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ABSTRACT

Failure prognostics have greatly enhanced the predictive
maintenance of industrial systems by providing the remaining
useful life (RUL) information, offering opportunities for high
reliability, availability, maintainability and safety. To do so,
historical monitoring data are injected into machine learning
model to learn how to predict the RUL and then, in an on-
line phase directly estimate the RUL of a new similar system.
However, in case of multiple degradation trends representing
multiple systems, it lead to different times of anomaly appear-
ance and therefore various RUL values for learning. This situ-
ation makes difficult to train the predictor and use in this case
an approximated unique RUL value. Hence, this paper pro-
poses an adaptive anomaly detection methodology to identify
the times of fault occurrence, and then assign the correct RUL
values of each failure trajectory to the train the predictor. This
methodology will facilitate the learning task for an accurate
prediction of system RUL. The performance of the proposed
methodology is highlighted using a long short-term memory
(LSTM) network with the accelerated run to failure data of
turbofan engines provided by the NASA to estimate the RUL.

Keywords: Prognostics, Condition monitoring, Data pro-
cessing, Health indicator, Fault detection, Long-Short Term
Memory, Remaining useful life, Turbofan engines.

1. INTRODUCTION

System health state prognostics is one the prominent enablers
for predictive maintenance strategies. On one hand, it allows
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anticipating failures by estimating the Remaining Useful Life
(RUL) of a given system (Medjaher et al., 2012). On the other
hand, it increases the reliability, availability, maintainabil-
ity and safety of system (K. T. Nguyen & Medjaher, 2019).
In general, prognostics can be classified into three groups,
model-based, data-driven and hybrid approaches (M. Soualhi
et al., 2022). The first approach uses the physical degrada-
tion model, also called (physics-based), to estimate the end
of life of the system, it is more accurate than the data-driven
(Gouriveau et al., 2016). However, it is difficult to obtain
the mathematical representation of the degradation when the
system presents stochastic behavior (M. Soualhi, Nguyen,
Soualhi, et al., 2019). Besides, the data-driven approach uses
sensor measurements to estimate the time of system failure
without a priori knowledge on the degradation mechanism
(Atamuradov et al., 2017). Indeed, the investigation of ar-
tificial intelligence and advanced calculators prompts the use
of big data for condition monitoring and facilitates the uti-
lization of data-driven techniques (Fontes & Pereira, 2016).
Finally, hybrid approach aims to use the constructed physi-
cal model of the system with the real sensor measurements
to represent well the system behavior with efficient control.
In the context of missing physical knowledge, data-driven is
the most suitable, but its performance strictly depends on the
amount of historical and representative monitoring data.

For data-driven prognostics, the availability of historical
degradation data is the most important prerequisite for devel-
oping efficient algorithms. Also, these data should take into
account the time of anomaly occurrence to start the predic-
tion and give a reliable estimation of the RUL of the system
(A. Soualhi et al., 2020). To this end, the prediction times can
be obtained using data processing algorithms to built health
indicators (HIs) and detect the faults. The presented works
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(K. T. P. Nguyen et al., 2018) extract features in three do-
mains: time, frequency, and time-frequency to diagnose bear-
ing defects while the authors in (Saidi et al., 2017) use fre-
quency analysis, i.e., spectral kurtosis amplitudes to build Hls
and detect the fault time. In addition, some researches inves-
tigate machine learning (ML) techniques to build efficient in-
dicators which identify well the occurrence of the defect. For
illustration, the presented works in (M. Soualhi et al., 2021;
Guo et al., 2017) use Recurrent neural Network (RNN) and
convolution neural network, respectively, to built the HIs and
identify the time of fault occurrence for starting prediction.
However, all these studies use less quantity of failure scenar-
ios and may not be efficient in case of operating condition
variations. To cope with this situation, the use of big data
representing the different failure mechanisms of the system
is a promising alternative technique. In fact, investigating
more data for the monitoring provides high level of failure
mechanism understanding as well as the presented work in
(Gouriveau et al., 2016) which uses large failure data of mul-
tiple systems to cover various operating conditions of the sys-
tem for efficient health assessment. However, the variation of
operational conditions lead to different time of fault occur-
rence and therefore makes difficult the prognostic task.

Regarding the prognostics methods for remaining useful esti-
mation, numerous techniques are developed in literature. One
can cite the most effective such as Support vector Regression
(SVR), Hidden Markov Model (HHM), Artificial Neural Net-
work (ANN), Recurrent Neural Network (RNN), Adaptive
Neuro Fuzzy Inference System (ANFIS), Long-Short term
Memory (LSTM), etc (Gouriveau et al., 2016). Each of these
techniques presents its own advantages and drawbacks. How-
ever, as the Long-Short Term Memory network has the ca-
pacity of learning large data of different sequences with its
memory and forget functions, it allows exploiting all the mon-
itoring data for further accuracy and long term predictions
(K. T. Nguyen & Medjaher, 2019).

Considering the synthesis above, one can notice that the avail-
ability of large quantity of data from various systems is one of
the key issues for improvement of prognostic results. More-
over, because of the numerous factors that impact the oper-
ating conditions of the system, the occurrence of faults may
be at different instants. Therefore, it is necessary to develop
data processing method able to identify the anomaly time of
each monitored system and track its evolution. Hence, this
paper aims to fill this literature gap. It proposes a data pro-
cessing methodology that uses different sensor measurements
to identify the time of fault occurrence corresponding to each
monitored system. Then, the obtained values are used to train
an LSTM network to predict the RUL starting from the ob-
tained prediction times. The robustness and the performance
of the methodology are verified through the simulated run to
failure data set of turbofan (C-MPASS) provided by NASA.

The remainder of this paper is structured as follows. Sec-
tion 2 presents the methodology for prognostics. In section 3,
the performance of the methodology is highlighted through
NASA turbofan engines data. Finally, the conclusion and per-
spectives of this work will be presented in section 4.

2. PROPOSED METHODOLOGY FOR FAULT DETECTION
AND PROGNOSTICS

This section presents the proposed methodology of data pro-
cessing for fault detection and prognostics. The methodology
starts with system condition monitoring and passes through
data processing for HIs construction to detect the time of
fault occurrence, and finally trains the prediction model for
the prognostics as shown in Fig. 1.

1. System condition monitoring: As mentioned in the in-
troduction, the availability of historical degradation data
is one of the key issues for prognostics methods. There-
fore, it is necessary to monitor the system over time to
detect faults and track their evolution. To do this, appro-
priate physical parameters that reflect well the degrada-
tion of the system are supposed to be monitored. In tur-
bofan aircraft engines, the commonly used sensors are
pressure, temperature and speed sensors. These devices
collect the monitoring data from the healthy state of the
system to its end of life. Once the data are collected, they
are in raw form and not suitable for direct use. There-
fore, the obtained observations will be injected into pro-
cessing algorithms to transform them into reliable and
exploitable information for the following processes.

2. Data processing: In general, it is unable to use the raw
data directly for system health state assessment. This
unfeasability is due to noises, redundant information,
stochastic data, etc. To cope with these limitations, data
processing techniques are being developed to transform
the raw data into exploitable information. These tech-
niques extract features to build Hls for fault detection,
diagnostics and prognostics. Among these techniques,
one can cite the time-domain analysis. This method is
the most common approach used for processing the raw
data thanks to its simplicity and also its fast computation
time. In this study, the recorded data are, first, normal-
ized to their dispersion using equation 1. It allows adjust-
ing the different sensor measurements of different scales
to a common scale (K. T. Nguyen & Medjaher, 2019), as
shown in figure 2.

x - Ku=X) "
StD(X;)
where X is the total raw data of all the measurements, 7
and j are number of observations and type sensors, re-
spectively.
The normalized data are then reduced using Principal
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Figure 1. Global overview of the proposed methodology.
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Component Analysis (PCA) function to fuse all the sen-
sor observations into one representative pattern that con-
tains high level of information (equation 2). Figures 3
illustrates the this calculation.

F = PCA(X ,n) 2)

where n is the dimension number factor. In this case
study n equals to 1.
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Figure 3. Data fusion of the different sensor measurements.

The obtained new set of data are used to extract statis-
tical features to construct the HI and detect the time of
fault occurrence of each monitored system. The HI is
expressed by the following equation.

(£ —F)'

(%ZiL:l(Fi_F) )
where F' is the normalized total data of length L with
i € [1, L] points.
The constructed HI is the ratio between the forth order
moment of an observation and the global variance of the
normalized data. This gain estimates the dispersion of an
observation to the overall signal and allows reducing the
noises while keeping the main information of the signal
(M. Soualhi, Nguyen, Medjaher, et al., 2019). In fact, in
the healthy state, the mean value of the signal is approx-
imately equal to 0. In this case, the expressed ratio is
lower. Therefore, it can be concluded that in the nominal
case where no defects occur, the constructed HI provide
a constant trajectory. Otherwise, in the event of a fault
appearance, the calculated ratio indicates an increase in
the values of the HI representing the occurrence of an
anomaly in the system health state evolution, as shown
in the figure 4.
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Figure 4. Health indicators construction.
From figure 4, there is two main health states, the healthy

state represented by the constant HI curve, and the faulty
state represented by the increasing curve of the HI. After
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construction of HI of all systems, they are smoothed to
reduce the noises and allow to extract the times of fault
occurrence. Here, there is a large degradation trends and
different time of fault occurrence. For this purpose, al-
gorithm 1 is proposed in this paper to identify the time
when the fault occurred. It calculates the distance be-
tween HI;,; and HI; and compare it to a threshold. If
the difference at time ¢ is grater than the threshold, the
index t is the fault occurrence time (see figure 5).

In this case the threshold is equal to 0.998, which cor-
responds to the mean value of the constant smoother HI
state when normalized between [0,1].

Algorithm 1 Health states division

Create an empty variable P
Set the sliding window size W
Set the number of trends Nbr
for j = 1to Nbr do
Load the data of trend ¢ and normalize it between
[0,1] and save in D
: Set a variable dropFound as false

A

6

7: Set a starting index Idx (Idx=1)

8: while dropFound is false do

9: for i = 1 tolength(D) do

0 Calculate D(i+W-1)/MEAN(y(i:i+W-2)) and

savein Y
11: Compare Y with a threshold amplitude
12: Increase the index value (Idx+1)
13: if Idx equal length (D)-W then
14: Display (No defect)
15: else
16: Calculate i+W-2 and save in Drop
17: end if
18: end for
19: end while
20: Save Drop in P
21: end for
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Figure 5. Fault detection and health state division.

By using algorithm 1, it is possible to detect the time of
anomaly appearance more accurately. Moreover, these
times represent the starting point (MAX RUL) for es-
timating the RUL of the system when training the pre-
diction model. Thanks to this fault detection step, the
training process will learn mapping each health indicator
observation to the real value of the RUL, and thus with

a minimum of error when using a fixed starting point of
RUL for learning.

3. Prediction models for prognostics: This step uses the

normalized raw data and the obtained prediction times
to train a Long-Short Term Memory (LSTM) network
for estimating the system RUL. Table 1 show the tuning
parameters of the LSTM network.
All the sensor measurements corresponding to each sys-
tem are injected into the LSTM model as an input and
learn the degradation over time as output. This degrada-
tion represents the RUL of the system starting from the
fault occurrence time.

3. APPLICATION AND RESULTS

This section presents the case study used to verify the per-
formance of the proposed methodology for prognostics. For
this purpose, a benchmarking data set of simulated run to fail-
ure data, provided by NASA, are used for application. This
database allows verifying the developed data-driven prognos-
tics and health management (PHM) algorithms. First, a gen-
eral overview of the case study is described in subsection
(3.1). Then, subsection (3.2) investigates the data process-
ing methodology for fault occurrence detection. Finally, the
prognostics of these faults are presented in subsection (3.3).

3.1. Description of the case study

The case study is a simulator of turbofan provided by C-
MPASS tool and coded in MATLAB-Simulink environment.
Figure 6 shows the simplified diagram of the simulator. This
model aims to generate degradation data of the system by pro-
viding trajectories representing the system health state from
the nominal condition to its end of life. Moreover, multiple
failure scenarios can be generated by varying the input set-
ting parameters of the operational profile in different sections
of the system. This provide various trajectories where each
trajectory represents an engine’s degradation scenario. Each
simulated scenario generates various sensor measurements,
which are mainly temperatures, pressures and speed. Table 2
summarizes the data set used in this paper.

Fan Combustor N1~ LPT

2

\ Nozzle
HPT

LPC HPC N2
Simplified diagram of the aircraft engine simulated in C-MPASS

Figure 6. C-MPASS simulator case study.

The FDOOL1 training and test datasets consist of 100 trajecto-
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LSTM netowrk
Parameters Hidden size  Hidden units Epochs Optimizer Learning rate L2 regularization
values/methods 2 100 Adam 0.001 0.0001
Table 1. Tuning parameters of the LSTM network.
Dataset  Train set Testset ~ Conditions  Fault mode By using these HIs and the proposed algorithm 1, the differ-
FDO001 100 100 1 1

Table 2. Dataset description.

ries of unique operating condition with unique fault mode.

3.2. Investigation of the proposed methodology perfor-
mance

In this subsection, the proposed method for fault detection is
applied on the training datasets to detect the time of anomaly
appearance of each trajectory. For this purpose, first, the data
are normalized by using equation 1 in section 2. After this
normalization, each set of engine data is fused into one rep-
resentative trajectory using the principal component analysis
function (PCA) 2. Figure 7 shows an illustration of the global
fused data of the total engines.

Data fusion of FD0O01 training set
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Figure 7. Global fused data of the total trajectories.

Once the data are fused, they are used to construct the Hls.
These HIs allow to detect well the healthy state from the
faulty states and isolate the time of the anomaly occurrence
as shown in figure 8.
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Figure 8. Adaptive prediction times for learning predictors.

ent times of the fault appearance can be detected and isolated
automatically. Then, based on these values, it facilitates the
learning task of the predictor by providing an accurate RUL
values as input in order to correctly map the fused trajectories
to their corresponding true RUL.

3.3. Fault prognostics

In this subsection, the raw data of the engines, corresponding
to the first test set, are introduced into the LSTM network to
estimate their RUL. For this purpose, first, the prognostics is
done by using the raw data with the proposed prediction time
in the literature and which equals to 130 cycles. Then, the in-
vestigation of the proposed method using adaptive prediction
times is applied to highlight its efficiency. For this purpose,
figure 9 and figure 10 show the estimated RUL of the global
test engines using the fixed and adaptive prediction times, re-
spectively.

RUL of FD0O01 test set without fault detection
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Figure 9. Estimated RUL using unique prediction time.

From the obtained results of the figures above, one can see
that the estimated end of life when investigating a fixed pre-
diction time is less accurate compared to when training the
model with an adaptive prediction time. In order to show the
efficiency of the proposed methodology, the obtained predic-
tion are evaluated through several metrics used in the litera-
ture such the Root Mean Square Error (RMSE), Meas Square
Error (MSE), Mean Absolute Error (MAE), Accuracy (ACC)
and score (S) summarized in table 3.

The results in table 3 show that the proposed methododology,
when investigating adaptive prediction times for learning the
LSTM network, allows to provide more accurate estimations
of the engines’ RUL, thanks to the performance of the con-
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Figure 10. Estimated RUL using adaptive prediction time.

Metrics LSTM score Proposed Methodology score
MAPE 22,46 18,13

MAE 13,48 11,90

MSE 303,12 260,78

RMSE 17,07 15,32

ACC 45 65

Score 696 324

Table 3. Performance comparison using FDOO1.

structed HIs.

4. CONCLUSION

In this paper, a data processing methodology for fault detec-
tion and prognostics has been presented. This methodology
used the data of different sensors that represent various degra-
dation scenarios of a given system to detect the times of fault
occurrence and estimate its RUL. In detail, the recorded data
were processed in time domain by extracting and combining
statistical features to construct effective HIs. These HIs al-
lowed separating the healthy state from the faulty state by
identifying the times of faults occurrence. The use of the
anomaly occurrence time facilitated the learning task of the
LSTM network to accurately predict the RUL of the system.
The performance of the proposed methodology was high-
lighted through the C-MPASS data set, showing an improve-
ment of the accuracy of RUL estimation. As future work, a
fusion of the estimated RUL from different prediction mod-
els will be investigated. This fusion will enhance more the
accuracy of the predictions for efficient decision making.
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