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ABSTRACT

The current study concerns diagnostics of a one-stage gear-
box based on the integration of physics and machine learn-
ing. A physics-based model of this system is developed, then
a nonlinear dynamic analysis is performed. The accuracy of
the model is validated by comparing fundamental phenomena
observed in synthetic and experimental data. To address the
diagnostics problem synthetic data are generated for faulty
and healthy conditions. Further, physics-informed features
are extracted from the phase space of the dynamic system.
It is shown that these features are highly informative about
the health condition of the system. Also, their advantages
over purely statistical features are demonstrated by a feature
ranking technique. Subsequently, they are used as inputs in a
machine learning model that is developed and optimized for
fault diagnostics. The performance of the proposed method
is investigated from different aspects, e.g., the accuracy of
fault classification, robustness to noise, and generalization to
unseen scenarios.

1. INTRODUCTION

The competitiveness of the majority of engineering appli-
cations in industry is significantly influenced by cost ef-
fective maintenance and operational safety. Major safety
and cost repercussions can result from unexpected down-
time and maintenance. Industrial systems that are highly
developed and complicated require extremely expensive and
sophisticated maintenance methods. For instance, in 2001,
American factories spent more than $1.2 trillion on mainte-
nance of which up to half was lost due to inefficient mainte-
nance (Heng, Zhang, Tan, & Mathew, 2009).
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Therefore, it is imperative to continually develop and improve
existing maintenance algorithms to guarantee secure and ef-
fective day-to-day operations.

Rotating machinery are one of the most crucial elements in
the industry. Since sub-systems in rotating machines inter-
act with each other in a nonlinear fashion changes in any of
these sub-systems can significantly affect the overall perfor-
mance. The key parts of the majority of rotating machinery
are bearings, gears, and shafts, and most failures and break-
downs are caused by these components having flaws. A very
significant issue that requires a comprehensive solution in
order to achieve significant improvements in reliability and
safety is fault diagnosis of practical rotating machinery. Al-
though there is a large and diverse literature, many of the di-
agnostic approaches in use are extremely ad hoc and heuristic,
which prevents them from having a broad range of applica-
tion. They are also ineffective for interdisciplinary complex
systems, which are becoming more and more common in cur-
rent technology.

1.1. Diagnostics and Prognostics Methodology

This section provides a brief overview of maintenance tactics
and explains the rationale behind including diagnostics and
prognostics into maintenance. Additionally, it offers cutting-
edge techniques for fault diagnosis.

The main objectives of maintenance can be summarized as
follows. (1) Increasing revenue by optimizing machine effi-
ciency and operating time. (2) Cutting expenses by avoiding
unnecessary maintenance and downtime as much as possible.
(3) Increasing safety by lowering the possibility of undiscov-
ered defects.

The three categories of maintenance procedures that are
in practice are breakdown maintenance, time-based pre-
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ventative maintenance, and condition-based maintenance
(CBM) (Bond, 2011).

The principle of breakdown maintenance, also known as re-
active or corrective maintenance, is to execute action as soon
as a failure is noticed. 56 % of manufacturers employ break-
down maintenance, which is the conventional maintenance
approach. The maximum operational period between ma-
chine shutdowns is provided by this maintenance method.
But because of unforeseen malfunctions, there is a consid-
erable possibility of an emergency shutdown. Breakdown
method is appropriate for low-cost machine applications that
have minimal impact on production or worker safety. Time-
based preventative maintenance involves regular inspection
and maintenance regardless of the state of the system’s health.
In the U.S., 78% of manufacturers use this approach. The
selection of a maintenance interval that offers a low failure
probability between planned maintenance services is vital to
the success of the preventive maintenance approach. An es-
timated 30% of preventative maintenance tasks are unnec-
essary, hence preventative maintenance may do extraneous
maintenance. Furthermore, catastrophic breakdowns are not
completely avoided by preventative maintenance.

These drawbacks have motivated the development of
condition-based maintenance. The foundation of the CBM
approach, sometimes referred to as predictive maintenance,
is the execution of online analyses of the present state of the
machine without interfering with regular machine operation.
The CBM technique increases system dependability, reduces
the likelihood of system failure by up to 70%, lowers main-
tenance expenses by 25%, and cuts down on the number of
maintenance procedures by 50%, all of which diminish the
impact of human error (Metrics for Assessing Maintenance
Effectiveness, 2003).

Because of its financial benefits, CBM has attracted a lot of
interest, as seen by the fact that 43% of US manufacturers
utilize it. The most cost-effective technique, according to
the Electric Power Research Institute (EPRI), is predictive
maintenance or CBM ($9.00 per horsepower (hp) per year)
(Metrics for Assessing Maintenance Effectiveness, 2003).

1.2. Condition-Based Maintenance

The primary components of the CBM process are shown in
Figure 1. For a given system, sensors gather numerous signals
for a specific system without interfering with regular machine
operation. However, these signals cannot be used at first hand
to extract robust and useful information about the structure’s
health. These signals are subjected to a feature extraction
procedure in order to provide reliable and practical system
knowledge. The ability to extract an effective collection of
features that may characterize the system response is essen-
tial for a reliable and accurate forecast of the system health
state. These features should provide as much information as

Figure 1. An overview of CBM process.

Figure 2. The phases of machine condition monitoring.

possible about the intrinsic dynamics of the system. These
features should be informative and non-redundant. Finally, a
decision is made regarding the system’s maintenance through
diagnostics and prognostics based on the information that has
been extracted.

A key part of the CBM method is condition monitoring,
which is focused on tracking a system’s present state and
forecasting its future state while the system is in operation.
The process of condition monitoring can be divided into three
phases: fault detection, fault diagnostics, and fault prognos-
tics. In condition monitoring applications, fault refers to any
unexpected change in the dynamics of the system. Figure 2
demonstrates the condition monitoring phases and their con-
nection with maintenance. Prognostics and diagnostics help
decision-makers understand the state of the system. The ben-
efit of condition monitoring is its exceptional capacity to treat
issues before they escalate into significant failures, which
would reduce the machine’s typical lifespan.

Physics-based methods rely on the system’s mathematical
model for knowledge, which may be parameterized and ex-
panded to account for a variety of situations, including faults,
various loading conditions or speeds, and unknown domains
of the system’s reaction to unidentified phenomena. The dif-
ficulty of creating precise models for some complicated sys-
tems; however, is the fundamental disadvantage of this strat-
egy. Furthermore, since fully representative models cannot be
created, models typically lack specificity. The biggest prob-
lem for diagnostic procedures is the requirement for effective
methods that function most of the time; current engineering
systems would not be adequately safe if they were placed into
operation with ad hoc diagnostics that could capture some of
the infrequent failures. For the above reasons, we think that
diagnostics has been a challenging issue.
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1.3. Gear Diagnostics

Vibration and acoustic techniques are a primary emphasis in
current fault diagnostics of gears because of the valuable in-
sights they offer about the state of rotating equipment (Bajric,
Zuber, & Isic, 2013). Due to the extremely nonlinear na-
ture of faults and the intricate nonstationary dynamics, di-
agnosing gear problems is still a difficult task (Jardine, Lin,
& Banjevic, 2006). Bifurcation and limit cycles, as well as
multi-periodic, quasi-periodic, and chaotic responses, are a
few phenomena that may be seen in nonlinear dynamic sys-
tems and are reported in industrial equipment (Jiang, Zhu,
Li, & Peng, 2016).

Various techniques have been developed to study gear fault
detection and diagnostics (Mohammed & Rantatalo, 2016;
Yuan, He, & Zi, 2010; Li, Zhang, & Wu, 2017) and these
can be time domain, frequency domain, or time-frequency
domain methods. However, these methods do not always
guarantee stable classification and/or lack generalizability
for systems with complex nonlinear responses. For exam-
ple, time domain techniques such as Time Synchronous Av-
eraging (TSA) are inefficient in different gear faults, espe-
cially in the case of multiple simultaneous faults in differ-
ent gears or in the early phase of faults (Kwuimy, Kankar,
Chen, Chaudhry, & Nataraj, 2015). In addition, the TSA tech-
nique can be time-consuming and is often computationally
expensive (Vachtsevanos, Lewis, Hess, & Wu, 2006). Al-
though sideband frequencies analysis (in frequency domain
techniques) detects faults in the gearbox, it falls short of dis-
tinguishing gear faults, as they may be located in other com-
ponents of the gearbox (Peng, Yu, & Luo, 2011). The prob-
lem is that most conventional analysis and feature extraction
techniques for gear diagnostics are linear because the engi-
neering systems were originally designed to perform suffi-
ciently in a linear regime (Abarbanel, 1996). However, the
nature of these systems is unavoidably nonlinear, and non-
linearity creates additional complications, this is indeed the
focus of our work for many years (T. Mohamad, Nazari, &
Nataraj, 2020; T. H. Mohamad, Chen, Chaudhry, & Nataraj,
2018; Samadani, Kwuimy, & Nataraj, 2015; Samadani, M.
and Kwuimy, CA. Kitio and Nataraj, C., 2013; Kwuimy &
Nataraj, 2012). This is particularly true in applications such
as machinery diagnostics; therefore, there is a need to extract
robust features that are able to characterize the dynamics ob-
served in a time series.

Most engineering systems operate in nonlinear regimes. Real
systems exhibit many phenomena that can only be pre-
dicted by nonlinear models. Failure is certainly a nonlin-
ear phenomenon, where an estimate of 89% (Aeronautics
& Space, n.d.) of failure patterns are random. This means
that an overwhelming number of systems are not at risk
of age-related failure and preventive maintenance is ineffec-
tive (Aeronautics & Space, n.d.).

Our overall objective is to provide reliable feature extraction
techniques that can effectively capture the critical system dy-
namics caused by faults for a range of industrial applications.
These techniques are suitable for intricate interdisciplinary
systems and have broad applicability.

In this paper, we develop a hybrid diagnostic algorithm for
dynamic systems using a combination of nonlinear dynamic
analysis, physics, statistics, and artificial intelligence tech-
niques. This nonlinear diagnostic technique is demonstrated
for gear crack detection of an involute spur gear. The objec-
tive of this work is to utilize nonlinear characteristics in an
artificial intelligence setting to detect cracks in gears using
the Phase Space Topology method (PST).

2. MATHEMATICAL MODEL

In this section, the system response of a gearbox is numeri-
cally simulated with healthy and faulty gears. The one-stage
mass-spring-damper 6-DOF model with involute spur gear
tooth profile, shown in Figure 3, was abated from Bartel-
mus (Bartelmus, 2001). The system is powered by an electric
motor with a torque M1 and loaded with torque M2. Between
a pair of meshing gears, the smaller gear which connected to
the motor M1 is called the pinion while the larger gear en-
gaged by the pinion and connected to the load M2 is called
the gear. Bearings, which are attached to the gearbox casing,
support the shafts where the pinion and the gear are mounted.

The equation of motion for the pinion in the y direction is:

m1ÿ1 = −ky1
y1 − cy1

ẏ1 + kt(Rb1θ1 −Rb2θ2 − y1

+ y2) + ct(Rb1θ̇1 −Rb2θ̇2 − ẏ1 + ẏ2), (1)

and the gear equation of motion in the y direction,

m2ÿ2 = −ky2y2 − cy2 ẏ2 + kt(Rb1θ1 −Rb2θ2 − y1

+ y2) + ct(Rb1θ̇1 −Rb2θ̇2 − ẏ1 + ẏ2). (2)

For rotational motion of the pinion and the gear about the z
axis, the equations of motion are:

I1θ̈1 = kp(θm − θ1) + cp(θ̇m − θ̇1)−Rb1[kt(Rb1θ1

− Rb2θ2 − y1 + y2) + ct(Rb1θ̇1

− Rb2θ̇2 − ẏ1 + ẏ2)], (3)

I2θ̈2 = −kg(θ2 − θb) + cg(θ̇2 − θ̇b)−Rb2[kt(Rb1θ1

− Rb2θ2 − y1 + y2) + ct(Rb1θ̇1 −Rb2θ̇2

− ẏ1 + ẏ2)]. (4)

For the rotational motion of the motor and the load about the
z axis, the equations of motion are:

Imθ̈m = M1 − kp(θm − θ1)− cp(θ̇m − θ̇1), (5)
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Figure 3. A schematic of one-stage gearbox model.

Ibθ̈b = −M2 + kg(θ2 − θb) + cg(θ̇2 − θ̇b). (6)

All the parameters of the system are listed in Table 1, where
I represent mass moment of inertia, M represent torque, m
represent mass, k represent stiffness, c represent damping, y
represent displacement and θ represent angular displacement.
The nomenclature of the full list of symbols is given in the
Appendix. In order to simulate the response of the system,
two components need to be computed: mesh stiffness kt and
mesh damping coefficient ct. Mesh stiffness kt is discussed
in detail in the next section. As standard practice in gear lit-
erature the mesh damping coefficient ct is assumed to be pro-
portional to the mesh stiffness (Xinhao, 2004) and is given as
follows:

ct = µkt, (7)

where µ is a scale constant and is given in Table 1.

Mesh Stiffness Calculation Gear box dynamics is based
on the variation of mesh stiffness in addition to the transition
of the single/double-tooth-pair contact. Localized gear de-

Table 1. Main parameters of the gear system (Xinhao, 2004).

Parameter Value
Gear type involute spur teeth
Material steel
Young’s modulus E = 2.068× 1011Pa
Number of teeth N1 = 19 and N2 = 48
Pressure angle α0 = 20◦

Diametral pitch P = 8inch−1

Base radius of the pinion Rb1 = 0.02834m
Base radius of the gear Rb2 = 0.07160m
Width of teeth L = 0.016m
Mass of the pinion m1 = 0.96kg
Mass of the gear m2 = 2.88kg
Contact ratio Cr = 1.6456
Mass moment of inertia (motor) Im = 0.0021kgm2

Mass moment of inertia (load) Ib = 0.0105kgm2

Mass moment of inertia (pinion) I1 = 4.3659× 10−4

kgm2

Mass moment of inertia (gear) I2 = 8.3602× 10−3

kgm2

Input shaft frequency f1 = 30Hz
Mesh frequency fm = 570Hz
Input motor Torque M1 = 11.9Nm
Output load torque M2 = 48.8Nm
Torsional stiffness of coupling kc = kp = kg =

4.4× 104Nm/rad
Damping coefficient of coupling cc = cp = cg =

5.0× 105Nm/rad
Radial stiffness of the bearing kr = 6.56× 107N/m
Damping coefficient the bearing cr = 1.8× 105Ns/m
Scale constant µ = 3.99× 10−6s

fects are usually reflected in geometry changes in the tooth.
Consequently, these faults will cause changes in the gear
mesh stiffness. Therefore, it is important to model the gear
mesh stiffness for various health conditions, i.e., defect free
and tooth crack. In 1987, Yang et al. used the stored poten-
tial energy in the meshing system including Hertzian energy,
bending energy and axial energy to model the effective mesh
stiffness analytically (Yang & Lin, 1987). Tian (Xinhao,
2004) modified the model to include the shear energy as well.
The final expressions for calculating the effective mesh stiff-
ness kt of defect-free gears and gears with cracked tooth can
be found in (Xinhao, 2004).

In order to develop a technique to diagnose tooth crack, we
assume a crack at the root of the pinion with depth q along the
tooth width. We consider two cases: (1) hc ≥ hr & α1 > αg ,
as shown in Figure 4(a) and depth q = 1.3 mm and the angle
v = 45◦, and (2) hc ≥ hr & α1 ≤ αg or when hc < hr,
as shown in Figure4(b) and depth q = 3.1 mm and the an-
gle v = 45◦. For both cases, the Hertzian-contact stiffness
will remain unchanged, since the contact surface has no de-
fect and the width L is constant. The only stiffnesses that
change due to the influence of the crack are the bending and
shear stiffness. As the crack depth increases, the total mesh
stiffness decreases within the double pair mesh duration. Ad-
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ditionally, the total mesh stiffness in both cracked tooth cases
decreases compared to the defect-free condition within the
double pair mesh duration.

(a)

(b)

Figure 4. A schematic of the cracked tooth. (a) Case 1. (b)
Case 2.

3. PHASE SPACE TOPOLOGY METHOD

Phase space trajectory can be used to characterize the nature
of the system in a qualitative fashion as is done traditionally in
nonlinear dynamics (Eckmann & Ruelle, 1985). Much work
has been devoted to extracting information from these topo-
logical patterns in order to compare attractors (Carroll, 2015).
The Phase Space Topology family of methods (PST) is, how-
ever, based on characterizing the phase space trajectories with
quantitative measures. The PST family of methods was first
originated by Samadani et al. (Samadani, M. and Kwuimy,
CA. Kitio and Nataraj, C., 2013).

There are four different phase space topology techniques
and are as follows (Samadani, M. and Kwuimy, CA. Kitio
and Nataraj, C., 2013; Samadani, Kitio Kwuimy, & Nataraj,
2015; Samadani, Kwuimy, & Nataraj, 2015; Haj Mohamad &
Nataraj, 2020; T. H. Mohamad & Nataraj, 2017b; T. H. Mo-
hamad, Cavalini, Steffen, & Nataraj, 2018; T. H. Mohamad,

Figure 5. Velocity of the pinion (a) healthy and (b) faulty with
a crack depth of 1.3 mm (c) faulty with a crack depth of 3.1
mm.

Nazari, & Nataraj, 2018; T. H. Mohamad, Samadani, &
Nataraj, 2018; T. H. Mohamad, Kwuimy, & Nataraj, 2018;
Samadani, Mohamad, & Nataraj, 2016; T. Mohamad et al.,
2020).

1. Periodic phase portrait-based technique.
2. Peak density-based technique.
3. Density-based orthogonal technique.
4. Diagnostic signal phase space topology technique.

3.1. Density-based orthogonal technique

In this section, we employ the density-based orthogonal tech-
nique (T. H. Mohamad & Nataraj, 2017a; T. H. Mohamad,
2021) to detect tooth cracks in gears. We solve Eqs (1)-(4)
numerically using parameters given in Table 1 for defect-free
and for the two cases of the cracked gear. The time history
comparing the velocity for the pinion was produced for the
healthy and faulty cases in Figure 5. With the introduction of
the crack, the amplitude increased at several periods across
the velocity signal. This is due to the drop in the mesh stiff-
ness. The crack is larger in Case 3, thus the effect is higher.

To construct the phase space and to design the machine learn-
ing algorithm, samples of the simulated system response are
divided into N number of segments depending on the length
of the simulation and the window size. Selecting the window
size is a key factor in the success of the classification algo-
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Figure 6. Phase Space of the pinion (a) healthy, (b) faulty
with 1.3 mm tooth crack, and (c) defective with 3.1 mm tooth
crack.

rithm. The correlation between a healthy and faulty window
was calculated, and a window length below 0.045 seconds
gave a high correlation. Thus a 0.05 second window size was
selected to produce the phase space for the healthy and the
faulty cases as shown in Figure 6.

To produce a sufficient number of samples the model was
simulated for a time period of 5 seconds; however, to mimic
a real word environment where a faulty system should shut-
down quickly some classification trials in this study was for
shorter periods of time. The kernel density function is used
to convert the samples from phase space to an easier form to
extract informative features.

Consider X=(x1, x2, ..., xn), an independent and identically
distributed sample data drawn from a distribution with an un-

known density function f . The shape of the density function
is estimated by its kernel density estimator and is given by:

f̂h(x) =
1

nh

n∑
i=1

K

(
x− xi

h

)
(8)

where, the hat,ˆindicates that it is an estimate, and the sub-
script indicates that its value depends on h. Here, h > 0 is
a smoothing parameter called the bandwidth, and K(.) is the
kernel function that satisfies the following requirements.

∞∫
−∞

K(u) du = 1, K(−u) = K(u) ∀u (9)

There is a range of kernel functions that can be used, includ-
ing uniform, triangular, biweight, triweight, Epanechnikov
and normal. Due to its conventional and convenient mathe-
matical properties, we use the normal density function in our
approach, defined as the following:

K(u) =
1√
2π

e−
1
2u

2

(10)

The kernel density estimator’s performance depends primar-
ily on the bandwidth parameter h. Small values of h will
cause the density estimate to be undersmooth, while large val-
ues will lead to an oversmooth density estimate. The optimal
value for the bandwidth can be calculated using Silverman’s
rule of thumb (Silverman, 2018) for Gaussian kernel func-
tions as follows:

h =

(
4σ̂5

3n

) 1
5

(11)

where, σ̂ is the standard deviation of the samples and n is
the number of samples. It is important to have the number
of samples n as high as possible for estimating the density
distribution. However, it should be noted that increasing n
will also increase the computation cost.

In order to preserve as much information as possible, the
density-based orthogonal technique can learn the represen-
tation of the phase space density to reconstruct it. This is
achieved by approximating the phase space density distribu-
tions using a series of orthogonal bases where the coefficients
of these bases are used as features. When the approximation
matches the actual density distribution as shown in Figure 7,
the polynomial coefficients arguably retain the most informa-
tion present in the phase space. The extracted features are
called density-based orthogonal features.

To approximate the phase space density, let z be a state of
the system and yd = f̂h(z) be its density computed us-
ing the kernel density estimator. yd is then approximated
with Legendre orthogonal polynomials. However, it should
be understood that the density estimation of the phase space
may also be approximated using other orthogonal polynomi-
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Figure 7. Density plot of a displacement of healthy gear fitted
by Legendre polynomial

als such as Chebyshev polynomials and Hermite polynomials.
More details on using Legendre polynomials in PST can be
found in (Haj Mohamad & Nataraj, 2020; T. H. Mohamad &
Nataraj, 2017b; T. H. Mohamad, Cavalini, et al., 2018)

4. RESULTS AND DISCUSSION

4.1. Machine Learning Algorithm

In this section, we develop a support vector machine
(SVM) (Vapnik, 1998; Kappaganthu, 2010) as a classifier to
separate the healthy and faulty involute gears. Eqns. (1)-(6)
are numerically solved to obtain pinion and gear responses
using parameters given in Table 1 for healthy and faulty cases
with a crack depth of 1.3 mm and 3.1 mm. The data samples
are normalized and shuffled and divided into a training set
of 70% and a testing set of 30%. The window size of the
samples is optimized by calculating the correlation between
healthy and faulty data. After many iterations, we choose
a window size of 0.05 seconds with a simulation time of 5
seconds. Support Vector Machines (SVM) with radial basis
function is used to classify healthy and faulty cases. To opti-
mize the feature extraction process ten fold cross validation
is utilized. Furthermore, feature forward selection is applied
to enhance the SVM performance. Finally, hyper parameters
are optimized to robust the SVM.

The algorithm with a window size of 0.05 seconds is ap-
plied for pinion and gear responses to classify the healthy and
faulty cases with a crack depth of 1.3 mm with a simulation
time of 5 seconds which results in an accuracy of 99.5%, as
shown in Table 2.

After achieving robust results, the algorithm was put under a
new test to classify the healthy and faulty components with a

Table 2. Confusion matrix for prediction of healthy and 1.3
mm crack for gear.

O
ut

pu
tC

la
ss 1 99

49.5%
0

0.0%
100.0%

0.0%

2 1
0.5%

100
50.0%

99%
1.0%

99%
1.0%

100.0%
0.0%

99.5%
0.5%

1 2
Target Class Target Class

Table 3. Confusion matrix for prediction of healthy and 3.1
mm crack of pinion.

O
ut

pu
tC

la
ss 1 100

50.0%
2

1.0%
98.0%
2.0%

2 0
0.0%

98
49.0%

100%
0.0%

100%
0.0%

98.0%
2.0%

99.0%
1.0%

1 2
Target Class Target Class

bigger crack size of 3.1 mm for gear. The algorithm was able
to classify the sample with an accuracy of 99% as shown in
Table 3.

To experiment further, the ratio of healthy to faulty samples is
manipulated, from 1:1 to 2:1 and 1:2. However, no significant
difference was recorded resulting in similar accuracy.

4.2. Testing Under Noisy Signals

After achieving excellent accuracy under variable conditions,
the robustness of the classifier in practical conditions is tested
by adding white Gaussian noise to the pinion signal for both
healthy and faulty cases with the crack depth of 3.1 mm, as
shown in the Figure 8. The signal to noise ratio (SNR) is
varied from the range of 20 dB to 18.1 dB. It is observed that
the accuracy started to drop when SNR is 18.5 dB, resulting in
accuracy of 81% as shown in Table 4. With further decrease
in SNR to 18.1 dB the accuracy of the algorithm dropped
below acceptable level.

CONCLUSIONS

In this work, we have developed a hybrid classifier to diag-
nose a one-stage gearbox by integrating nonlinear dynamics
and machine learning techniques. A physics-based model for
the gear system is used to extract features. The features of
phase space of the gear and pinion responses are obtained
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Figure 8. Pinion velocity for (a) healthy and (b) faulty with
3.1mm crack with added white Gaussian noise of SNR 18.5
dB.

by the density-based orthogonal technique. Subsequently, we
developed an SVM algorithm to classify healthy and faulty
gears and pinions. The faulty cases are considered with a
crack depth of 1.3 mm and 3.1 mm. We have achieved an
accuracy of around 99% in all cases. The same algorithm is
used to classify healthy and faulty cases with noisy signals.
The algorithm performs well till the SNR is 18.4 dB after
which the accuracy dropped considerably. Our future work
aims at investigating the size of different cracks using the re-
gression technique.
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5. APPENDIX

NOMENCLATURE

I1 Mass moment of inertia of the pinion
I2 Mass moment of inertia of the gear
Ib Mass moment of inertia of the load
Im Mass moment of inertia of the motor
M1 Input motor torque
M2 Output torque from load
Rb1 Base circle radius of gear
Rb2 Base circle radius of pinion

f̂h Density computed using the kernel density estima-
tor

cg Damping coefficient of the output flexible coupling
cp Damping coefficient of the input flexible coupling
ct Mesh damping coefficient

cy1 Vertical radial damping coefficient of the input
bearings

cy2 Vertical radial damping coefficient of the output
bearings

kg Torsional stiffness of the output flexible coupling
kp Torsional stiffness of the input flexible coupling
kt Mesh stiffness
ky1 Vertical radial stiffness of the input bearings
ky2 Vertical radial stiffness of the output bearings
m1 Mass of the pinion
m2 Mass of the gear
y1 Linear displacement of pinion in the direction ver-

tical to teeth in mesh (the y direction)
y2 Linear displacement of gear in the y direction
yd Density computed using the kernel density estima-

tor
z The state of the system
θ1 Angular displacement of pinion
θ2 Angular displacement of gear
θg Angular displacement of load
θm Angular displacement of motor
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