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ABSTRACT 

Turbofan engine parts are subject to corrosion. This 

degradation is very difficult to observe outside of engine 

dismantling on predefined inspection dates. Moreover, it is 

necessary to specifically observe the impacted parts to notice 

this wear. This inspection process is long, expensive, and 

rarely carried out with the aim of detecting a corrosion effect. 

The provision of an indicator to alert on potential corrosion 

and to target parts is highly anticipated. Better still, if the 

origin of this corrosion can be identified by numerical 

methods, it will then be possible to improve the calculation 

of the lifespan of the part and to space out engine inspections. 

We propose a digital tool able to offer an indicator estimating 

if an engine part is corroded. In addition to the alert subject 

to this estimate, we also give a graphical means to interpret 

this detection. This application is intended for personnel 

involved in monitoring engines in operation (in-service 

support, airlines) or maintenance workshops. It not only 

alerts on degradation but also helps to optimize the 

calculation of engine inter-inspection intervals and even 

possibly helps to design new materials or coatings.  

1. INTRODUCTION 

1.1. Inputs 

Currently, engines are inspected by endoscopy (BSI or 

BoroScope Inspection) only at the entrance to Shop Visit 

(SV), or under wing according to the aircraft maintenance 

manual (repetitive inspection, post-event, etc.). In all cases, a 

BSI inspection (images or video) requires an interpretation of 

the image, highly dependent on its quality (lens, light, zoom 

level, sensitivity of the inspector, etc.). The current means of 

detection are limited because they are mainly linked to 

planned inspections on each engine (SV or under wing). The 

appearance of corrosion on a part does not affect the 

evolution of engine parameters. It is therefore not a detectable 

phenomenon via conventional means of monitoring engine 

performance. 

Our proposal is to define a probabilistic indicator which 

calculates a risk of corrosion for each of the engine parts 

monitored. In addition to the indicator, a graphic tool is used 

to interpret the alerts by presenting the potential causes. 

The probabilistic indicator is constructed in two stages: 

• A neural network calculates a rate of exposure to a 

corrosive environment from engine information 

(temperatures, pressures, speeds of rotation, etc.), 

flight information (duration of the journey, rate of 

climb, etc.), meteorological information on 

departure and arrival airports, information on 

pollution... 

• The second element is a lifespan model that 

estimates a time before the onset of corrosion using 

a survival law and from the cumulative information 

of exposure rates. 

The parameters of the neural network and the parameters of 

the survival law (Weibull in our case) modeling the fatigue 

of the monitored metallic components are learned 

simultaneously from a history of past information 

(Langhendries and Lacaille 2020). 

The interpretation of the results is obtained using a self-

organizing classification (Kohonen map) (Kohonen 1988). 

This map categorizes aircraft uses and displays the 

instantaneous corrosion rate accordingly. The observation of 

the trajectory of an aircraft, flight after flight on this map 

gives a clear interpretation of the risk of corrosion 

announced. We deduce the missions or the sequence of 

events that led to the suggested state. 
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2. DATA MANAGEMENT 

The data we need to ensure our ability to track stator engine 

blades corrosion state comes from a variety of sources. One 

of the challenges was to reconcile those elements.  

2.1. Inputs 

There was information emitted by the engine itself, they are 

called ACARS (Aircraft Communication Addressing and 

Reporting System) snapshots. These data consist of different 

measurements taken at certain predefined times during each 

flight (see Table 1). It may also contain online calculations 

implemented by our PHM teams. For example, we have one 

takeoff snapshot, one climb snapshot, up to eight cruise 

snapshots, one descent snapshot and one post-flight snapshot. 

Most of the specific online PHM computation are stored in 

the post-flight snapshot, among them we retrieve vibration 

power spectrum values, some durations under specific 

conditions and other calculations based on engine physics. 

Each snapshot is broadcasted in real time and received via 

satellite channel. Then Safran stores each document in a large 

cluster of computers. One problem was that since an aircraft 

and not the engine sends a snapshot, it does not contain the 

engine ID but the aircraft tail number and the positions of the 

engines on the wings. 

Table 1. A non-exhaustive list of parameters recorded 

during flight snapshots. 

 

As hot corrosion depends on pollution, we also need to 

incorporate some environmental data into our inputs. For this 

purpose, we use the open databases METAR 

(https://www.aviationweather.gov/metar) for airport weather 

and SATAVIA (https://satavia.com/) for pollution data. 

To link the different tables together we also use the open 

FlightAware database (https://fr.flightaware.com/) that 

presents a view of each flight with dates and airports of 

departure and arrival. This identifies snapshots and flight 

cycles but not engine IDs. 

We also need output data to calibrate and validate the 

algorithm. Engines are regularly maintained, and an internal 

database called FDM (Flight Data Management) records all 

events relating to each engine serial number. This new table 

contains the inspection dates where notifications may be 

regarding corrosion, which will be mandatory for our 

purpose. Nevertheless, this table also contains engine 

installation details on a given aircraft. Thus, it becomes 

possible to connect an engine ID with its aircraft for a period. 

2.2. Outputs 

We only know if a metal part that interests us is corroded or 

not when an inspection is carried out during a shop visit. 

Therefore, we have no information about the state of the 

component during a long time. If the last inspection showed 

that the component was operational, it does not mean that the 

component is still not corroded now. It corresponds to right-

censored data. Likewise, if the last inspection concludes that 

a component is corroded, it is not known how long the 

component has been corroded. This corresponds to left-

censored data. All observation data will be censored, and it 

explains why we use a stochastic distribution as output for 

our model. Moreover, as our objective is to anticipate a 

remaining useful life (RUL) we select a reliability measure 

based on the Weibull law. 

3. ALGORITHMIC MODEL 

The idea behind our proposal is to combine a cumulative 

damage model (CDM) with survival analysis (Figure 1).  

 

Figure 1. Design of the cumulative damage model. 
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Inputs from the engine during each flight 𝑛 and external data 
(𝑋𝑛) are fed in a recurrent neural network that maintains a 

state (ℎ𝑛)  of the engine. Another network calculates the 

exposure rates (𝑉𝑛) which cumulative maximum (𝜏𝑛) is used 

as an exposure time for the survival law. 

3.1. Cumulative damage model 

A CDM is an indicator that increases with specific use of a 

component and reflects its current wear. However, the hot 

corrosion may not be explained by a single physical 

phenomenon. It is mainly a combination of events whose 

interaction leads to damage. To build this indicator we will 

record all the history of a given engine and use it with a neural 

model to maintain a current state of wear and come up with a 

cumulative output that we hope to relate with corrosion. 

Figure 1 is a symbolic design of an algorithm able to learn a 

corrosion CDM. The inputs (snapshots and external data) are 

provided flight after flight and a state vector ℎ𝑛 of the engine 

is calculated. This state stores information relating to 

corrosion events and helps to build a global vector of 

cumulative indicators  �̅�𝑛 , each coordinate representing a 

factor for a specific accumulation of wear. Then we select our 

CDM 𝜏𝑛 as the maximum of the different wear factors. 

3.2. Survival analysis 

On the output size, survival analysis aims to predict a 

duration until failure.  

The main goal is to approach the survival function 𝑆(𝑡) 

which gives the probability that a subject did not meet the 

event before time 𝑡. In our case we will replace the notion of 

time by our cumulative damage model which can be 

interpreted as a cumulative exposure time 𝜏. Here we select 

to approach the cumulative distribution function 𝑊(𝜏)  =
 1 −  𝑆(𝜏) that gives the probability that a subject meets the 

event before 𝜏  by a Weibull law (Weibull 1951) with 

parameters 𝜂 (scale) and 𝛽 (shape). 

 𝑊(𝜏) = 1 − exp (− (
𝜏

𝜂
)

𝛽

) (1) 

Like all statistical models, survival models must be fitted to 

data. Survival data can be represented by a pair (𝑛, 𝑐) where 

𝑛 is an engine cycle number (or a count of successive flights) 

and 𝑐 is a label that give the observation status. 

 𝑐 = 0 if an inspection occurs just after flight 𝑛 and 

no corrosion was observed. 

 𝑐 = 1 if an inspection that occurs just after flight n 

shows some corrosion of the component of interest. 

Then, for each inspection 𝑖  we have a set of observations 

(𝑛𝑖, 𝑐𝑖 , �̂�𝑖) where �̂�𝑖 = 𝑊(𝜏𝑛𝑖
). Finally, we may optimize our 

model by minimization of the negative log-likelihood: 

 𝐿 = − ∑ 𝑐𝑖 ln(1 − �̂�𝑖) + (1 − 𝑐𝑖) ln �̂�𝑖
𝑖

 (2) 

This loss function corresponds to the binary cross-entropy 

loss. 

3.3. Neural network 

State models using recurrent networks have already shown 

interesting results (Ren et al. 2019). We just apply a simple 

GRU (Gated Recurrent Unit) on the input data 𝑋𝑛 (snapshots 

and external context) to calculate the hidden state ℎ𝑛, which 

represents the health status of the engine just after flight 𝑛. 

For other purpose like the monitoring of performance of the 

engine and not just a specific wear we used a more complex 

recurrent network including layers of attention (Langhendries 

and Lacaille 2022), but it was not necessary here. Then 𝑋𝑛 

and ℎ𝑛 are concatenated and given as input to a dense neural 

network that produces a vector output 𝑉𝑛 (see Figure 2). 

𝑉𝑛 is an instantaneous damage exposure vector corresponding 

to flight 𝑛. The instantaneous exposure vectors are summed 

after each flight to calculate a cumulative exposure vector �̅�𝑛 

(simplified by 𝑉 in the diagram below). And we select the 

maximum 𝜏 of the wear exposure coordinates as our specific  

“time” of exposure to corrosion conditions. 

 

 

Figure 2. Detailed design of the recurrent neural network. 

Here 𝑓𝜃 is a dense neural network with weights parameters 

𝜃. The learning procedure will also adapt the cumulative 

distribution function of the survival law (the pair of Weibull 

parameters 𝜂 and 𝛽). 

4. APPLICATION TO TURBINE STATOR BLADES 

A set of turbine stator blades is subject to hot corrosion. The 

same types of stators are positioned at different stages of the 

turbine (3 on this specific engine). Each is subject to different 

work conditions, but the same model can be used because the 

same causes apply on the same metal alloy. We are testing 

our model on 32 engines but with the different turbine stages 

and the large number of blades, we have been able to 

seriously increase the volume of observations. 
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Hot corrosion is a physical phenomenon that can cause 

damages to different metals exposed at high temperatures 

(Pettit 2011). The prediction of hot corrosion in turbofan 

engines is a difficult problem because it involves several 

different physical phenomena. Three different types of hot 

corrosion may arise in turbofan (Figure 3). 

 

Figure 3. Hot corrosion severity according to the 

temperature. 

 

Depending on temperature and pressure conditions, corrosion 

of type 1, 2 or oxidation can be preponderant. When the 

turbofan is operated, these conditions vary, therefore all three 

types of hot corrosion can appear and even coexist. 

Moreover, when a component shows wear due to corrosion, 

we do not know what type of corrosion is involved. Finally, 

the severity of hot corrosion attack is known to be influenced 

by chemicals which can act as a catalytic (for example SO3). 

Thus, air pollution can influence corrosion as well as the 

combustion reaction in the turbofan. 

4.1. Implementation 

The model is implemented in PyTorch. The exposure model 

is a 3 layers dense neural network with 90 neurons by layer 

(10 for the GRU). Learning procedure uses ADAM optimizer 

(Kingma and Ba 2015). We add a dropout regularization 

scheme (Srivastava et al. 2014) with 𝑝 = 0.4 and a L2 penalty 

to reduce over-fitting (with decay of 10−3). The learning rate 

is equal to 10−3.  

The learning procedure uses all engines in a dataset and 

builds a common model for all engines (same network 

parameters). The data from each engine is viewed as a 

multivariate time series. 

4.2. Results and comparisons 

We evaluate the model using a 10-folds cross-validation 

procedure. Each engine is used only once in the validation set 

and capitalize thousands of flights. Hence we get only 3 or 4 

engines per validation set in the cross procedure. We 

aggregate all results obtained on validation sets and present 

them (Figure 4) in the form of a boxen plot, or letter-value 

plot (Hofmann, Wickham, and Kafadar 2017). 

 

Figure 4. Boxenplot obtained by cross validation on test 

sets. On this graph each rectangle area is proportional to the 

number of observed engines. 

 

This solution is compared to several others implemented 

using PySurvival (Fotso 2019). It includes the Cox model 

(Cox 1972), the Weibull parametric model and DeepSurv 

(Katzman et al. 2018). We used the package tsfresh (Christ et 

al. 2018) to extract a vector of features from each input time 

series (𝑋𝑛
𝑘) describing flights achieved by the engine 𝑘 (we 

ignored the 𝑘 indices in the previous description for clarity). 

Then, feature vectors are used by Cox model and DeepSurv. 

Figure 5 shows on ROC (Receiving Operating Curve) curves 

(Fawcett 2006) that our model performs better than baselines 

(Cox model and Weibull parametric model) and a state-of-

the-art alternative solution (tsfresh features extraction + 

DeepSurv). 

 

Figure 5. Comparisons with state-of-the-art survival models 

using ROC curves. The one we propose (red curve) behave 

better than the others on our set of data. 

 

The area under the ROC curve (given in the legend Figure 5) 

may be interpreted as the proportion of pairs of observations 
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that are well compared. In the binary case it approaches the 

probability of discriminating between a random selection of 

a pair of observations, that is to say whether the two blades 

are corroded, not corroded or only one is corroded 

(Clémençon, Lugosi, and Vayatis 2008). 

 

5. INTERPRETATION OF THE RESULTS 

The use of this algorithms produces a probability of corrosion 

for a stator turbine stage. The MRO (Maintenance Repair 

Overhaul) operator must decide to open the engine turbine to 

replace some blades, but this decision has an important 

maintenance cost. It would be preferable if an interpretable 

explanation was given. 

We use Kohonen’s algorithm (Kohonen 1995) to construct a 

self-organized map (SOM) of the input data. The quality of 

the algorithms results can also be seen when plotting the 

output probability of corrosion as the map background. This 

output was not used as input for data categorization by 

Kohonen’s algorithm. Figures 6 and 7 presents such maps. 

The axis have no meaning, each cell of the map correspond 

to a category of similar inputs and the cells are organized in 

a way that try to conserve the proximity of the observations 

in the real space. The color of a cell may be any coordinate 

of the cell prototype or a computation from this prototype or 

observations that belongs to this cell. In our case we present 

the mean value of the corrosion prediction on figure 6 and 

mean flight leg duration (an input) on figure 7. 

Figure 6 shows that the corrosion probability calculated by 

the model are concentrated on small areas. This proves that 

specific missions have a greater impact on the wear than 

others. In addition, one can also plot the average value of an 

input measurement in each cell of the map and look at the 

previous graphs as overlays to infer relationships between 

flight data and the risk of corrosion.  

 

   

Figure 6. Observation of the probability of corrosion for 

each of the three stator stages on the topological cartography 

of the input data. 

 

Figure 7 is a trivial example which shows that when the 

duration of the flight is superimposed on the third map 

(Figure 6), it can be deduced that flight leg impacts one type 

of corrosion on the third turbine stage. In fact, it was not the 

only factor, but obviously it has less of an impact on the other 

two stages. 

 

 

Figure 7. Example of the flight leg duration on the map. 

Blue flights are short and red ones are long. 

6. CONCLUSION 

This work introduces a new model for survival analysis. It 

uses past observations recoded over the life of an aircraft 

engine to construct a partial state of wear sufficient to expose 

corrosion on turbine stator blades. 

The actual algorithm relies on a single GRU unit to memorize 

the current state. On other applications it can be replaced by 

a more consistent architecture. The next step is a projection 

of the current observation modulated by the current state to 

estimate an instantaneous wear risk corresponding to each 

degradation mode: all the factors, not necessarily known, 

causing one of the corrosion mechanisms. At any instant, 

after each flight, the preponderant cumulated risk is retained 

to serve as an exposure time for a Weibull distribution. 

Although the results are not bad, they are still difficult to 

interpret. We therefore use an a posteriori solution based on 

a self-organizing map (SOM) to help engineers identify the 

main causes of degradation. This last tool mainly helps to 

gain confidence in the application, but its main strength is that 

it opens visibility into the causes of corrosion and can help 

designers deduce a better material or coating for the next 

generation of blades.  

  



  
ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2022 

6 

REFERENCES 

Christ, Maximilian, Nils Braun, Julius Neuffer, and Andreas 

W. Kempa-Liehr. 2018. “Time Series FeatuRe 

Extraction on Basis of Scalable Hypothesis Tests 

(Tsfresh – A Python Package).” Neurocomputing 

307:72–77. 

Clémençon, Stéphan, Gabor Lugosi, and Nicolas Vayatis. 

2008. “Ranking and Empirical Minimization of U-

Statistics.” Annals of Statistics 36(2):844–74. 

Cox, D. R. 1972. “Regression Models and Life-Tables.” 

Journal of the Royal Statistical Society. Series B 

(Methodological) 34(2):187–220. 

Fawcett, Tom. 2006. “An Introduction to ROC Analysis.” 

Pattern Recognition Letters 27(8):861–74. 

Fotso, Stephane. 2019. “PySurvival: Open Source Package 

for Survival Analysis Modeling.” 

Hofmann, Heike, Hadley Wickham, and Karen Kafadar. 

2017. “Letter-Value Plots: Boxplots for Large Data.” 

Journal of Computational and Graphical Statistics 

26(3):469–77. 

Katzman, Jared L., Uri Shaham, Alexander Cloninger, 

Jonathan Bates, Tingting Jiang, and Yuval Kluger. 

2018. “DeepSurv: Personalized Treatment 

Recommender System Using a Cox Proportional 

Hazards Deep Neural Network.” BMC Medical 

Research Methodology 18(1):24. 

Kingma, Diederik P. and Jimmy Lei Ba. 2015. “Adam: A 

Method For Stochastic Optimization.” in International 

Conference for Learning Representations (ICLR). San 

Diego. 

Kohonen, Teuvo. 1988. Self-Organization and Associative 

Memory. Second Edi. Berlin: Springer. 

Kohonen, Teuvo. 1995. Self-Organizing Maps. Vol. 30. 

Springer. 

Langhendries, Raphaël and Jérôme Lacaille. 2020. 

“Operability Forecasting Combining Neural Network 

and Survival Analysis with an Application to Hot 

Corrosion in Turbofan.” in International Conference 

on Maintenance, Condition Monitoring and 

Diagnostics (MCMD). 

Langhendries, Raphaël and Jérôme Lacaille. 2022. 

“Turbofan Exhaust Gas Temperature Forecasting and 

Performance Monitoring with a Neural Network 

Model.” in European Conference on Safety and 

Reliability (ESREL). Dublin. 

Pettit, Fred. 2011. “Hot Corrosion of Metals and Alloys.” 

Oxidation of Metals 76(1–2):1–21. 

Ren, Kan, Jiarui Qin, Lei Zheng, Zhengyu Yang, Weinan 

Zhang, Lin Qiu, and Yong Yu. 2019. “Deep Recurrent 

Survival Analysis.” Pp. 4798–4805 in AAAI 

Conference on Artificial Intelligence. Vol. 33. 

Srivastava, Nitish, Geoffrey Hinton, Alex Krizhevsky, Ilya 

Sutskever, and Ruslan Salakhutdinov. 2014. “Dropout: 

A Simple Way to Prevent Neural Networks from 

Overfitting.” Journal of Machine Learning Research 

15(56):1929–58. 

Weibull, Waloddi. 1951. “A Statistical Distribution Function 

of Wide Applicability.” Journal of Applied Mechanics 

18:7. 

 

 

BIOGRAPHIES  

Raphaël Langhendries is a doctoral 

student in applied mathematics at the 

statistics laboratory of the University of 

Paris 1 Panthéon Sorbonne. He is doing 

his thesis in collaboration with Safran 

Aircraft Engines and is a member of the 

company's DataLab. During his work 

Raphaël collaborated with business teams 

on engine performance, design, and 

operations. Its most striking result is the demonstration of a 

concentration inequality that validates the use of learning 

algorithms on data from successive flights and therefore 

clearly dependent. Within the company, he paved the way for 

the exploitation of Deep Survival techniques to modernize 

the design of new damage indicators and the prediction of 

lifetimes. 

 

Jérôme Lacaille is an expert emeritus at 

Safran Aircraft Engines whose 

successive missions have been to 

develop an algorithmic environment for 

prognostic and health monitoring (PHM) 

of engines, the creation of a DataLab for 

the analysis of company data and the 

animation of a mathematics, data 

analysis and scientific computing 

business network. Doctor in mathematics, authorized to 

direct research and a former normalien agrégé in 

mathematics, Jérôme supervises a team of doctoral students 

within the company and continues to teach at the university. 

Member of the board (ex-vice-president) of the society of 

applied and industrial mathematics (SMAI), as well as of 

numerous other academic committees, Jérôme assumes the 

role of scientific ambassador for Safran. 

 

 


