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ABSTRACT 

Current nuclear power plants generate a large amount of 
condition-based data that is stored to assess and monitor 
component health and performance. The format of this data 
can be either numeric (e.g., pump vibration data) or textual 
(e.g., condition report that assesses component health). While 
assessing component health from numeric data can be 
performed with a large variety of methods, extracting 
information from textual data still remains a challenge. 
Natural language processing methods are starting to be 
deployed in current power plants mainly to filter out non-
safety-related incident reports by employing supervised 
machine-learning methods. However, these methods do not 
really provide the quantitative information that might be 
contained in textual data. This paper presents an approach to 
extract information from textual data (e.g., from maintenance 
reports) based on data analytics methods coupled with model-
based system engineer models. Through a specific set of 
functions, our methods can identify whether a sentence 
contains health information of a component (e.g., degraded 
performance, anomaly behavior) or the causal relationship 
between two events (i.e., a cause-effect pair). An innovative 
element of our approach is that our analysis relies on models 
to identify links between textual elements. Such models are 
diagrams designed to represent system and component 
dependencies (from both a form and functional point of 
view). In our approach, these models emulate system 
engineer knowledge about component and system 
architecture. This paper presents in detail how the integration 
of Natural language processing methods and model-based 
system engineer models is performed, and it presents a few 
analysis examples focusing on centrifugal pumps. 

1. INTRODUCTION 

Industry equipment reliability and asset management 
programs are essential elements that help ensure the safe and 
economical operation of nuclear power plants (NPPs). The 
effectiveness of these programs is addressed in several 
industry-developed and regulatory programs. 

The Risk-Informed Asset Management (RIAM) project 
(Mandelli, 2020) is tasked with developing tools in support 
of the equipment reliability and asset management programs 
at NPPs. These tools are designed to create a direct bridge 
between component health and lifecycle data and decision 
making (e.g., maintenance scheduling and project 
prioritization). Here, the primary focus is on supporting 
typical system engineer decisions regarding maintenance 
activity scheduling and component aging management. This 
is performed in a risk-informed context, where “risk” broadly 
includes both plant reliability and economics. This project 
combines data analytics tools to analyze equipment reliability 
(ER) data with reliability methods designed to support system 
engineer decisions (e.g., maintenance and replacement 
schedules, optimal maintenance posture) in a customizable 
workflow. 

A RIAM research area focuses on the analysis of ER data 
with a particular emphasis on condition-based data, such as 
test and surveillance reports and component monitoring data. 
This article focuses on the analysis of ER textual data (i.e., 
incident reports [IRs] and work orders [WOs]), and it 
presents methods to assess component health information by 
merging two perspectives: a system engineer and a data 
scientist perspective (see Section 2). 

The analysis of textual data has been investigated only 
recently using ML methods (Young et al. 2018) designed to 
assess their nature (e.g., safety or non-safety related). Instead, 
we aim to solve a different class of problems that requires 
reasoning rather than data learning. We are in fact addressing 
the analysis of ER data by focusing on causal reasoning and 
knowledge extraction from textual data. 
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2. EQUIPMENT RELIABILITY DATA TAXONOMY 

Typically, a generic system structure component (SSC) is a 
part of plant (see Figure 1) designed to provide a specific 
function: its emergence (e.g., electric power generation for a 
power plant).  

 
Figure 1. Graphical representation of SSC communicating 

and supporting each other through operands to provide plant 
emergence. 

 

 
Figure 3. System engineer representation of an SSC where 
operands (see Figure 1) and SSC health related parameters 

(in blue) are monitored. 

Each SSC contributes to the system emergence by providing 
a specified functionality used by other SSCs through a set of 
connections where operands (e.g., mass, energy, or data) are 
exchanged. The goal of a system health program is to monitor 
not only the correct operation of each SSC but also their 
health parameters, such as aging and degradation (indicated 
as 𝐹(𝑡) in Figure 3). In addition, a system health program is 
designed to perform appropriate actions to assure component 
functionality (indicated as 𝑇(𝑡) in Figure 3) (Xingang, 2021). 
In this article, 𝑇(𝑡) also includes all the external stressors that 
contribute to altering component aging and degradation (e.g., 
workload, humidity).When analyzing the data generated by a 
generic SSC (i.e., 𝑇(𝑡) and 𝐹(𝑡) of Figure 2), it is vital to 
understand and capture the functional relationship between 
monitoring data, maintenance activities, and failure modes. 

This can be accomplished by complementing the system 
engineer representation of an SSC with a data scientist 
representation of such an SSC. This is shown in Figure 2 
where three levels are identified: the component level (which 
would correspond to Figure 3), a sensor and monitoring level 
(which retrieves and records portions of 𝑇(𝑡)  and 𝐹(𝑡)  in 
digital form), and data level. Data retrieved from 𝑇(𝑡) (i.e., 
𝜃(𝑡)  of Figure 2) can be textual (e.g., work orders) or 
numeric (e.g., environment temperature). We indicate here 
with “num” the numeric portion of 𝜃(𝑡) while we indicate 
with “NL” the textual portion of 𝜃(𝑡) (NL here stands for 
natural language). Data retrieved from 𝐹(𝑡)  has been 
portioned into two portions, component health and 
performance monitoring ( 𝜚(𝑡)  and 𝛾(𝑡) ), which can be 
numeric or textual in nature as well. 

3. MBSE MODELING 

ER data can have heterogenous data formats: textual, 
numeric, image, etc. Given system engineers’ knowledge of 
SSC dependencies and architecture, they have many ways to 

Figure 2. Graphical representation of a data scientist perspective of a generic SSC. 
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interpret ER data, identify the causal links between event, and 
plan recovery actions. Is it possible for a machine to perform 
these tasks? 

Currently, data analysis methods are based on machine-
learning techniques that focus on finding patterns from data. 
While such approaches are valuable for some use cases, not 
all patterns provide insights about the system. This is often 
translated as: “correlation does not imply causation.” 

Here, we are looking at computational methods designed to 
support system engineers into the analysis of ER data using 
machine reasoning (rather than machine learning) methods. 
Machine reasoning is based on the construction of causal 
relations between data elements. This construction process 
cannot rely solely on data, but it requires models. These 
models represent specific aspects of the “real world” and are 
the foundations to perform such causal reasoning. When 
dealing with ER data, these models need to emulate system 
engineer knowledge about component and system 
architecture and dependencies. 

Model-based system engineer (MBSE) practices 
(Borky, 2018) provide several solutions to model component 
from both form (i.e., which elements are part of the SSC) and 
functional (i.e., how SSC elements interact with each other, 
and which functions they support) points of view. 

These solutions are based on MBSE languages that model 
system and SSC form and functional elements through a set 
of diagrams. The most commonly used languages are the 
object process methodology (OPM) (Dori, 2002) unified 
modeling language (William 2004), and systems modeling 
language (Friedenthal, 2008). We have chosen the OPM 
language because it provides the basic modeling elements we 
are looking for. For the scope of the analysis of ER data, 
elements of OPM diagrams will be used for elements 
contained in IRs and WOs. 

Figure 4 provides an example of functional and form 
description of a generic SSC by employing an OPM diagram. 
An SSC OPM diagram provides an essential description of 
the SSC from both a form and functional perspective. This 
diagram explicitly indicates how SSC internal functions and 
processes act upon form elements and how form elements 
support these functions. From an ER perspective, monitoring 
activities (i.e., 𝐹(𝑡) of Figure 3) act on both SSC functions 
(i.e., rotational frequency recorded for an induction motor) 
and form (i.e., blade corrosion of centrifugal pump) elements. 
On the other hand, degradation processes (i.e., 𝑇(𝑡)  of 
Figure 3) directly alter the form elements of the component 
that consequently affect SSC functional elements. Typically, 
from a reliability perspective, component failure modes are 
described in terms of loss of function; hence, in the OPM 
diagram, failure modes are only directly linked to the 
functional elements of the component. Lastly, note that 
maintenance activities (such as component replacement, 

refurbishment, or reconditioning) act on the form elements of 
components. 

 
Figure 4. Generic presentation of an SSC OPM diagram and 

its link to SSC failure modes, aging degradation, 
maintenance activities, and ER data. 

The OPM diagram of a component represents the key point 
to automatically understand and analyze health data 𝐹(𝑡) 
(e.g., IRs). In particular, it clearly links monitored data with 
failure models that might affect component performance and 
maintenance activities that would restore component 
functionality. We are employing model-based data analysis 
methods to link component models with data rather than 
using machine-learning methods, which solely rely on 
available data to perform diagnostic and prognostic 
operations. Note that an OPM diagram extends failure modes 
and effects analysis tables by providing a form and functional 
description of the considered system in a graphical form. 

In Appendix A, we provide a list of the main elements of an 
OPM diagram along with their semantic description. 

We chose the OPM modeling language because: 

• The OPM language is relatively simple in nature and 
provides the most basic functionalities required to 
extract causal relations between data elements. 

• OPM diagrams can be easily digitally processed, and 
graph structures can be generated out of them. 

• A direct link between OPM model and ER data (of any 
form, e.g., textual, or numeric) along with aging and 
degradation can be uniquely established. 

An example of an OPM model for a centrifugal pump is in 
Figure 5. This simple representation includes the most basic 
elements that can be found in most OPM models and provides 
the following information: 

• The form element “centrifugal pump” is composed by 
four elements: shaft, impeller, bearing, and motor 
(through the composition link). 
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• The function “increase fluid pressure” requires the form 
element “centrifugal pump” (through the instrument 
link). 

• The function “increase fluid pressure” transform “fluid 
pressure” from low to high (through the transformation 
link). 

• “Fluid pressure” is an attribute of the form element 
“fluid” (through the characterization link). 

4. AN MBSE APPROACH TO PLANT HEALTH 
MANAGEMENT 

As indicated in Section 1, the goal is to extract information 
from plant text data (e.g., maintenance reports, WOs, or IRs). 
The approach described in this article is not based on the 
identification of the correlation between data elements using 
machine learning. Instead, the goal is to identify and trace the 
causal relationship between events. Our proposed approach 
is based on causal inference (Pearl, 2009). Causal inference 
differs from classical statistical inference in that it is not 
based solely on data but requires a model that provides 
insights on the causal relationship between stochastic 
variables. We employ SSC OPM models (see Section 3) as a 
base of our causal analysis. 

 
Figure 5. Simplified representation of a centrifugal pump 

using OPM. 

The outcome of our causal analysis is graphical in nature 
where representation of the causal relationship between 
events is performed though directed acyclic graphs (DAGs). 
DAGs consist of nodes that represent stochastic variables and 
arrows that connect nodes and represent causal relationships 
between the nodes themselves. 

In a typical NPP setting, several SSCs are constantly 
monitored, and relevant events are recorded in the plant 
monitoring and diagnostic center. As an example, specific 
events (e.g., SSC failure) might be caused by a process that 
results in SSC deterioration (in condition, performance, or 
both). Figure 6 displays a very basic relationship between 
cause and effect for one single SSC. 

When dealing with complex systems (e.g., an NPP), multiple 
SSCs are linked together (see Figure 1) to support an 
emergence function (e.g., electricity production for an NPP); 
consequently, the DAG representation in this situation might 
be very complex. 

 

 
Figure 6. DAG representation between cause and effect in 

an NPP setting between SSC health (where monitoring 
condition-based data is available) and recorded event (e.g., 

SSC failure). 

In this context, a DAG diagram represents the causal 
relationship between events and SSC health; it recreates the 
“story” behind observed events and data. We are in fact 
moving away from current methods that aim to identify 
correlations between events and data. However, note that the 
DAG diagram is unavailable and needs to be created. Our 
methods are designed to create a DAG diagram based on ER 
data. Note that, to achieve this objective, possessing ER data 
alone is not sufficient, we also need: 

• Models that can provide insights on how SSCs operate 
and how they are connected to each other (see system 
engineer perspective indicated in Section 2) 

• Links between ER data and SSC models (see data 
scientist perspective indicated in Section 2). 

As anticipated, these elements are addressed by SSC OPM 
models that capture SSC form and functional elements and 
by data mining methods that capture the order, duration, and 
coincidence of events. Our data analytics methods employ 
OPM models and advanced data mining methods to: 

• Capture information contained in available ER data (text 
and numeric) 

• Explore causal relationship between ER data elements 

• Exploit the generated relationships for anomaly 
detection, diagnostic, and prognostic purposes. 

5. ANALYSIS OF TEXTUAL DATA 

Most methods found in the literature (Young, 2018) process 
textual reports using supervised learning to predict the report 
nature (e.g., failure, operating). In this article, we are 
following a different path, to analyze the sentence structure 
of logs and reports, organize information in a structured form, 
and create a structural relationship among text objects (i.e., 
understand who and what did what, when, why, where). This 
is being accomplished by employing natural language 
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processing (NLP) methods 1  (Lane, 2019) to perform two 
main tasks: syntactic and semantic analyses.  

As a starting point, we characterize the content of a generic 
IR or maintenance report. Note that maintenance report 
content is fairly straightforward since it reports component 
replacement or restoration activity. On the other hand, IRs 
(along with SSC monitoring data) provide insights among the 
nodes of a complex DAG diagram. In other words, an IR 
describes a portion of a DAG: a node or the causal relation 
between two nodes. From an initial assessment of a dataset 
of textual data generated by an NPP, we were able to identify 
three classes of SSC health related IRs: 

• Class 1 IR: Health status. The IR reports a DAG node, 
either an event (e.g., SSC malfunction) or data regarding 
component health (e.g., excessive corrosion on pump 
impeller). 

• Class 2 IR: Cause-effect relation. The IR reports a causal 
relation between two DAG nodes; the content of these 
nodes can be any combination between events and SSC 
health information linked by a causal relationship. 

 
1 In this work, we are employing three main Python libraries: 
STANZA (https://stanfordnlp.github.io/stanza/), NLTK 
(www.nltk.org), and SPACY (https://spacy.io). 

• Class 3 IR: Time-based relation. The IR reports the time 
occurrence of multiple events (i.e., multiple DAG nodes) 
without explicitly specifying any causal relationship 
among them. 

This classification scheme defined by these three mutually 
exclusive class needs is being validated with actual NPP data 
to measure its validity (i.e., the degree to which the three 
classes are in fact mutually exclusive). In the validation 
process, we can measure the percentage of actual NPP IRs 
that falls in each class, and more importantly, the percentage 
of IRs that do not fall in either of the three classes. Note that, 
the classification provided above are relevant to IRs related 
to plant equipment performance. 

This article focuses on the first two classes presented above 
and presents the main NLP analysis workflows for both 
classes (see Sections 5.1–5.3). 

5.1. NLP Analysis Pipeline 

The first step in the analysis of textual data is to perform a 
syntactic analysis (Lane, 2019) of the raw text by employing 
the rules of formal grammar. Here, we assumed that the text 
is in a digital form (typically a string form). The syntactic 

Figure 7. Reference OPM diagram of a centrifugal pump. 
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analysis follows these main steps (see Table 1 for a more 
detailed list of NLP analysis steps): 

1. Sentence segmentation and word tokenization: each 
sentence is translated into a list of string elements. 

2. Part of speech (POS) tagging: the grammatic elements of 
each string (e.g., nouns, verbs) are identified using POS 
tags developed in the Penn Treebank project.2 

3. Named entity recognition: text entities (e.g., names, 
dates, events) are classified and identified (e.g., 
component ID, event occurrence time). 

4. Relation extraction: a knowledge graph is created where 
entities identified in Step 3 are linked together in a graph 
that reflects the structure of the original sentence. 

Steps 1–8 in Table 1 are common in any NLP analysis (Lane, 
2019). Our approach deviates from the standard NLP method 
in Steps 9 and 10. In Step 9 of Table 1, we identify elements 
of the SSC OPM model (i.e., operands, forms, or functions as 
indicated in Section 3). From each SSC OPM model, we can 
generate a set of textual elements that lists not only all OPM 
elements but also their relationship. In Step 10, we infer the 
causal relationship between elements in the IR (see 
Sections 5.2 and 5.3). These relationships are cause and 
consequence. Here, we exploit the observations reported in 
the IR by plant system engineers and trace back causal 
relationship with other IRs using the SSC OPM models. 

Table 1. List of the main NLP analysis steps. 

ID Steps Note 
1 Retrieve raw text  

2 Cleaning 
Process of cleaning raw text 
data from non-text-related 
elements3  

3 Segment 
sentence 

Each sentence is analyzed 
separately 

4 Clean 
punctuation Punctuation is removed 

5 Tokenize 
sentence  

Each sentence is split into a set 
of words 

6 Stemming and 
lemmatization 

Each word is converted into its 
own dictionary form or to its 
stem or root form 

7 POS tagging 
Process of marking each word 
as corresponding to a particular 
POS using grammatical rules 

8 Entity 
recognition 

Process designed to identify 
and classify named entities into 

 
2  Penn Treebank project official website: 
https://catalog.ldc.upenn.edu/LDC99T42  

predefined classes such as: SSC 
type, systems, locations, time 
values 

9 OPM entity 
recognition 

Process designed to identify 
OPM elements (functions or 
forms)  

10 Information 
extraction 

Process of extracting 
information content from text 
(see Sections 5.2 and 5.3) 

5.2. Analysis of Health Status Reports 

The methods designed to extract information from Class 1 
IRs have been structured in a similar way to the one presented 
in (Doan, 2019). We, in fact, based our methods on a set of 
rule templates based on specific trigger words and relations. 
We focused on the development of status nouns and verbs 
that would indicate a degradation of SSC functions or internal 
elements. 

The chosen set of status words includes verbs, adjectives, and 
nouns obtained from the WordNet4 database. For Class 1 
IRs, we have identified three categories of status words 
(negative, anomalous, and positive), shown in Table 2, 
Table 3, and Table 4, respectively. Table 5 provides an initial 
list of status relations encoded using STANZA Python library. 

Table 2. Subset of negative status nouns, verbs, and 
adjectives. 

Status Nouns Status Verbs Status Adjectives 
Failure 

Degradation 
Breach 
Fracture 
Decline 
Decay 
Loss 

Fail 
Degrade 
Break 

Decline 
Go bad 
Rupture 
Breach 
Reduce 
Increase 
Decrease 
Fracture 

Aggravate 
Worsen 

Lose 

Unable 
Ineffective 
Anomalous 

 
Table 3. Subset of positive status nouns, verbs, and 

adjectives. 
Status Nouns Status Verbs Status Adjectives 

Operation 
Functioning 

 

Function 
Work 

Operate 

Operating 
Operational 
Functional 

3  For this task we have employed Beautiful Soup 
(https://www.crummy.com/software/BeautifulSoup/bs4/doc/) 
4 WordNet official website: https://wordnet.princeton.edu/  
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Run Usable 
 

The status relations indicated in Table 5 were coded in a 
Python-based code that relies on the Stanford NLP library 
STANZA 5 . This library provides a set of algorithms for 
linguistic analysis that can be used to construct fairly 
complex NLP analysis pipelines. Once the IR has been 
processed using all steps listed in Table 1, a set of tuples is 
created from each sentence in the form (SSC, form and 
function, health status). These tuples are designed to 
represent in digital form the DAG node as follows: 

 
(SSC; subject = ‘OPM function/form’; health status = ‘ok, 
‘degraded’ or ‘anomalous’) 
 
An example of a Class 1 IR is “Oil puddle was found in 
proximity of CCW Pump 1B.” By using the NLP analysis 
Steps 1 through 7 listed Table 1 using STANZA and NLTK 
Python libraries, the resulting grammatical structure of the IR 
is shown in Figure 8. This figure shows the POS tags 
represented on top of each word, and the grammatical 
dependencies between words (represented with arrows). 

Table 4. Subset of anomalous status nouns, verbs and 
adjectives. 

Status nouns Status verbs Status adjectives 
Observation 
Detection 

Find (out) 
Observe 
Detect 

Determine 
Discover 

Get 
Notice 

Become 
Record 
Register 

Show 

Unchanged 
Unaltered 
Constant 

Consistent 
Stable 

Unaffected 

 
Table 5. Subset of status relations. 

Relation 
A (noun) “status verb” “status adjective” 
A (noun) “status verb” “status verb-ing” 
“Status adjective” B (noun) “status verb” 
“Status noun” “status verb” prep. B (noun) 

 
Figure 8. Grammatical decomposition and analysis of the 

example Class 1 IR. 

Step 8 in Table 1 is accomplished by looking in the IR for 
specific SSC tags (i.e., CCW Pump 1B). It is here assumed 

 
5 STANZA official website: https://stanfordnlp.github.io/stanza/  

as well that SSC tags are unique and given. Once the SSC has 
been identified, its OPM model (see Figure 7) is employed to 
identify OPM elements in the sentence that refer to such 
model (see Step 9 in Table 1). In this case, the word “oil” is 
linked to the OPM form element “ISO VG100 oil”. 

Next, Step 10 of Table 1 is performed where the verb “find” 
is identified (i.e., verb being part of anomalous status, see 
Table 4) and a relation (see Table 5) is matched. The 
following tuple is constructed: 

(SSC=CCW Pump 1B; subject=ISO VG100 oil; health 
status=anomalous) 

Note that now the OPM model of Figure 7 can propagate 
anomalous behavior contained in the IR to other OPM 
elements such as: 

Oil → motor → rotating → pump → accelerating function 

5.3. Analysis of Health Status Reports 

For the extraction of the causal relationship between sentence 
elements of a sentence, we identified the works presented by 
Doan (2018) as candidates to effectively perform such a task 
since it provides robust and explainable analysis results. As 
described in Section 5.2, this method is again based on the 
identification of a set of rule templates based on specific 
trigger words and relations. The chosen set of words includes 
verbs and nouns obtained from the WordNet database6 and 
is shown in Table 6. 

Table 6. Subset of trigger causal verbs and nouns. 

Causal Nouns Causal Verbs 
Result 
Reason 
Cause 

Cause 
Stimulate 

Make 
Derive 
Trigger 
Result 
Lead 

Increase 
Decrease 

 
Similarly, the chosen set of causal relations has been 
constructed from common English syntactical rules as 
indicated in Table 7. These causal relations were coded in a 
Python-based code that relies on the Stanford NLP library 
STANZA. 

Once the IR has been processed using all steps listed Table 1, 
a set of tuples is created from each sentence in the form 
cause=A → consequence=B. These tuples are designed to 
represent the DAG node in digital form as indicated in 
Figure 6: 

6 WordNet official website: https://wordnet.princeton.edu/  
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(SSC, OPM form/function, health status) → (SSC, OPM 
form/function, health status) 

As an example of Class 2 IR is: 

Bearing failure of CCW Pump 1B caused reduced flow. 

By using the NLP analysis Steps 1–7 listed in Table 1 using 
STANZA and NLTK Python libraries, the resulting 
grammatical structure of the IR is shown in Figure 9. This 
figure shows the POS tags on top of each word and the 
grammatical dependencies between words (represented with 
arrows). 

Table 7. Subset of causal relations, extended from 
(Doan, 2018). 

Relation 
A (noun) “causal verb” B 
A (verb) “causal verb” B 
B was “causal verb” A 
A is a “causal noun” of B 
B was “causal verb” by A (verb) 
A “causal verb” in/to/from B 

 

 
Figure 9. Grammatical decomposition and analysis of the 

example Class 1 IR. 
Step 8 in Table 1 is accomplished by looking in the IR 

for specific SSC tags (i.e., CCW Pump 1 B). Again, we 
assumed that SSC tags are unique and given. Once the SSC 
has been identified, its OPM model (see Appendix A) 
identifies OPM elements in the sentence that refer to such a 
model (see Step 9 in Table 1). In this case, these OPM 
elements in the text have been identified as “bearing” and 
“flow.” 

Next is Step 10 of Table 1; here, the causal verb “cause” 
(see Table 6) and a specific causal relation of the sentence 
(see Table 7) are identified that produce the causal 
relationship as follows: 

(CCW Pump 1B, bearing, degraded) → (CCW Pump 1B, 
high internal v flow, degraded) 

6. CONCLUSIONS 

In this paper, we have presented a series of methods and 
models designed to analyze ER data with particular focus on 
textual data. We have introduced an approach to extract 
quantitative information from ER textual data, such as IRs. 
Rather than focusing on machine-learning heuristics, the 
system view of the SSC (through a OPM diagram) provides 
knowledge required by our data analysis methods to extract 
knowledge from the textual data retrieved by IRs and WOs 

and identify possible causal links again using the SSC OPM 
diagram. The immediate applications for this kind of methods 
range from component diagnostic to history retrieval. In the 
first application, these methods are designed to integrate 
multiple data elements, and identify the causes of any 
anomalous behavior. In the second application, we are 
targeting the retrieval of the historic performance of a 
component to capture trends and reliability measures such as 
component unavailability. 
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APPENDIX A 

A subset of the basic elements (Dori & Crawley, 2022) of an 
OPM diagram are shown below along with their description. 

OPM Element Description 

 

Object A is a tangible entity 
that exists 

 

Object A has two states: 
State1 and 2 

 
Process B transforms an object 

 
Link designed to decompose 

an object into its basic 
elements 

 
Link designed to define 
attributes of an object 

 

Link designed to indicate a 
transportation activity between 

a process and an object  

 

Link designed to represent 
objects that support a process 

 

 


