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ABSTRACT 

Real-time fault detection, classification and diagnosis in 

manufacturing and process industries is essential to prevent 

unplanned downtime and improve the reliability of 

industrial operations.  While several well-accepted machine 

learning techniques exist for fault detection and 

classification, there is a need for a reliable and generalized 

fault diagnosis technique that identifies sensors responsible 

for industrial faults in real time.  In this work, we propose a 

variable perturbation matrix-based method for fault 

diagnosis in industrial processes. We utilize the Long Short-

Term Memory for prediction due to its ability to memorize 

temporal information in time-series data. First, the fault is 

detected, then one or more independent variables are 

perturbed across the fault detection point to check the 

sensitivity of the diagnosis model for the corresponding 

variables. Thus, a perturbation matrix is calculated and 

variables with high sensitivity are selected as the variables 

responsible for fault. The proposed method is applied to an 

Industry 4.0 quality control test bed set up for electronic 

components, the dataset for which is provided in the 

Prognostics and Health Management Euorpe-21 (PHME-21) 

data challenge. The proposed method accurately detected 

and classified 6 faults in the test bed and correctly 

diagnosed the most significant variables.  Due to high fault 

detection accuracy coupled with sensitivity-based fault 

diagnosis, the method is suitable for multivariate industrial 

systems. 

Keywords: Fault classification, Fault localization, Predictive 

maintenance, Artificial Intelligence, Manufacturing Industry 

1. INTRODUCTION 

The rise of Industry 4.0 has transformed manufacturing and 

process industries and equipped industrial processes with a 

large number of sensors leading to the availability of huge 

amounts of sensor data in real-time. This data contains 

valuable information about the state of health of the 

operation and equipment and is of immense value to plant 

personnel for effective process monitoring and control, 

process optimization, and predictive maintenance for 

maintaining and improving the plant KPIs such as 

efficiency, productivity, product quality, reliability, etc.  For 

predictive maintenance, a robust fault detection and 

diagnosis (FDD) solution is a key requirement from 

industries as unaddressed faults can hamper normal 

operation and lead to unplanned downtime, material loss, 

adverse impact to equipment, deterioration of product 

quality, and ultimately loss of revenue. While fault detection 

comprises monitoring the process or equipment for 

anomalous behavior, fault diagnosis typically entails 

classification of the detected fault into one or more known 

fault classes, identifying the most significant variables 

bearing the fault signature (fault localization/isolation) and 

root cause identification.  

Most FDD methods use process models or data-driven 

models for detecting and diagnosing faults. Process model-

based methods utilize mathematical models of the system 

and work quite well for linear systems (Fagarasan & Iliescu, 

2008). Data-driven methods, on the other hand, do not 

require mechanistic models but use historical process data to 

build the models. Techniques such as principal component 

analysis (PCA), partial least squares (PLS) and many 

extensions of these two techniques have been widely used 

for building data-driven models for detection and diagnosis 

of faults in multivariate data (Lee, Han, & Yoon, 2004; 

Zhang & Qin, 2010). These methods can handle a large 

number of highly correlated variables and reduce the high-

dimensional variable space into a low-dimensional latent 

space. However, these techniques fail to capture spatial 

and/or temporal correlations among the process variables 

which affects the fault diagnosis performance. To address 

this shortcoming, probabilistic, machine learning and deep 

learning techniques have been used. A detailed review of 

such data-driven methods is provided by Zhang, Yang, and 

Wang (2019). For example, Li, Wei, Wang, and Zhou 

(2017) used Hidden Markov models for fault detection and 

classification in rotating machinery. Khoukhi and Khalid 
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(2015) evaluated the efficacy of hybrid data-driven 

techniques that use fuzzy logic combined with neural 

networks for fault detection and isolation.  

More recently, Park, Marco, Shin, and Bang (2019) 

proposed an integrated semi-supervised learning approach 

for fault detection and classification of rare events in 

multivariate time series data by combining an autoencoder 

for detection and a long short-term memory (LSTM) 

network for classification. Long, Mou, Zhang, Zhang and Li 

(2021) utilized a sparse auto-encoder and support vector 

machine based deep hybrid learning approach for intelligent 

fault diagnosis of multi-joint industrial robots while Kim, 

Cho, Lee and Cho (2019) used a self-attentive convolutional 

neural network for FDD of variable length sensor data in 

semiconductor manufacturing. Belagoune, Bali, Bakdi, 

Baadji and Atif (2021) performed deep recurrent neural 

network-based fault region identification, fault classification 

and fault location prediction in Two-Area Four-Machine 

Power Systems. Cho, Choi, Gao and Moan (2021) 

employed Kalman filter with artificial neural networks for 

fault diagnosis of a spar floating wind turbine with variable 

wind and wave conditions. Michau, Palm and Fink (2017) 

used a stacked auto-encoder to learn the underlying features 

of the data and a one-class classifier for detecting power 

plant generator interturn failures and isolating the most 

deviating signal components. Aydemir, Avcı, Kocakulak 

and Bekiryazıcı (2021) employed ensemble of binary LSTM 

classifiers for fault detection and root cause variable 

identification in quality-control systems with multiple 

subsystems. 

While a multitude of techniques are available for fault 

detection and classification, there are limited approaches for 

fault localization and root cause identification, probably due 

to the challenges associated with modeling the nonlinear 

interactions among process variables and capturing the 

nonstationary behavior that is typical of most industrial 

processes. It is, however, crucial to have a reliable and 

generalized fault localization technique that could identify 

the sensors responsible for industrial faults in real-time. For 

this, a variable perturbation matrix-based method for fault 

localization is proposed in this work. The variable 

perturbation matrix (VPM) is obtained by perturbing one or 

more sensor variables across the fault detection point. For 

every variable, the cumulative perturbation score is 

computed by measuring the sensitivity of variables to a 

data-driven diagnosis model. The variables with the highest 

perturbation scores are selected as the variables responsible 

for the fault. The proposed fault localization approach is 

demonstrated on a quality control and assurance test setup 

used for fuse testing in the manufacturing industry. The key 

contributions of this work are:  

 A dynamic sensitivity-based robust fault localization 

approach that works for systems with nonlinear 

behavior and interacting variables  

 A perturbation score corresponding to each variable for 

the detected fault signifying the importance and ranking 

of the identified variables 

 The utility of the approach is demonstrated on an 

industrial test bed and found to have an average 

diagnosis accuracy of ~70% 

The paper is structured as follows. Section 2 describes the 

proposed method for fault detection and diagnosis. The fuse 

test bed on which the proposed approach is demonstrated is 

described in Section 3. Development of detection and 

diagnosis models is presented in Section 4. The results of 

the study are discussed in Section 0. Finally, the conclusions 

and future work are presented in Section 6. 

2. PROPOSED METHODOLOGY 

The proposed methodology for fault diagnosis, specifically 

fault localization comprises modules for fault detection and 

classification and identification of the most significant 

variable/s via variable perturbation as shown in Figure 1. 

Sensor data from an industrial system is fetched by the fault 

detection and classification module in real-time which 

utilizes fault detection and classification model(s) to detect 

any faulty operation. If no fault is detected, the fault 

detection step is repeated on the next window of sensor data 

without raising any alarms or notifications. If faulty 

operation is detected, the module analyses and classifies the 

operation into known fault classes. Further, the variable 

perturbation module utilizes the diagnosis model specific to 

the corresponding fault class and identifies the most 

significant variables relevant to the fault. The outputs such 

as time of fault detection, the fault class and the most 

significant variables are conveyed to the operators of the 

industrial system for further analysis and taking appropriate 

corrective and preventive actions to mitigate the fault and its 

effects and to prevent failure of the industrial system.  

In case false alarms, missed detections, misclassifications or 

previously unknown faults encountered by the fault 

detection and classification module, the operator can 

provide appropriate feedback such as correcting the label or 

assigning a new label to the identified fault. This feedback 

can be used to retrain the fault detection and classification 

model. Similarly, in case of an incorrect fault diagnosis, the 

operator can provide feedback by suggesting the correct set 

of most significant variables and their relative order of 

importance. This feedback can be used to retune the 

diagnosis model parameters. Period re-learning of the 

models based on operator feedback ensures the highest 

possible detection, classification, and diagnosis accuracies 

for the proposed system.  The detailed description of each of 

the modules is presented below.      

2.1. Fault Detection and Classification 

The objective of fault detection and classification is to 

detect and classify the detected faulty operation into one or 
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Figure 1. Proposed approach for fault diagnosis 

 

more know fault types. In this work, the LSTM network is 

used for fault classification due to its capability in capturing 

long term temporal dependencies in time-sequence data 

(Hochreiter & Schmidhuber, 1997). In addition to the input 

provided via the input layer, LSTM uses previous hidden 

state information. In an LSTM cell, the flow of information 

is regulated using input (𝑖), output (𝑜) and forget (𝑓) gates. 

The cell state 𝑐𝑡  and hidden state ℎ𝑡  are computed in a 

recurrent manner as shown in Eq. (1).  

 𝑓𝑡 = σ(𝑊𝑓𝑥𝑡 + 𝑈𝑓ℎ𝑡−1 + 𝑏𝑓) 

𝑖𝑡 = σ(𝑊𝑖𝑥𝑡 + 𝑈𝑖ℎ𝑡−1 + 𝑏𝑖) 

𝑜𝑡 = σ(𝑊𝑜𝑥𝑡 + 𝑈𝑜ℎ𝑡−1 + 𝑏𝑜) 

𝑐�̃� = 𝑡𝑎𝑛ℎ(𝑊𝑐𝑥𝑡 + 𝑈𝑐ℎ𝑡−1 + 𝑏𝑐) 

𝑐𝑡 = 𝑓𝑡 ⊙ 𝑐𝑡−1 + 𝑖𝑡 ⊙ 𝑐�̃� 

ℎ𝑡 = 𝑜𝑡 ⊙ 𝑡𝑎𝑛ℎ(𝑐𝑡) 

(1) 

Where 𝑥𝑡, ℎ𝑡, and 𝑐𝑡  are input, hidden and cell state vectors 

at time 𝑡 , respectively. σ(⋅)  and tanh(⋅)  are sigmoid and 

hyperbolic tangent activation functions. 𝑊  and 𝑈  are 

trainable weight parameters of the input and previous 

hidden connections and 𝑏 are bias vectors respectively. The 

gradient descent method is used to determine the optimal 

values of trainable parameters for minimizing the 

categorical cross-entropy cost function shown in Eq. (2). 

 ℒ(y, ŷ) = ∑  𝑦𝑙  log 𝑦�̂�

𝐶

𝑙=1

 (2) 

2.2. Variable Perturbation 

If the fault is detected and identified, the next step is to 

identify the most significant variables responsible for the 

faulty operation. This is performed by the variable 

perturbation approach. The proposed fault localization 

approach utilizes multi-stage variable perturbation to 

identify the key variables relevant to the faulty operation. In 

this method, the cumulative change in the score of the 

diagnosis models with respect to each feature is computed. 

The cumulative disturbance is obtained by summing the 

perturbation score from all iterations wherein in each 

iteration, the perturbation score is the output of the 

diagnosis model obtained by replacing the faulty data with 

the corresponding normal data of the feature in each 

diagnosis window. Figure 2 illustrates the approach for two 

iterations where 𝐷𝑤−  and 𝐷𝑤+  represent the diagnosis 

windows before and after the fault detection point 

respectively used for variable perturbation. In each iteration, 

the diagnosis windows on either side of the detection point 

are moved further away from the detection point as shown 

in Figure 2.  

 

Figure 2. Multiwindow variable perturbation 

The diagnosis model is trained to fit the fault score across 

the detection point and is specific to every fault class. It can 

be a data-driven model (regression model), mechanistic 

model or other functional approximation. The underlying 

assumption is that the fault score generated by the diagnosis 

model can be approximated as a sum of nonlinear functions 

of the process variables and tunable parameters.  

Mathematically, the fault score, 𝒔 is approximated as,  

s =  ∑ 𝑓𝐿(𝑥𝑖, 𝑥𝑗, 𝑥𝑘 … , θ𝑙)

𝐿

0

 

∀ 𝐿 ∈  𝑁  

& ∀ 𝑖, 𝑗, 𝑘 ∈  𝑁 

(3) 

Where, 𝑓𝐿  is a nonlinear function, 𝐿  is the number of 

nonlinear functions, θ𝑙are parameters of the function 𝑓𝐿, and 

𝑥𝑖 , 𝑥𝑗 , 𝑥𝑘 are the features/variables.  

In this work, the fault score function is be approximated 

using multiple machine learning techniques such an 

Random Forest, XGBoost and LSTM. Assuming that a good 

diagnosis model that has learnt the above functional form 

and distinguishes faulty operation from normal operation 

across the detection point is available, the first order 
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variable perturbation matrix across the detection point can 

be calculated across diagnosis windows of equal length  and 

summed as shown in Eq. (4). 

 
𝐽1(𝑖) =  ∑

Δ𝑠

Δ𝑥𝑖

𝐾

0
 

∀ 𝑖 ∈  𝑁, 

(4) 

where K is the number of iterations for which perturbation is 

performed on either side of the fault detection point. Based 

on the perturbation score, the features are sorted and 𝑓1 

fraction of variables having a low perturbation score are 

rejected. The rest, i.e., (1 - f1) fraction of variables are used 

to calculate the second order variable perturbation matrix 

across the detection point over K number of diagnosis 

windows as shown in Eq. (5). 

 

𝐽1(𝑖, 𝑗) =  ∑
Δ𝑠

Δ𝑥𝑖Δ𝑥𝑗

𝐾

0

 

∀ 𝑖, 𝑗 ∈  𝑁, 

 

(5) 

The absolute perturbation score of each feature in the 

second order perturbation matrix can be calculated by taking 

the mean around the second dimension (i.e., row mean) of 

the matrix. The features are sorted once again with respect 

to the absolute perturbation score and f2 fraction of variables 

having low score are rejected and the rest (1 − 𝑓2) fraction 

of variables are carried forward. Now, the third order 

variable perturbation matrix is calculated over K diagnosis 

windows as shown in Eq. (6). 

 
𝐽1(𝑖, 𝑗, 𝑘) = ∑

Δ𝑠

Δ𝑥𝑖Δ𝑥𝑗Δ𝑥𝑘

𝐾

0

  

∀ 𝑖, 𝑗, 𝑘 ∈  𝑁, 

(6) 

Here, 𝑓1, 𝑓2, 𝑓3 are the parameters of the approach. 

The absolute perturbation score of each feature in the third 

order perturbation matrix can be calculated by taking the 

mean over the third dimension (matrix mean) of the matrix. 

The features are then sorted using the absolute perturbation 

score values. Similarly, higher order perturbation matrix 

calculations can be performed to arrive at a smaller number 

of remaining variables. However, it is observed that the 

third order perturbation with higher variables rejection rates 

is sufficient to reach a reasonable number (e.g., 5) of 

remaining variables.  

Thus, using the variable perturbation matrix-based 

approach, one can arrive at the list of the most important 

variables having a dominant effect on the diagnosis model. 

These variables are considered to be the most significant 

variables relevant to the fault. Undoubtedly, the 

effectiveness of this approach depends on the efficacy of the 

diagnosis model in learning the distinction between faulty 

and normal operation. Development of accurate diagnosis 

models is, therefore, a crucial step in this approach.  

3. SYSTEM DESCRIPTION 

The utility of the approach is demonstrated on the industrial 

system presented in the 2021 Annual Data Challenge of the 

Prognostics and Health Management (PHM) Society, 

Europe which was sponsored by NVIDIA. The aim of the 

challenge was to have a fast and robust predictive 

maintenance solution for an industrial robotic test bed 

designed for quality control and assurance.  Detecting and 

classifying the faults accurately and identifying the most 

significant variables of the faults in the lowest possible time 

were the key aspects of the challenge. The system of interest 

was provided by the Swiss Center for Electronic and 

Microtechnology (CSEM) and used for testing of fuses. The 

testing system mainly comprises a test bench for fuses and a 

4-axis SCARA-robotic vacuum feeder arm to pick up the 

fuses. The fuse test bench further comprises two conveyor 

belts, an infrared thermal sensor set up and a robotic sorting 

bar. The test bed is shown in Figure 3 and the processing 

steps are described below: 

1. First, fuses are picked and transported within the range 

of infrared sensor by the robotic feeder 

2. Fuses are first tested for their conductivity and later for 

their quality by applying a 200 mA current for 1.5 sec 

and simultaneously measuring their responses 

3. After the test, fuses are transported to the main 

conveyor belt for further sorting 

4. Fuses are sorted by the robotic sorting bar based on 

their test results 

5. These fuses are transported by the conveyor belt to the 

feeder 

6. Finally, the fuses are transported by another conveyor 

belt to the next processing step such as labeling or 

packing 

 

Figure 3. Industrial test bed set up (PHME-Data Challenge 

[2021]) 

The system is instrumented well to measure the state of its 

health, the surrounding environment, and other auxiliary 
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systems of the machine. A total of 50 variables related to the 

system health (pressure, vacuum etc.) and environment 

conditions (temperature, humidity, etc.) are monitored and 

their time series features are recorded at 10 sec time 

intervals. The time series features include the maximum 

value, minimum value, mean, frequency, total count, and 

trend of each variable. 

Various faults such as conveyor failure due to motor fault or 

high frictional losses, pneumatics fuse feeder failure due to 

pressure leakage, robot gripper failure due to vacuum 

system fault, and other failures due to noisy measurement 

and desyncing of robotic feeder can occur in the test bed. A 

total of 6 faulty operating conditions are observed in the 

system. Accurate detection, classification, and diagnosis of 

these faults in the shortest possible time is of utmost 

importance to the test bed operator. This increases the 

productivity and efficacy of the testing process, minimizes 

the losses due to false positives, and reduces the 

unnecessary alarms and warnings thus reducing the 

cognitive load on the operators. Similarly, timely corrective 

actions will minimize the losses and reduce adverse impact 

on the health of the test bed. 

4. MODEL DEVELOPMENT 

The development of deep learning models for fault 

classification and fault diagnosis is discussed here. The 

initial dataset consisted of 50 variables, out of which 17 

variables are omitted as they had no variability (zero 

standard deviation). The remaining 33 variables are 

considered for building the fault detection & classification, 

and diagnosis models.  

4.1 Fault Detection and Classification Model 

 A LSTM classifier is trained for combined fault detection 

and classification. For training the model, a total of 57000 

data points comprising normal instances as well as faulty 

instances of each fault class. 20% of the data is used as the 

test data for evaluating the model performance and the 

remaining 80% is used for training the network. The 

training data is first subjected to data pre-processing, where 

null values in the data are imputed using multivariate 

imputation, and the resultant data is normalized using z-

score normalization.    

The LSTM network comprises 2 hidden layers having tanh 

activation function followed by an output layer with single 

cell and sigmoid activation function. The number of cells in 

the hidden layer, the window size and the batch size are the 

hyper-parameters which are tuned using GridSearchCV 

during model training. The number of hidden cells is 

evaluated at values of 20, 50, 100 and 200. Considering the 

data size and dynamics of the system, window sizes are 

evaluated at values of 5, 10, 15 and 20, and the batch size is 

evaluated at values of 16, 32, 48 and 64. The model is 

trained for a maximum of 150 epochs. The categorical cross 

entropy between actual and predicted labels is computed 

after each epoch and early stopping with a patience of 5 is 

used to prevent overfitting. The optimal values of hyper-

parameters obtained for the trained model are 100 LSTM 

cells in both the hidden layers, a window size of 5 and a 

batch size of 16.  

The confusion matrix obtained on the test data using the 

trained LSTM classifier for all fault classes is shown in 

Figure 4. An overall fault classification accuracy of 98.92 % 

is obtained. 

 

Figure 4. Confusion matrix for fault detection and 

classification model on the test data. Numbers in the 

confusion matrix are number of windows in the test data 

 

4.2 Fault Diagnosis Model 

For the fault diagnosis model, various ML techniques such 

as Random Forest and XGBoost, and DL techniques such as 

LSTM are experimented with. These techniques are 

shortlisted based on their capability to learn nonlinear 

behavior and sensitivity to faults. The diagnosis model is 

trained as regression model to fit the fault (probability) 

score from the fault detection & classification model around 

the detection point. Therefore, one diagnosis model is 

trained for each fault class.  

For each fault class, multiple files of faulty operation data 

are provided. These are utilized for training and validating 

the diagnosis models. In each file, the initial portion 

consisted of data from normal operation of the test bed 

while the end portion consisted of data from faulty 

operation, and the transition point from normal to faulty 

operation was anywhere in the middle. The train-test split 

approach considered for the diagnosis models is different 

from the commonly used random split approach. 25 % of 

the instances from each extreme end of the data are selected 

for training and the points across the detection points are 

used for validation. Once the diagnosis models are built, 

their validation is done by applying the VPM approach on 
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the validation data. The most significant variables obtained 

from VPM are then compared with the ground truth 

variables available for each fault class. Validation is 

performed by ascertaining the consistency of the most 

significant variable groups identified for each fault class, 

reproducibility of the results on data files of the same fault 

class, and differences in the variables shortlisted across 

different fault classes.  

Based on these validation criteria, LSTM diagnosis models 

were found to perform better than models built using other 

techniques, possibly due to better learning of the evolving 

fault signature. Thus, LSTM models are finalized for fault 

diagnosis using the VPM approach. For each fault class, a 

separate LSTM model is built for better specificity of the 

results. The ranges of optimal parameters of the LSTM 

models obtained after hyper-parameter tuning and the 

optimal VPM approach parameters, perturbation window 

length and rejection rate are tabulated in  

Table 1. 

5. RESULTS AND DISCUSSION 

The ground truth in terms of key variables pertaining to 

fault classes 4, 5, 7, 9, 11 and 12 in the test bed is provided 

by the organizers of the PHME-21 data challenge and is 

used to verify the effectiveness of the proposed approach. 

The trained LSTM model for fault detection and 

 

 

Table 1.  Optimized ranges of network parameters for the 

LSTM diagnosis models 

Parameter 
Optimal 

Value 

Number of hidden layers 2 

Number of cells 64 to 256 

Batch size 32 

Window size 15 

Activation function ReLU 

Epochs 120 

Rejection Rate (𝑓1, 𝑓2, 𝑓3) 0.5 

Perturbation window length 8 to10 

 

classification is used to detect and classify the faults. The 

LSTM fault diagnosis model specific to the detected fault is 

then used to compute the cumulative perturbation score for 

each of the variables using the methodology described in 

Section 2.2. For each of the 6 fault classes, the variables are 

ranked in decreasing order of the cumulative score. The 

trend of cumulative perturbation score for the significant 

variables across the iterations for each fault class are shown 

in Figure 5. It can be observed that for almost all fault 

classes, the cumulative score trend for the most significant 

variables separates from that of the rest of the variables 

indicating the effect of dominant variables on the fault.  

 

 

 

Figure 5. Cumulative perturbation score for all fault classes 
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The top 3 most significant variables identified for each fault 

class are compared with the corresponding ground truth 

variables and are shown in Table 2. The diagnosis accuracy 

of the approach is computed using the most significant 

variables for each fault class as follows: 

Diagnosis Accuracy = {
1 − 0.15(𝑥 − 1), if 𝑥 < 4

0.5, otherwise
     (7) 

where, x is the position of the ground truth variable in the 

list of most significant variables. The diagnosis accuracy for 

each fault class is shown in Table 2. 

Table 2 shows that the most significant variables are 

correctly diagnosed for faults 4, 5, 9 and 12 with a high 

degree of accuracy. For fault class 4, the ground truth 

variable, ‘Pressure’ is identified correctly by the approach 

as the third most significant variable for the fault. For fault 

class 5 too, the ground truth variable, ‘VacuumFusePicked’ 

is correctly identified along with two other variables 

‘FuseCycleDuration’ and ‘ProcessMemoryConsumption’. 

The ground truth variable is identified second in the order of 

significance. For fault class 9, there is a good match 

between the ground truth variables and the diagnosed 

variables. This is also clearly visible in Error! Reference 

source not found. where the cumulative score for 

‘SmartMotorPositionError’ and ‘SmartMotorSpeed’ 

separated from the score of the rest of variables as the 

number of iterations increased. The identified variables 

imply the error is caused due to variation in motor speed of 

conveyor belt. Similarly, for fault class 12, the ground truth 

variables match well with those identified by the approach. 

Figure 5 also shows that the signals representing robot arm 

duration, i.e., ‘DurationRobotFromFeederToTestBench’ and 

‘DurationRobotFromTestBenchToFeeder’ had higher 

perturbation scores till iteration #6 indicating that the fault 

lies in the robot arm that is picking fuses from the feeder to 

the test bench and returning them after the test.  

For fault class 7, however, the identified significant 

variables, ‘FuseTestResult’, ‘SmartMotorSpeed’ and 

‘SmartMotorPositionError’ do not match directly with the 

ground truth variables i.e., ‘VacuumFusePicked’ or 

‘FusePicked’. For class 11 too, the ground truth variables 

i.e., ‘SmartMotorSpeed’ and ‘SmartMotorPositionError’ do 

not match with the diagnosed variables. In this case, 

however, the variable ‘SmartMotorSpeed’ is constant 

throughout the operation and therefore cannot be the correct 

ground truth variable for the fault. The most significant 

variables identified for this fault class are 

‘TotalMemoryConsumption’, 

‘DurationRobotFromFeederToTestBench’ and 

‘CpuTemperature’. These variables point to a possible fault 

in the robot arm causing an increasing load on the processor. 

The average diagnosis accuracy for all fault classes 

combined is ~70.8% when the top 3 features are considered. 

Table 2. Most significant variables identified for each fault class 

 

Fault 

Class 
Ground Truth Variables Most Significant Variables 

Diagnosis 

Accuracy 

4 Pressure 

FuseCycleDuration 

SharpnessImage 

Pressure 

0.7 

5 
VacuumFusePicked 

Vacuum 

FuseCycleDuration 

VacuumFusePicked 

ProcessMemoryConsumption 

0.85 

7 
VacuumFusePicked 

FusePicked 

FuseTestResult 

SmartMotorSpeed 

SmartMotorPositionError 

0.5 

9 
SmartMotorSpeed 

SmartMotorPositionError 

SmartMotorPositionError 

SmartMotorSpeed 

FuseHeatSlopeOK 

1 

11 
SmartMotorSpeed 

SmartMotorPositionError 

TotalMemoryConsumption 

DurationRobotFromFeederToTestBench 

CpuTemperature 

0.5 

12 
DurationRobotFromFeederToTestBench 

DurationRobotFromTestBenchToFeeder 

FuseHeatSlopeOK 

EPOS Velocity 

DurationRobotFromFeederToTestBench 

DurationRobotFromTestBenchToFeeder 

0.7 
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For only those fault classes where the significant variables 

are correctly identified, i.e., fault classes 4, 5, 9 and 12, the 

diagnosis accuracy is ~81.2%. The diagnosis accuracy from 

the proposed VPM approach is either on par or better than 

the diagnosis accuracies reported by the winners of the 

PHME-21 data challenge (80-82%) (Aydemir et al., 2021; 

Etxabe, Omella, & Perez, 2021).  

6. CONCLUSION AND FUTURE WORK 

In this work, a variable perturbation matrix-based approach 

for industrial fault diagnosis is proposed. The proposed 

approach utilizes a LSTM model for detection and 

classification of faults in the system and fault-specific 

LSTM diagnosis models to measure a multi-step cumulative 

perturbation score corresponding to each of the variables. 

The variables with the highest cumulative perturbation score 

are identified as the most significant variables related to the 

detected fault.  

The approach is demonstrated on an industrial test bed for 

fuse testing whose operating data was provided for the 

PHME-21 Data Challenge. Out of 6 faults for which the 

ground truth is provided, the approach correctly identified 

the most significant variables for 4 fault classes with a 

diagnosis accuracy of ~81% and an overall diagnosis 

accuracy of ~71%. Reliable fault detection and diagnosis 

from the approach would help operators in reducing the time 

taken to address the faults thereby minimizing the impact of 

faults on the industrial system, and maintaining 

productivity, efficiency, and product quality. 

Although the proposed approach is independent of the 

system and has produced fairly accurate results for the 

industrial test bed, its generalizability and effectiveness of 

fault localization for other systems, particularly systems 

having multiple components and significant process lags 

need to be investigated.  Also, as the performance of the 

approach depends strongly on the underlying diagnosis 

model, more work is needed to establish the relation 

between different diagnosis model types and their 

corresponding diagnosis efficacies.   
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