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ABSTRACT 

Currently, most studies focus on training an excellent deep 
learning model based on sufficient labeled data collected 
from machines. However, in real applications, it is costly or 
impractical to obtain massive labeled data for model training. 
Therefore, in this paper, a Transfer Learning (TL)-based fault 
diagnosis method is proposed to transfer the model learnt 
from one machine (source domain) to another one (target 
domain). In the training process, labeled source data and 
unlabeled target data are used, which is very promising for 
real industrial applications. In this frame of transfer learning-
based fault diagnosis, a cyclic spectrum correlation analysis 
method is firstly introduced to obtain order frequency maps 
for removing the influence of speed variation and revealing 
the hidden cyclic frequency of signals. Then, the Dynamic 
Adversarial Adaptation Network (DAAN) is introduced to 
transfer label information across machines. The proposed 
fault diagnosis method across machines is applied on two 
rolling element bearing datasets collected from two different 
test rigs. Experimental results demonstrate the effectiveness 
and superiority of the proposed method compared with state-
of-the-art approaches. 

1. INTRODUCTION 

Being key components of rotating machinery, rolling 
bearings are widely used in aircrafts, high-speed trains, wind 
turbines, etc. Once a bearing fails, the equipment is not 
anymore able to operate normally, and even accidents may 
occur. Fault diagnosis plays a crucial role in ensuring the safe 
operation of machinery as an important part of Prognostics 
and Health Management (PHM). 

Bearing fault diagnosis is mainly based on vibration signals, 
because they are sensitive to weak faults (Yong et al., 2016). 
The traditional fault diagnosis chain mainly includes several 

steps: signal acquisition, signal denoising, feature extraction, 
and decision making. One well-known approach is to select 
the bearing fault-related frequency band for signal 
demodulation (Randall, 2011). Antoni et al. (2006) proposed 
the fast Kurtogram to select the frequency band associated 
with bearing faults, which has been studied and widely 
applied in the bearing fault diagnosis. Recently, Cyclic 
Spectral Correlation (CSCorr) has gained momentum in the 
condition monitoring community, because it is able to reveal 
hidden periodicities of second-order cyclostationarity 
(Antoni, J., 2007), such as the weak bearings signals, which 
are often buried in noise or masked by other stronger signals. 
Mauricio et al. (2018) explored the application of CSCorr in 
the condition monitoring of planerary gearboxes under 
varying speed conditions and obtained promising diagnostic 
results. 

Thanks to the evolution of Machine Learning (ML) 
technology, ML-based machinery fault diagnosis methods 
have been significantly developed. In general, the statistical 
features of vibration signals are firstly extracted and then fed 
into ML models, such as Support Vector Machine (SVM) 
(Widodo et al., 2007), k-nearest neighbor (Lu et al., 2021), 
naive Bayes (Zhang et al., 2018), etc., to obtain diagnostic 
results. In the past decade, Deep Learning (DL) technology 
has attracted much attention from researchers in computer 
vision (Voulodimos et al., 2018), medical image 
segmentation (Hesamian et al., 2019), speech recognition 
(Nassif et al., 2019). Owing to their excellent feature 
extraction ability from large amount of data, DL models have 
been extensively studied in the field of PHM, including  
Convolutional Neural Network (CNN) (Wang et al., 2019; 
Chen et al., 2019), Long Short-Term Memory (LSTM) (Chen 
et al., 2021), etc. 

Currently, most DL models are trained by one dataset 
collected from one single machine for fault diagnosis (Chen 
et al., 2021; Wang et al., 2019). In real life applications, it is 
still very impractical to train an effective deep learning model 
for each machine, as collecting enough labeled data covering 
various operating conditions and various fault types is very 
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time-consuming and costly. Therefore, a natural idea is to 
leverage the label information of one machine to improve the 
models’ diagnostic performance on other machines. 
However, a direct model re-application on other machines 
will decrease the performance considerably. The main reason  
is the distribution mis-match between the two machines, 
which is also referred as the domain shift issue (Ganin et al., 
2016).  

The Transfer Learning (TL) technology can address the 
domain shift problem and transfer label information across 
domains successfully (Long et al., 2017). Inspired by the 
adversarial training idea of Generative Adversarial Network 
(GAN) (Creswell et al., 2018), Ganin et al. (2016) proposed 
a deep transfer learning network, called Domain Adversarial 
Neural Network (DANN), in which the marginal 
distributions of the source domain and the target domain are 
aligned to a shared feature space for solving the domain shift 
issue. It is an unsupervised domain adaptation method and 
widely applied in the transfer learning tasks among different 
working conditions (Guo et al., 2018; Mao et al., 2020; Guo 
et al. 2021). Besides the marginal distribution alignment 
between domains, the conditional distribution alignment also 
contributes to the adaptation (Yu et al., 2019). Therefore, Yu 
et al. (2019) developed the Dynamic Adversarial Adaptation 
Network (DAAN) to extract the domain-invariant features by 
aligning the marginal and conditional distributions together. 
It has been demonstrated that these deep TL models perform 
well in the case of TL among different working conditions, 
but they may fail in the transfer learning tasks across 
machines.  

In this paper, a novel TL-based fault diagnosis framework 
across machines is proposed. Firstly, the CSCorr method is 
performed on the vibration signal to obtain an order-
frequency two dimensional (2D) map, which can not only 
remove the influence of speed variation, but also reveal the 
hidden cyclic frequency of bearing signals. Then, DAAN is  
introduced to align the marginal (global) and conditional 
(local) distributions between machines and thus successfully 
transfers the model trained from one machine to another one. 
The training data is composed of labeled source data and 
unlabeled target data, thus solving the difficulty of labelling 
data. The proposed TL-based fault diagnosis method is 
validated on two different bearing datasets and experimental 
results approve its effectiveness. The proposed transfer 
learning-based fault diagnosis method for rolling bearings is 
successfully applied to the fault diagnosis tasks across 
machines.  

The remaining part of this paper is organized as follows. 
Section 2 reviews the basic theories of CSCorr and DANN. 
The proposed fault diagnosis framework is illustrated in 
Section 3. Section 4 demonstrates the effectiveness of the 
proposed method by excessive experiments, and finally some 
conclusions are given in Section 5.  

2. BACKGROUND THEORY 

This section reviews the basic theory of Cyclic Spectral 
Correlation (CSCorr) and Domain Adversarial Neural 
Network (DANN).  

2.1. Cyclic Spectral Correlation 

Cyclic Spectral Correlation (CSCorr) (Antoni, J., 2007) is a 
very powerful tool in bearing fault diagnosis field. A bearing 
vibration signal can be described as a second-order 
cyclostationary signal, defined as Eq.(1).  

 *( , ) ( , ) { ( ) ( ) )}X XR t R t T E x t x tW W W= + = �   (1) 

where XR  is the autocorrelation function, E represents the 
expected value, ( )x t  is the signal with the time variable t, * 
means conjugate, T is the cyclic period and Ĳ is the lag 
parameter. The cyclic autocorrelation function describes the 
periodicity of the second moment of the signal. 

CSCorr reveals the hidden modulation signal (the cyclic 
frequency α), and its carrier frequency (the spectral frequency  
f ) (Mauricio et al., 2020). It is a bi-frequency representation 
of cyclic and spectral frequencies. The spectral frequency 
highlights the carrier component of impulses, and the cyclic 
frequency highlights the second-order periodicity of 
impulses. Specifically, it measures the correlation between 
two frequency components of the signal at f and f +α. The 
statistical descriptor of CSCorr can be described as Eq.(2). 

 ( )^ ( )`*1( , ) limX W WW
S f E X f X f aWD

of
= +   (2) 

( )WX f  does the Fourier transform of the signal x(t) over the 
time interval W; f is the spectral frequency dual with time t 
and α is the cyclic frequency dual with time-lag W . 

2.2. Convolutional Neural Networks 

Convolutional Neural Networks (CNN) are mainly composed 
of convolution layers, pooling layers and activation 
functions. The convolution layer implements the convolution 
operation of input features via convolution kernels, whose 
number is determined by the one of feature maps. Then, the 
activation function ReLU (Nair et al., 2010) is followed to 
increase the nonlinear feature learning ability of the network. 
Subsequently, a pooling layer is stacked, which mainly 
contains two algorithms: Max pooling and Mean pooling. 
Not only can it prevent the network from overfitting, but it 
can also reduce feature dimensions, thereby accelerating 
network training. After multiple stacked convolution and 
pooling layers, the output features are fed to the fully 
connected layer and the Softmax layer. After that, all features 
are mapped to the range (0, 1), which is the predicted 
probability distribution. 
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2.3. Domain Adversarial Neural Network 

Suppose there are two domains, the source domain 
{ }s sD X=  and te target domain { }t tD X= . The sample in

sD is 1 2{ , ,..., }sn
s s s sX x x x= , where sn is the sample number of 

the source domain; {1,2,..., }sY C= are the labels 
corresponding to the samples, where C is the number of fault 
classes. The feature distribution of the source domain is 

( )s sP X . Then, the sample in the target domain is defined as
1 2{ , ,..., }tn

t t t tX x x x= , where tn  is the sample number of the 
target domain, and its corresponding feature distribution is 

( )t tP X . Since DANN is an unsupervised domain adaptation 
method, the samples in the target domain for training do not 
have to be labeled. It is worth noting that the source and the 
target domains share the same label space.  

DANN consists of a CNN-based feature extractor Gf, a label 
classifier yG and a domain discriminator Gd. During the 
training process, the Gf  is expected to fool the Gd as much as 
possible, so the loss of the Gd is maximized so that Gd cannot 
distinguish features between the source domain and the target 
domain. Meanwhile, Gd aims to distinguish the features 
between the source domain and the target domain as much as 
possible, thus minimizing its loss. Through this adversarial 
training, the network can learn the discriminative domain-
invariant features of two domains. Its overall loss function is 
defined as Eq.(3). 

 
( )( )( )

( )( )( )

1( , , ) ; ; ,

; ; ,

i s

i s t

f y d y y f i f y i
x Xs

d d f i f d i
x X Xs t

L L G G x y
n

L G G x d
n n

T T T T T

O T T

�

�

=

�
+

¦

¦
  (3) 

where fT  is the parameter of Gf; yT and yL are the parameter 
and the loss function of yG , respectively; dT and id are the 
parameter and the loss function of Gd separately; id is the 
domain label (0 or 1), corresponding to the source domain or 
the target domain; and O is a trade-off parameter. The training 
goal of DANN is to minimize the loss of the label classifier 
Gy so that the Gf can extract discriminative features while 
maximizing the loss of the domain discriminator Gd to obtain 
domain-invariant features. 

3. PROPOSED METHOD 

In fault diagnosis field, it is difficult to train a deep learning 
model for each machine due to the lack of labels and data. 
Therefore, this paper proposes a TL-based bearing fault 
diagnosis method across machines, as shown in Figure 1. 
Firstly, CSCorr is adopted as a signal preprocessing method 
to highlight the hidden cyclic frequencies of bearing signals 
and 2D order frequency maps are obtained. Then, the DAAN 
domain adaption method is proposed to achieve domain 

transfer with the input of CSCorr maps. In addition to map 
global feature distributions, the local subdomain (each fault 
class) distributions between two domains are also expected to 
be aligned while using the DAAN method (Yu et al., 2019). 
It further introduces a class-wise domain discriminator 
module into the original DANN network (Ganin et al., 2016) 
to align the local subdomain distribution. The DAAN method 
includes four modules, the feature extractor Gf, the label 
classifier yG , the global domain discriminator Gd and the 

class-wise domain discriminator c
dG . 

3.1. Label Classifier 

The label classifier yG implements the classification task on 
the source domain dataset. In front of the label classifier, 
there is a feature extractor Gf, constructed by Resnet18 (Targ 
et al., 2016). Gf  aims to extract discriminative and domain-
invariant features across domains. Then, these deep features 
are input to the label classifier, which consists of a fully 
connected layer and a Softmax layer. The number of neurons 
in the fully connected layer is equal to the one of the bearing 
healthy classes C. Softmax layer is used to get the predicted 
probability distribution that the sample xi belongs to class c. 
The loss function Ly of yG is the cross-entropy loss function, 
defined as Eq.(4). 

 ( )( )
1

1
i

i s

C

y x c y f i
x D cs

L P logG G x
n o

� =

= � ¦ ¦   (4) 

3.2. Global Domain Discriminator 

The idea of the global domain discriminator Gd in DAAN 
comes from the domain discriminator in DANN. Gd is used 
to align the global distributions of the source and te target 
domains. As shown in Figure 1, the features obtained from 
the feature extractor Gf are input into the Gd. Gf tries to 
confuse Gd as much as possible, so that the global domain 
discriminator Gd cannot distinguish the features from the 
source domain or the target domain and thus the domain-
invariant features between the two domains are learnt. Gd is 
composed of three fully connected layers, and the numbers of 
neurons are set to 1024, 1024 and 2, respectively. Te 
activation function in the global domain discriminator is the 
ReLU. Each fully connected layer is followed by a dropout 
layer to avoid network overfitting. The loss function Lg of the 
global domain discriminator is defined as in 
Eq.Error! Reference source not found.. 

 ( )( )( )1 ,
i s t

g d d f i i
x D Ds t

L L G G x d
n n �

=
+ ¦   (5) 

where ( )dL � is the cross-entropy loss function, and id is a 
domain label (0 or 1), corresponding to the source or target 
domain. 
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Figure 1. The fault diagnosis framework based on te CSCorr-DAAN 
 

3.3. Class-Wise Domain Discriminator  

The class-wise domain discriminator c
dG  can align the 

conditional distributions of the source domain and the target 
domain for each fault class. The c

dG consists of C-class 
domain discriminators, each of which matches the features 
of two domains in the cth class. Its network architecture is 
consistent with the global domain discriminator. The loss 

function Ll  of c
dG is defined as Eq.(6). 

 ( )( )( )
1

1 ˆ ,
d

i s t

C
c c c

l d i f i i
c x D Ds t

L L G y G x d
n n = �

=
+ ¦ ¦   (6) 

where ( )c
dL � is the cross entropy loss function associated with 

the class c; c
dG  is the cth local domain discriminator; ˆ c

iy is the 
predicted probability distribution over the class c of the input 

sample xi; and id is a domain label (0 or 1), corresponding to 
the source domain or the target domain. 

3.4. Network Training and Optimization 

It can be seen from Figure 1 that the total loss function of the 
network includes the losses of the label classifier, the global 
domain discriminator, and the wise-class domain 
discriminator. Therefore, the total loss function of the 
network is defined as in 
Eq.Error! Reference source not found.. 

 ( )
( )

1
, , ,

1

Cc
f y d d y Dc

D g l

L L L

L w L wL

T T T T O
=

= �

= � +
  (7) 

where O  is a trade-off parameter; Ly is the loss of the label 
classifier; LD is the loss of the domain discriminator, which 
consists of the loss of the global domain discriminator and 
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the wise-class domain discriminator. w is a weight parameter. 
When w=0, the DAAN degenerates into the DANN, and the 
global distribution alignment is more important. When w=1, 
it means that the local subdomain distribution of each fault 
class dominates, while the importance of the global 
distribution of both domains decreases. Therefore, the value 
of w can be dynamically adjusted according to the actual 
application. Then, the Adaptive Moment Estimation (Adam) 
(Kingma et al., 2014) optimization method is used to 
optimize and update the network parameters. The advantage 
of Adam is that each iteration of the learning rate has a certain 
range, making parameters relatively stable. The gradient 
direction in the back propagation process is required to be 
automatically reversed, which benefits from the Gradient 
Reversal Layer (GRL) (Yu et al., 2019). 

4. EXPERIMENTAL VERIFICATION AND ANALYSIS 

4.1. Dataset Description 

Dataset I: This dataset comes from the LMSD section of KU 
Leuven. The test rig is shown in Figure 2. Two rolling 
element bearings are installed on the shaft, namely the 
healthy bearing and the test bearing. Accelerometers are 
mounted on the housing of the experimental bearing to collect 
vibration signals. A motor drives the shaft on which a disk is 
mounted. Three test bearings are considered, including a 
healthy bearing, a bearing with a small spall in the inner race, 
and a bearing with a mild spall in the inner race, as shown in 
Figure 3. 

 
Figure 2. The bearing test rig in LMSD section of KU 

Leuven 

 

 
Figure 3. Fault classes: a small spall fault in the inner race 

and a mild spall fault in the inner race 

The dataset was collected under two load working conditions, 
a balanced load condition and an unbalanced load condition. 
The balanced load condition corresponds to the use of the 
balanced disk. The unbalanced one corresponds to the 

mounting of an eccentric mass on the disk (one bolt) which 
causes an unbalanced load. In addition, signals are collected 
under six constant speed conditions, which are 3, 5, 10, 20, 
30 and 40 Hz, respectively. The duration of each signal is 15 
s, and the sampling frequency is 16 kHz. 

Dataset II: To achieve model transfer across machines, in 
addition to Dataset I, a public bearing dataset (Huang et al., 
2018) is introduced in the paper. The test rig is shown in 
Figure 4. Two bearings are mounted on the shaft: the healthy 
bearing and the test bearing. Accelerometers are used for the 
signal collection. An encoder is used to measure the 
rotational speed of the bearing. The dataset includes four 
speed conditions (the speed increases, the speed decreases, 
the speed first increases and then decreases, and the speed 
first decreases and then increases). Under each speed 
condition, three repeated experiments were carried out. Three 
test bearings (a healthy bearing, a bearing with an inner race 
fault and a bearing with an outer race fault) are used to do the 
experiments. The duration of the signal is 10s. The sampling 
frequency is 200 kHz. 

 
Figure 4. The bearing test rig (Huang et al., 2018) 

4.2. Results and Discussion 

This section validates the effectiveness of the proposed 
transfer learning method on the cross-load, cross-speed, and 
cross-machine model transfer tasks. Besides the proposed 
method, a CNN fault diagnosis model and a DANN transfer 
learning model used in (Peng et al., 2021) are considered as 
baseline methods.  

The models are all written with Python 3.6 and the deep 
learning framework Pytorch and run on an Ubuntu 16.04 
system with a GTX 2080 GPU. The accuracy is used to 
evaluate the network performance. It can be expressed as: 

 TP TNAccuracy
TP TN FP FN

+
=

+ + +
  (8) 

where TP, TN, FP, FN refer respectively to the number of 
true positive samples, true negative samples, false positive 
samples and false positive samples. The batch size of all 
models is 16, the epoch is 50, and the learning rate is 0.0001. 
Each sample is constructed with 1 s length vibrational signal 
for both two datasets.  

Accelerometer Driving motor 

Tachometer Microphone 
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4.2.1. Transfer Learning Among Load Conditions 

The effectiveness of the proposed method is validated on 
cross-load model transfer tasks on Dataset I. 50% (681) of the 
samples captured under the unbalanced load condition are 
used for training and the rest (679) of the dataset is used for 
testing. Similarly, under the balanced load condition 50% 
(759) is used for training and the rest (757) is used for testing. 
The dataset from one load condition is considered as the 
source domain, and the dataset from the other load condition 
as the target domain. It is worth noting that regarding the 
baseline method CNN, a model is trained using the training 
set of the source domain, and then the well-trained model is 
directly applied to the test set of the target domain. For the 
DANN and the DAAN methods, a model is trained by the 
labeled training set in the source domain and the unlabeled 
training set in the target domain, and then the trained model 
is tested on the test set in the target domain. 

The experimental results are shown in Table 1. Clearly, the 
proposed method exhibits the best transfer performance on 
both cross-load model transfer tasks among three methods. 
Specifically, when transferring from the unbalanced load to 
the balanced load, the accuracy of the proposed method 
reaches 99.33%, which is 8.49% and 7.29% higher than that 
of the CNN and the DANN, respectively. On another transfer 
learning task, the performance of the proposed method 
improves by 9.19% compared with that of DANN. Therefore, 
on the cross-load model transfer tasks, the proposed method 
shows a very competitive model transfer ability.  

Table 1. The experimental results of three methods on TL 
among load conditions 

Accuracy [%] CNN DANN DAAN 
Unbalanced load - 

Balanced load 90.84 92.04 99.33 

Balanced load - 
Unbalanced load 88.77 89.80 98.99 

4.2.2. Transfer Learning Among Speed Conditions 

In this section, Dataset I is used to validate the effectiveness 
and the superiority of the proposed method on the model 
transfer ability among speed conditions. The dataset under 
one of the speed conditions is used as the source domain, and 
the dataset under another speed condition is used as the target 
domain. Similarly, in each speed condition, 50% (around 25) 
of the data is used for training and the remaining dataset 
(around 25) is for testing. The experimental results are shown 
in Table 2. Obviously, on each cross-speed model transfer 
task, the proposed method significantly improves the transfer 
performance of the network compared to the other two 
methods. In the last row of Table 2, the average diagnostic 
accuracy over all cross-speed transfer tasks for three methods 
is calculated. The average diagnostic performance of the 
proposed method reaches 80.20%, which is 23.81% higher 
than CNN and 21.49% higher than DANN. This indicates that 

the DAAN can learn the discriminative domain-invariant 
features, and thus can improve the model transfer ability 
among speed conditions. 

4.2.3. Transfer Learning Across Machines 

The effectiveness of the proposed method on the cross-
machine model transfer task is validated based on Dataset I 
and Dataset II. One dataset is regarded as the source domain, 
and the other dataset as the target domain. There are 1516 
samples for Dataset 1 in total and 1296 for Dataset 2. 
Similarly, 50% of the dataset is used for training, and the 
remaining 50% dataset is for testing.  

Table 2. The experimental results of the three methods on 
TL among speed conditions 

Speed CNN [%]  DANN [%] DAAN [%] 
3-5 31.11 32.50 88.89 

3-10 47.96 40.81 97.96 
3-20 32.97 32.98 44.68 
3-30 34.78 32.61 55.43 
3-40 32.32 32.32 31.31 
5-3 64.04 65.17 89.88 

5-10 65.31 64.29 97.95 
5-20 30.85 67.02 84.04 
5-30 32.61 67.39 82.61 
5-40 32.32 67.67 66.66 
10-3 29.21 29.21 80.90 
10-5 66.66 64.44 88.89 
10-20 100.00 100.00 85.10 
10-30 67.39 68.48 86.95 
10-40 46.46 67.68 78.78 
20-3 29.21 29.21 52.81 
20-5 51.11 62.22 87.77 
20-10 68.36 56.12 97.96 
20-30 92.39 94.57 86.96 
20-40 67.67 70.71 96.97 
30-3 35.96 34.83 53.93 
30-5 51.11 62.22 87.78 
30-10 52.04 51.02 97.95 
30-20 92.55 89.36 85.11 
30-40 87.88 92.93 96.97 
40-3 35.96 34.83 55.06 
40-5 55.56 40.00 76.67 
40-10 66.33 44.89 97.96 
40-20 94.68 75.53 85.11 
40-30 96.74 90.22 86.96 
Mean 56.39 58.71 80.20 
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The cross-machine model transfer results of the three 
methods are shown in Table 3. The diagnosis results of both 
CNN and DANN are about 50%. Non of the two methods can 
successfully transfer the model across machines. To be 
honest, the model transfer across machines is a challenge, 
because there is a large difference in the feature distributions 
from different machines due to the following reasons. Firstly, 
the bearing types installed in different machines are 
inconsistent, so the dynamic properties of bearings are 
different. Secondly, the structures of machines are different. 
Lastly, the operating conditions and ambient environments 
are different. However, DAAN achieves 88.78% and 99.54% 
accuracy on two cross-machine transfer tasks, respectively, 
far exceeding the comparison methods. This indicates that the 
proposed method can learn discriminative domain-invariant 
features between two domains and successfully achieves 
model transfer across machines. 

Table 3. The experimental results of the three methods on 
TL across machines 

Accuracy [%] CNN DANN DAAN 
Huang - LVL 52.56 52.56 88.78 
LVL - Huang  50.00 50.00 99.54 

 

 
Figure 5. The feature visualization of DANN 

 
Figure 6. The feature visualization of DAAN 

Figure 5 & 6 visualize the feature distribution of DANN and 
DAAN using t-SNE (Van der Maaten & Hinton, 2008). It can 
be clearly observed from Figure 5 that the features of the 

different classes are mixed together, and the features of the 
same class corresponding to the two domains are not mapped 
in the same feature space. However, regarding the DAAN 
method, the features of the healthy class (blue and red dots in 
Figure 6) of the source domain and the target domain are 
completely mapped to the same feature space, and the 
features of the inner race fault (green and cyan dots in Figure 
6) of the source domain and the target domain are also 
completely mapped to the same feature space. Moreover, the 
features of the healthy class and the inner race fault class are 
completely separated, regardless of the source domain or the 
target domain. This further confirms the importance of the 
class-wise domain discriminator in DAAN.  

5. CONCLUSION 

This paper proposes a transfer learning-based bearing fault 
diagnosis method across machines. The method consists of 
two steps. Firstly, the vibration signal is transformed to an 
order-frequency map using the cyclic spectral correlation. 
This highlights the fault characteristic information of the 
measured signal. Subsequently, DAAN domain adaptation 
method is introduced to map the global feature distributions 
of two domains to a common feature space and also map the 
local feature distributions for each fault class to a common 
feature space, thereby improving the model transfer learning 
ability across machines. The proposed transfer learning-
based fault diagnosis framework exhibits excellent diagnostic 
performance on cross-load, cross-speed, and cross-machine 
bearing fault diagnosis transfer tasks. 
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