
the system model, minimizing a similarity metric in terms of
outputs is equivalent to increasing the diagnosis certainty. We
use an optimization-based approach to input design, where
the system model acts as a constraint. We show that by using
a surrogate model expressed with constructs endowed with
differential operators, we improve the time efficiency of the
optimal control problem. We demonstrate our approach on
a fuel line system, where feedback control is used to ensure
the mass flow rate at the engine follows a prescribed refer-
ence. We consider leak faults that affect the fuel lines. We
show that under the control inputs generated by the nominal
controller, mass flow rate measurements are not enough to
accurately isolate leaks. We demonstrate that by using cus-
tom inputs that minimize the similarity between the outputs
in the ambiguous fault modes, the diagnosis uncertainty is
eliminated.

1. INTRODUCTION

We address the problem of minimizing the uncertainty of
fault diagnosis of closed-loop systems. This uncertainty can
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be cause by: (i) not enough sensors, (ii) the system operat-
ing in steady state, or (iii) fast acting controllers that obscure
the fault effects. Broadly speaking there are two approaches
to the diagnosis problem: model-based diagnosis MBD and
Machine Learning (ML). MBD methods use models and pa-
rameters while ML approaches require training data and ex-
tensive feature engineering. In this paper we use MBD, where
a diagnosis engine is provided with a model of the system,
nominal values of the parameters of the model and values
of some of its inputs and outputs. Using only this informa-
tion, the diagnosis must detect the presence of a fault and
isolate it. MBD has a long history, with results developed
independently by the artificial intelligence (de Kleer, Mack-
worth, & Reiter, 1992) and control (Gertler, 1998),(Isermann,
2005),(Patton, Frank, & Clark, 2000) fields. Traditional
model-based diagnosis approaches in the control communi-
ties include filters (e.g., Kalman filter (Kalman, 1960), parti-
cle filter (Arulampalam, Maskell, & Gordon, 2002)), or op-
timization based-techniques that estimate parameters whose
deviation from their nominal values indicate the presence of
a fault. These methods rely on model simulations either for
one sample period (Kalman and particle filters) or for some
time horizon (optimization based). In this paper we consider
an optimization-based approach to fault diagnosis, where sen-
sor measurements and control inputs over some time horizon,
together with the system model are used to estimate the val-
ues of a set of parameters associated with system faults. The
optimization algorithm searches for parameter values so that
the system model produces outputs that match the measure-
ments. Deviations of the fault parameters from their nominal
values indicate the presence of faults. There is no guaran-
tee that the diagnosis solution is certain, i.e., there can be
several explanations for the root cause of a detected fault.
This paper proposes an approach for minimizing the ambi-
guity in the diagnosis solution. The main contributions are
as follows: (i) we employ a diagnosis uncertainty metric that
when evaluated indicates the magnitude of diagnosis ambi-
guity (or uncertainty), (ii) given a list of possible diagnoses,
we use an optimal control approach to design control inputs
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aimed at reducing the diagnosis uncertainty; (iii) we address
the scalability of the control design to real-time implementa-
tion by using a surrogate model of the physics-based model
expressed in constructs endowed with automatic differentia-
tion (AD) support.

Notations: We use upper-case to denote random variables
(X) and lower-case to denote a realization of a random vari-
able (x). We use bold letters to denote vectors (x). We mark
the continuous time dependency by using the notation X(t)
and x(t) for random processes and time-varying variables, re-
spectively. To represent discrete time dependency, we use the
notation x(tk) = xk, for time instants tk. A sequence of vari-
ables over time {xk}Kk=0 is denoted by x0:K . We denote the
probability distribution function (p.d.f.) of a random variable
X by fX(x). We represent the conditional p.d.f. of X|Y by
fX|Y (x|y). When there is no loss of clarity, to simplify the
notation, we will omit the subscript notation of fX|Y (x|y),
that is, we will use f(x|y). We denote the expectation of the
random variable X by E[X]. Let S = {si}ni=1 denote a set
of elements. We denote by s�i the set S � {si}. We denote
by N (µ,⌃) the multivariate Gaussian distribution with mean
µ and covariance matrix ⌃.

Paper structure: In Section 2 we discuss describe the sys-
tem model and introduce the diagnosis problem. In Section
3 we present our approach to fault disambiguation and de-
scribe a method for improving the scalability of the diag-
nosis algorithm to real time implementation. We showcase
our approach to reducing the uncertainty in diagnosis solu-
tion through diagnosis results before and after applying the
disambiguation inputs, in Section 4.

2. PROBLEM STATEMENT

We consider parametric faults, i.e., each fault mode has an as-
sociated scalar parameter. We define F = {p1, p2, . . . , pN}
as the set of fault parameters, for some integer number N ,
and we assume each fault parameter pi has a nominal value
p̄i. In nominal conditions, the parameter vectors remain close
to the nominal values p̄i.

The diagnosis engine uses a physics-based model to reason
about the health of the system. The type of systems can in-
clude nonlinearities, discrete and algebraic constraints. The
mathematical model describing the behavior of the physical
system is given by a (hybrid) differential algebraic equation
(DAE) of the form

0 = F (Ẋ,X,U ;P ), X(0) = X0 (1)
Y = h(X,U ;P ) + V , (2)

where X is the (stochastic) state of the system, U is the vec-
tor of inputs, P is the vector of model parameters, and Y is
the vector of output measurements. The outputs are affected
by the independent and identically distributed (i.i.d.), additive

noise V , assumed Gaussian with zero mean and covariance
matrix ⌃v . The initial state X0 and the vector of parameters
are vector-valued random variables with known prior distri-
bution fX0 and fP , respectively. For example, the p.d.f. of
the vector of parameters can be Gaussian, with mean p̄ and
covariance matrix ⌃p. The vector p̄ can be interpreted as the
nominal value of the vector of system parameters, and matrix
⌃p reflects the uncertainty in the nominal value.

We use the single fault scenario, i.e., no two faults be-
came active at the same time. The fault event is defined by
{|pi � p̄i| > "i, p�i = p̄�i}, where "i is a positive scalar.
The scalar "i depends on the measurement noise and the sen-
sitivity of the behavior of the system to changes in parame-
ter pi. The fault magnitude is determined by estimating the
value of the system parameter pi. Given a sequence of input
and output measurements over the time horizon ⌧ , the diag-
nosis problem consists of computing the conditional proba-
bility P(|pi � p̄i| > "i|y0:⌧ ,u0:⌧ ), for all i together with
the estimation of the parameter pi. An ambiguous diagno-
sis appears when there exist a least two faults i and j so that
P(|pi � p̄i| > "i|y0:⌧ ,u0:⌧ ) ⇡ P(|pj � p̄j | > "j |y0:⌧ ,u0:⌧ ),
meaning that their probability is roughly the same, impeding
a clear decision on what fault is the root cause of the observed
anomalous behavior.

To illustrate our approach to fault disambiguation, we con-
structed a fuel system model shown in Figure 1, expressed
in the Modelica (Fritzson, 2015) language. The model
describes the fuel supply from a fuel tank to an engine
through a series of pipes. The model uses components
from the Modelica.Thermal.FluidHeatFlow li-
brary. We model the fuel tank using the OpenTank compo-
nent from the Modelica.Thermal.FluidHeatFlow
library, while the engine is modeled using a sink compo-
nent from the same library. We model the interconnections
between the tank and the engine using a series of pipes. The
pipes can be affected by leaks, by augmenting the nominal
model with specialized leak components. We successfully
demonstrated this approach to fault diagnosis in our previous
work (Saha & et al., 2014; Minhas et al., 2014). The leaks
are modeled through specialized components that use (fault)
parameters to set the severity of the faults. A 0 value means
there is no leak, while a 1 value means the highest leak
severity. We have included 4 leak points on the fuel line. The
leak components are implemented using a valve connected
to a sink component that sets the ambient pressure. The
fault parameter sets the opening of the valve, hence the fault
diagnosis algorithm tracks the leak parameters to detect and
isolate leaks.

3. APPROACH

In this section we describe the MBD diagnosis algorithm, the
control design algorithm for fault disambiguation and present
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Figure 1. Modelica model of the fuel system.

an approach for improving the time efficiency of the control
design.

3.1. Optimization-based diagnosis

We use an optimization-based approach to estimate the fault
parameters and evaluate the fault probabilities. The optimiza-
tion algorithm uses model simulations to update the fault
parameters so that the simulated outputs match the mea-
sured outputs. We segment the output time series into non-
overlapping windows, and for each window we update the
fault parameters by solving least square problems. The choice
of the size of the window depends on the time constants of
the system dynamics. In the case of the fuel system, the tran-
sients are negligible, i.e., the measurements correspond to the
steady state regime. Hence the window size can be relatively
small. However, the size of the window must be correlated
with the time needed by the optimization algorithm to gener-
ate a solution. If such a time is larger than the window size,
we incur delays in generating diagnosis solutions. The least
square optimization algorithm is expressed as a nonlinear pro-
gram that optimizes for continuous fault parameters, i.e., the
leak magnitudes. As an alternative to the optimization-based
approach, we could use filtering-based techniques, by con-
sidering the fault parameters as states. Since the fuel sys-
tem model is nonlinear, the linear Kalman filter cannot be ap-
plied directly. The extended Kalman filter (McElhoe, 1966)
requires artifacts not readily available such as the Jacobians
of the state and measurements maps. Sampling-based filter-
ing techniques, such as the particle filter (Arulampalam et
al., 2002), are computationally intensive since they require
many sample points to propagate an accurate (possibly non-
Gaussian) distribution of the state. The unscented Kalman
filter (Julier & Uhlmann, 1997) is a compromise between
accuracy and computational effort and uses a set of sigma-
points to approximate the distribution of the state. Given
that in the case of the fuel system the transients are negligi-

ble and the outputs do not depend on the initial states, we
chose to use the optimization-based approach. Qualitative
diagnosis algorithms, such as analytical redundant relations
(ARRs) (Staroswiecki, 2000; Staroswiecki & Comtet-Varga,
2001) can also be applied. They have the advantage that they
do not require fault models, but they typically need more sen-
sors to generate unambiguous diagnosis solution. Since in
the case of the fuel system the physics behind leaks is well
understood, we opted for a diagnosis solution based on fault
models. For each fault parameter, the diagnosis engine solves
an optimization problem using parallel processes.

For the cases when the transients are very fast and when the
steady state does not depend on the initial conditions, the sys-
tem model (1)-(2) in its discrete form becomes a memoryless
mathematical model:

Y k = h(Uk;P ) + V k, (3)

where we use upper cases to emphasize the stochastic nature
of the system model.

Given a sequence of output measurements {y}⌧k=0 and
inputs {u}⌧k=0 the diagnosis engine computes the p.d.f.
f(pi|y0:⌧ ,u0:⌧ ), under the assumption that no other fault
becomes active at the same time with fault i. The op-
timal estimate of the fault parameter is given by p̂i =
E[P |Y 0:⌧ = y0:⌧ ,U0:⌧ = u0:⌧ ]. The maximum likeli-
hood estimator is the solution of the optimization problem
maxpi f(pi|y0:⌧ ,u0:⌧ ), whose solution is p̂i⌧ .

Using a Bayesian approach, f(pi|y0:⌧ ,u0:⌧ ) can be ex-
pressed as

f(pi|y0:⌧ ,u0:⌧ ) =

Q⌧
k=0 f(yk|uk, pi)f(pi)R Q⌧
k=0 f(yk|uk, pi)f(pi)dpi

,

where f(pi) is the prior distribution of the fault parameter pi.

Under the input-output dynamics (3), the conditional p.d.f.
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f(yk|uk, pi) is a Gaussian p.d.f. with mean ŷi
k = h(uk; pi)

and covariance matrix ⌃v . The mean vector ŷi
k is generated

by simulating the system model, given the input uk and the
vector of parameters pi, while all other fault parameters are
kept at their nominal values. Under the additive, Gaussian
measurement noise assumption, we compute the solution of
the maximum likelihood estimator by solving the following
optimization problem:

min
pi

⌧X

k=0

�
yk � ŷi

k

�T
⌃�1

v

�
yk � ŷi

k

�
(4)

The optimization problem above computes the most like fault
magnitude p̂i, under the assumption that fault i is active.

We solve N such optimization problems in parallel and obtain
a set of parameters {p̂i}Ni=1. To decide which fault is active,
we compute the empirical probabilities:

qi / N (ŷi
k,⌃v),

where ŷi
k are generated by simulating the model with the fault

parameter p̂i, while setting the remaining fault parameters to
their nominal values, i.e., p̄j for j 6= i.

Ideally, we would like to have the probabilities qi so that it
is clear what fault is active, i.e., if fault i is active qi should
be close to 1. However, this may not always be possible and
multiple probabilities qi can be similar. In the following sec-
tion, we describe our approach to fault disambiguation.

3.2. Fault disambiguation

Figure 2 depicts the steps for addressing ambiguous diag-
noses. We assume that a physical system is controlled by
a vector of exogenous inputs uc and generates measured out-
puts denoted by y. A diagnosis engine receives the control
inputs and the output measurements and generates an initial
diagnosis. Upon the evaluation of its uncertainty, a decision
is made if the diagnosis is final or is rejected if it is ambigu-
ous. If the latter, control inputs ud are designed to reduce
the diagnosis uncertainty and applied to the system to gen-
erate new output measurements. These new measurements
together with the disambiguation inputs are used the produce
a new diagnosis.

Figure 2. Block diagram of the approach for dealing with
ambiguous diagnosis.

Let qi and associated p̂i be the fault probabilities and the fault
parameter estimates, respectively. We can measure the uncer-
tainty of the diagnosis solution using the Shannon entropy:
H = �

PN
i=1 qi log(qi). The worse case, i.e., the highest un-

certainty happens when q = 1/N for all i. The best case,
i.e., the lowest uncertainty is when there exists an i such that
qi = 1, in which case H = 0. We can set a degree of ac-
ceptable uncertainty by choosing a scalar � 2 [0, log(N)] and
decide that a diagnosis solution is ambiguous if H  �.

Our objective is to design a sequence of inputs {uk}⌧k=0
that maximizes the Euclidean distance between the system
outputs that correspond to the ambiguous fault modes. We
achieve this objective by solving the following optimization
problem:

min
u0,...,u⌧

�
X

i>j

⌧X

k=0

kŷi
k � ŷj

kk
2 (5)

subject to: ŷi
k = h(uk; p̂i), 8i

uk 2 U , 8k 2 {0, . . . , ⌧},

where U is a set constraining the inputs that can be ap-
plied to the system. The definition of the loss func-
tion is not arbitrary. We recall that the key term for
computing f(pi|y0:⌧ ,u0:⌧ ) is the product of conditional
p.d.f.s

Q⌧
k=0 f(yk|uk, pi). To evaluate each conditional

p.d.f. f(yk|uk, pi), we need to evaluate the quadratic term�
yk � ŷi

k

�T
⌃�1

v

�
yk � ŷi

k

�
. Let i be the true fault mode,

with yi
k = ŷi

k + vk the output measurements expressed in
term of the simulated output ŷi

k and a realization of the mea-
surement noise vk. For each ambiguous fault mode j, the

quadratic expression
⇣
yk � ŷj

k

⌘T
⌃�1

v

⇣
yk � ŷj

k

⌘
becomes

⇣
ŷi
k + vk � ŷj

k

⌘T
⌃�1

v

⇣
ŷi
k + vk � ŷj

k

⌘
. For the ground

truth case i = j, the previous expression becomes vT
k⌃

�1
v vk,

which is the smallest quantity that we can get under the addi-
tive noise assumption. Hence by solving (5), we in fact max-
imize the conditional p.d.f. f(pi|y0:⌧ ,u0:⌧ ) for the ground
truth fault mode i, while in all the other fault modes j,
f(pj |y0:⌧ ,u0:⌧ ) becomes smaller.

The disambiguation problem minimizes the diagnosis uncer-
tainty defined by the Shannon entropy. Indeed, solving (5)
brings the probabilities qi closer to zero or one, hence mini-
mizing the entropy.

Remark 1: In Figure 2, we separate the inputs generated by
controller from the disambiguation inputs. Alternatively, the
disambiguation inputs ud can be superimposed on the con-
troller inputs, i.e., ũc = uc+ud, where ud can be designed to
minimize both the effects on the system stability and the sim-
ilarity among the outputs in ambiguous fault modes. Such
an idea was pursued in (Kuhn, Price, de Kleer, Do, & Zhou,
2008), where a pervasive diagnosis approach based on AI
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planning was designed to simultaneously achieve production
goals while uncovering additional information about compo-
nent health. For system with a continuous action space, using
planning is computationally expensive due to combinatorial
explosion. Thus, a model predictive control approach is more
appropriate.

Remark 2: In the optimization problem formulation, we con-
sidered all possible faults that in turn requires model simu-
lations for all fault scenarios. We can reduce the complex-
ity of the optimization problem by selecting the top K most
likely fault modes and solving the disambiguation optimiza-
tion problem in terms of them, only.

3.3. Improving the scalability to real time implementa-
tion

Solving (5) requires simulating the model for each fault sce-
nario to generate the predicted outputs ŷi

k, as the optimization
algorithm searches for the best control inputs. Such a problem
can be viewed as a black-box optimization since we can not
analytically compute the gradients of the loss function; gradi-
ents that depend on the system variables. The black-box opti-
mization limits the access to gradient-free optimization algo-
rithms (e.g., Bayesian optimization, Powell, Simplex). Typ-
ically, black-box optimization algorithms scale poorly with
the number of optimization variables.

We can improve the time efficiency of the optimization al-
gorithms by using gradient-based methods and providing the
algorithm access to the gradients of the loss function. Unlike
gradient free algorithms, gradient-based methods scale lin-
early with the number of optimization variables. We achieve
this goal by employing surrogate models expressed using
constructs endowed with AD. Such models are emulators that
mimic the behavior of the original model while enabling the
evaluation of gradients of loss functions. We learn surro-
gate models using a data-driven approach, namely we use
the deep learning platform Pytorch (Paszke & et al., 2017).
We designed and trained a neural network (NN) based sur-
rogate model for the physics-based model. The NN has as
a total of 5 inputs: the control signal to the pump and the
leak fault parameters. The outputs are the tank level and the
mass flow rate to the engine. The NN has four layer: one
GRU layer, followed by a dense layer, a ReLU layer and a
dense layer as output. All hidden layers have the same size,
namely 128. The training data is generated by simulating the
physics-based model. For a large number of inputs and out-
puts, we have a combinatorial explosion in the size of the
training data. However, the training data generation is done
off-line, hence time constraints are less relevant. We used the
physics-based model to generate data for training the surro-
gate model. We generated approximately 300k training data
samples. The model simulations were done using the FMU
(Blochwitz et al., 2011) representation of the physics-based

model, integrated into Python code. The input consists of
pump control and leak parameters, and the outputs are repre-
sented by mass flow rates and the tank level. The inputs were
randomly drawn from their domain of definition, using the
uniform distribution. Since the surrogate model accepts pa-
rameters of the physics-based model as inputs, we can simu-
late faults. We trained the model using Adam (Kingma & Ba,
2015) algorithm, with a step size 0.001. We used the typical
regression models loss function, i.e., the mean square error
(MSE) loss function. All other hyper-parameters were left at
their default values. An exemplar of the training results are
shown in Figure 3, where we compared the prediction of the
mass flow rates against the ground-truth values. The overall
loss function value was MSE < 1e-5. Armed with the NN-

Figure 3. Physics-based vs. NN-based model comparison

based model, we can solve the disambiguation optimization
problem using forward propagations of this model. In the
next section we give information about the gain in time ef-
ficiency as compared to an FMU-based, black-box optimiza-
tion.

4. RESULTS

The time horizon for the data gathering used for diagnosis is
500 sec. We consider two scenarios: in the first scenario we
measure both the tank level and the engine mass flow rate,
while in the second scenario we measure the engine mass
flow rate, only. In each scenario we consider two levels of
signal-to-noise rations (SNRs) that affect the measurements:
40 dB and 25 dB. Typically, measurements with SNR greater
than 40 dB are measurements where the useful information
dominates the measurement noise. Measurements with SNR
below 20 dB are considered unreliable. To test the diagnosis
algorithms for the four fault modes, we generated synthetic
data to which noise was added to reach the two SNR levels.
Each FMU-based simulation takes about 0.07 sec and a diag-
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nosis solution is generated in about 4 seconds, well within the
500 seconds measurement time window.

Tables 1 and 2 present the fault probabilities for the first sce-
nario. The rows of the table correspond to the ground truth
and for each fault case, the ground truth fault parameter is set
to 0.5. All correct fault modes are predicted with high proba-
bility, for both SNR levels. As expected, for SNR=25 dB, the
confidence in the diagnosis solution is smaller, but the likeli-
hoods of the true diagnoses are dominant. In addition, all fault
parameters are correctly estimated, as demonstrated in Table
3 that show the parameter estimates for SNR=25 dB. The di-
agnosis results for the second scenario are shown in Table 4,
where we present the results for SNR=40 dB, only. While the
fault parameters are correctly estimated (Table 5), due to the
high uncertainty in the diagnosis solution, no decision can be
made about the true fault mode.

Table 1. SNR 40 dB: Fault probabilities when measuring both
the tank fuel level and the engine mass flow rate.

leak 1 leak 2 leak 3 leak 4
leak 1 0.99 0.005 0.003 0.002
leak 2 0.003 0.976 0.015 0.006
leak 3 0.001 0.011 0.954 0.034
leak 4 0.001 0.005 0.038 0.956

Table 2. SNR 25 dB: Fault probabilities when measuring both
the tank fuel level and the engine mass flow rate.

leak 1 leak 2 leak 3 leak 4
leak 1 0.803 0.095 0.056 0.045
leak 2 0.055 0.612 0.221 0.111
leak 3 0.021 0.143 0.536 0.300
leak 4 0.016 0.075 0.326 0.582

Table 3. SNR 25 dB: Fault parameter estimates when mea-
suring both the tank fuel level and the engine mass flow rate.

leak 1 leak 2 leak 3 leak 4
leak 1 0.500 0.466 0.436 0.414
leak 2 0.507 0.500 0.480 0.466
leak 3 0.510 0.517 0.500 0.487
leak 4 0.511 0.529 0.512 0.500

Table 4. SNR 40 dB: Fault probabilities when the engine
mass flow rate, only.

leak 1 leak 2 leak 3 leak 4
leak 1 0.25 0.25 0.25 0.25
leak 2 0.25 0.25 0.25 0.25
leak 3 0.25 0.25 0.25 0.25
leak 4 0.25 0.25 0.25 0.25

Next, we design disambiguation control inputs that reduce the
uncertainty of the diagnosis solution. One approach for de-
signing the control is to use black-box optimization, where
the model predictions are generated by the model FMU.

Table 5. SNR 40 dB: Fault parameter estimates when mea-
suring the engine mass flow rate, only.

leak 1 leak 2 leak 3 leak 4
leak 1 0.500 0.503 0.506 0.510
leak 2 0.496 0.499 0.503 0.507
leak 3 0.494 0.498 0.501 0.505
leak 4 0.490 0.493 0.497 0.500

Gradient-free algorithms, such as Powell, or Nelder-Mead
can be used to search for disambiguation inputs. Unfortu-
nately, they do not scale with the number of optimization
variables. In our case the number of optimization variables
depends on the length of the time horizon and the sampling
period. The gradient-based algorithms, however do scale
with the number of optimization variables. Figure 4 shows
a comparison between the two types of algorithms, for vari-
ous number of change points of the input signal. The change
points are time instants ⌧i such that u(t) =

P
i ui1(t � ⌧i),

where 1(t) is the step function. The Powell-based solution

Figure 4. Optimization time comparison between the Powell
gradient-free algorithm, and Adam gradient-based algorithm,
as a function of number of change points of the input. The
Powell algorithm uses the model FMU for simulations, while
the Adam algorithms uses the surrogate model.

was solved using the Scipy scientific computing Python li-
brary, while the Adam-based solution was implemented and
executed using Pytorch. Both approaches were executed on
the same machine. Unsurprisingly, the graph clearly shows
the superior efficiency of the gradient-based algorithm. For
both algorithms we used the same tolerance value to have a
common basis for comparison, i.e., ftol=10�5.

We solved the disambiguation control design problem, where
we allowed the input to change at 20 points over the 500 sec-
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onds time horizon. The problem is defined as

min
ul

�
4X

i,j=1,i<j

⌧X

k=0

kŷi
k � ŷj

kk
2

s.t.: ŷi
k = ĥ(uk; p̂i), i 2 {1, 2, 3, 4}, pi = 0.5, 8i

u(tk) =
20X

l=1

ul1(tk � ⌧l)ul 2 U , 8k 2 {0, . . . , ⌧},

Here ĥ denotes that NN-based surrogate model, and U =
[0, 40] rad/s. Even for this number of change points, the al-
gorithm took slightly over 25 seconds to generate the result.
The generated control input is shown in Figure 5. For com-
parison, we include the inputs generated by the nominal con-
troller, when the system is affected by the leak 1 fault mode.

Figure 5. Optimal control for fault disambiguation.

Figure 6. Inputs generated by the nominal controller under
leak 1 fault mode.

We applied the control to the system, and considered the four
leaks with the fault parameters equal to 0.5. The mass flow
rate corresponding to the fault mode 1 as a result of apply-
ing the disambiguation input and for SNR=25 dB is shown in
Figure 7.

Figure 7. Mass flow rate corresponding leak 1 fault when
applying the disambiguation input, and with SNR=25 dB.

The results for SNR 40 dB and 25 dB are shown in Tables 6
and 7, respectively.

We note that the probabilities of the ground truth in the four
cases for SNR=40 dB, while smaller then the case where we
measure both the mass flow rate and the tank level, still dom-
inate. For SNR=25 dB, while the probabilities of the ground
truth decrease even more, we do not have the uniform dis-
tribution when using the nominal inputs, as shown in Table
5. The fault parameters were correctly estimated and were
approximately 0.5, as expected.

Table 6. SNR 40 dB: Fault probabilities when measuring the
engine mass flow rate, using the disambiguation inputs.

leak 1 leak 2 leak 3 leak 4
leak 1 0.475 0.332 0.164 0.029
leak 2 0.306 0.436 0.231 0.028
leak 3 0.176 0.264 0.506 0.054
leak 4 0.120 0.177 0.217 0.486

Table 7. SNR 25 dB: Fault probabilities when measuring the
engine mass flow rate, using the disambiguation inputs.

leak 1 leak 2 leak 3 leak 4
leak 1 0.370 0.332 0.234 0.064
leak 2 0.312 0.351 0.274 0.063
leak 3 0.231 0.281 0.372 0.116
leak 4 0.178 0.224 0.249 0.350
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5. CONCLUSIONS

This paper has shown how to address the ambiguous fault di-
agnosis problem. Such a problem appears when sensor mea-
surements do not include sufficient information to compute
the fault probabilities with high certainty. We approached the
fault disambiguation problem from an optimal control per-
spective: we designed control inputs such that the similarity
between measurements in ambiguous fault modes is reduced.
We showed that we can improve the scalability of the opti-
mal control problem with the number of optimization vari-
ables by: (i) using a surrogate model expressed with con-
structs endowed with AD operators, and (ii) using gradient-
based optimization algorithms that use automatic differenti-
ation to compute gradients of the cost function. We demon-
strated our approach on a fuel system example, and showed
that using disambiguation control inputs we can isolate faults
with high probability even when measuring the engine mass
flow rate, only. An extension of the current results will add
to the similarity-based objective control requirements such as
stability. The resulting control inputs will represent a trade-
off between maximizing the likelihood of fault detection and
isolation, and constraining the system behavior within safe
operating modes.

REFERENCES

Arulampalam, M. S., Maskell, S., & Gordon, N. (2002).
A tutorial on particle filters for online nonlinear/non-
gaussian bayesian tracking. IEEE TRANSACTIONS

ON SIGNAL PROCESSING, 50, 174–188.
Blochwitz, T., Otter, M., Arnold, M., Bausch, C., Elmqvist,

H., Junghanns, A., . . . Clauß, C. (2011). The func-
tional mockup interface for tool independent exchange
of simulation models. In Proceedings of the 8th inter-

national modelica conference (p. 105-114).
de Kleer, J., Mackworth, A., & Reiter, R. (1992). Charac-

terizing diagnoses and systems. ”Journal of Artificial

Inteligence”, 56(2–3), 197–222.
Fritzson, P. (2015). Principles of object-oriented modeling

and simulation with Modelica 3.3: A cyber-physical

approach (2nd ed.). Hoboken, NJ: Wiley.
Gertler, J. (1998). Fault-detection and diagnosis in engineer-

ing systems. New York: Marcel Dekker.
Isermann, R. (2005). Model-based fault-detection and di-

agnosis - status and applications. Annual Reviews in

Control, 29(1), 71 - 85.
Julier, S. J., & Uhlmann, J. K. (1997, July). New ex-

tension of the Kalman filter to nonlinear systems. In
I. Kadar (Ed.), Signal processing, sensor fusion, and

target recognition vi (Vol. 3068, p. 182-193).
Kalman, R. (1960). A new approach to linear filtering

and prediction problems. Transactions of the ASME–

Journal of Basic Engineering, 82(Series D), 35–45.
Kingma, D. P., & Ba, J. (2015). Adam: A method for stochas-

tic optimization. In Y. Bengio & Y. LeCun (Eds.), 3rd

international conference on learning representations,

ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Con-

ference Track Proceedings.

Kuhn, L. D., Price, B., de Kleer, J., Do, M. B., & Zhou,
R. (2008). Pervasive diagnosis: The integration of
diagnostic goals into production plans. In D. Fox &
C. P. Gomes (Eds.), AAAI (p. 1306-1312). AAAI
Press.

McElhoe, B. A. (1966, July). An Assessment of the Navi-
gation and Course Corrections for a Manned Flyby of
Mars or Venus. IEEE Transactions on Aerospace Elec-

tronic Systems, 2(4), 613-623.
Minhas, R., de Kleer, J., Matei, I., Saha, B., Janssen, B., Bo-

brow, D., & Kurtoglu, T. (2014). Using fault aug-
mented modelica models for diagnostics. In Proceed-

ings of the 10th international modelicaconference (pp.
437–445).

Paszke, A., & et al. (2017). Automatic differentiation in
PyTorch.

Patton, R. J., Frank, P. M., & Clark, R. N. (2000). Issues of

fault diagnosis for dynamic systems. Springer-Verlag
London.

Saha, B., & et al. (2014, August,). Model-based approach for
optimal maintenance strategy. In Proceedings of sec-

ond european conference of the prognostics and health

management society.

Staroswiecki, M. (2000). Quantitative and qualitative models
for fault detection and isolation. Mechanical Systems

and Signal Processing, 14(3), 301 - 325.
Staroswiecki, M., & Comtet-Varga, G. (2001). Analytical

redundancy relations for fault detection and isolation
in algebraic dynamic systems. Automatica, 37(5), 687
- 699.

8


