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ABSTRACT

Computational models provide essential quantitative tools for
assessing and predicting the health and performance of physi-
cal systems. However, high-fidelity models are rarely used in
real-time operations or large optimization loops, due to their
time-intensive nature. A common approach to improving
computational efficiency of prognosis is to employ surrogate
models. Such models can significantly decrease computation
time for some accuracy loss. In this context, use of Dynamic
Mode Decomposition (DMD) is proposed to generate surro-
gate models for lithium-ion (Li-ion) battery discharge. DMD
has been suggested and used successfully in the area of fluid
dynamics for over a decade, but it has not been applied to
the Prognostics and Health Management domain, where far-
ahead prediction of nonlinear behavior is crucial to propagate
faults or predict Remaining Useful Life (RUL). For Li-ion
battery health management, the standard application of DMD
using only the observable quantities of interest was unable
to capture the nonlinear discharge of batteries exhibited in
lab testing. A potential solution was found by implementing
Koopman theory, which considers the dynamics of nonlinear
systems. Koopman theory provides a mechanism to trade-off
low dimensional nonlinear models with high-dimensional lin-
ear ones in a DMD framework, by augmenting nonlinear state
variables into the system representation. For battery health
management, we augmented the observable variables with
the hidden states of a higher-fidelity physics model to build
the DMD surrogate. In comparison to a high-fidelity model,
the surrogate improved computational efficiency with only a
minimal loss of accuracy, and enabled long-term prognostics
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horizons. A generalized method for this was implemented in
the ProgPy python packages.

1. MOTIVATION

The field of prognostics and health management (PHM) in-
volves developing quantitative tools to estimate the health of
physical systems and predict how system degradation will
evolve with use. To aid in risk monitoring and mitigation,
prognostics algorithms must be both accurate and timely. Of-
ten, high accuracy is attained by representing physical sys-
tems with high-fidelity models, which can be computation-
ally expensive. For example, in some resource-constrained
scenarios, such as small Uncrewed Aerial Systems (sUAS),
small satellites, or spacecraft, the computational cost of high-
fidelity models is prohibitive to achieve real-time or quasi
real-time prognostics. This is especially true in cases where
prognostics is performed inside an optimization loop, such as
an application where system loading is optimized to maxi-
mize useful life.

Surrogate, or reduced-order, modeling is a computationally
efficient alternative to more detailed physical models. In sur-
rogate modeling, a lower-fidelity, faster version of the model
(i.e., the surrogate) is generated and used in place of the orig-
inal high-fidelity model. This approach can be used to speed
up complex simulations when the need for faster prediction
outweighs the need for high accuracy. For example, in simu-
lations of advanced air mobility vehicles, surrogate models of
the battery and powertrain can provide an alternative to phys-
ical models that describe the full electrochemistry of the bat-
tery and the high-frequency electronic speed controller, lead-
ing to faster simulations when highly detailed modeling is not
necessary to assess the system performance.

One such surrogate modeling technique is Dynamic Mode
Decomposition (DMD), a powerful data-driven tool used to
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identify approximate linear dynamics from high-dimensional
data (Kutz, Brunton, Brunton, & Proctor, 2016). Developed
originally within the computational fluid dynamics commu-
nity by Schimd (Schmid, 2010), DMD and its variants have
been successfully used for more than a decade. The method
is remarkably simple and requires minimal assumptions about
the underlying physical system. In its standard form, DMD
aims at approximating the nonlinear dynamics of a system
through a linearized model expressed as

X ′ = AX , (1)

where X is a “snapshot” matrix, with each column consisting
of a vector of observable data from the system at successive
points in time (i.e. column one includes all observable data
at t0, column two includes data at t1, etc.). Similarly, X ′

contains the same observable data one step forward in time
(i.e. from t1 onward; see Section 2.1 for details). Once con-
structed, the linear approximation can be solved for by a ma-
trix pseudo-inversion, and produces accurate look-ahead pre-
dictions for short time horizons (Kutz et al., 2016). Its sim-
plicity is also supported by the computational cost, limited to
the computation time of a single Singular-Value Decomposi-
tion (SVD) for the regression stage. However, while proven
to be a valuable tool in specific applications for short time
scales, of the order of a few time steps ∆t, DMD has yet
to be explored extensively in a prognostics setting where the
system state dimension is not always large, fast computations
can be crucial, and long prediction horizons are necessary.
Long prediction horizons extend, for the sake of this work,
to hundreds or thousands of time steps ∆t beyond of the ini-
tial condition. They differ from short prediction horizons, for
which DMD has proven successful, where only a few time
steps ahead are predicted and long-term dynamics can be ig-
nored. In the test case we present in this paper, the prediction
horizon is of the order of 103 s, e.g., ∼1000 to ∼3000 s, with
∆t of the orders of ∼ 10−1s to ∼ 101s.

As motivation for using DMD in a prognostics scenario, we
performed some exploratory work using DMD to predict the
voltage discharge curve of a lithium-ion (Li-ion) battery sub-
ject to step-wise randomized current input. The discharge
curve was generated using a well-established, nonlinear elec-
trochemistry model (Daigle & Kulkarni, 2013), which as-
sumes the state of the battery health is known and describes
the nominal voltage discharge that results from a current im-
posed upon the battery. The relationship between input cur-
rent and output voltage is highly nonlinear, and thus provides
an ideal opportunity for DMD to approximate this complex
system with a linear model.

As in a standard DMD application, we construct a snapshot
matrix with only output quantities. However, in the proposed
battery case study, there is just one output quantity (i.e. volt-
age) at each point in time. As in previous work with limited

Figure 1. Prediction of a voltage discharge curve (b) given a
current loading profile (a) using DMD with one-dimensional,
lagged time series of voltage values.

state dimensions (Tirunagari, Kouchaki, Poh, Bober, & Win-
dridge, 2017), we attempted to adjust for this by compos-
ing each column of the snapshot matrix with a set of lagged
time series of voltage values, similarly to an auto-regressive
model. For configurable model order, j, X is:

X =


V (tj) V (tj+1) . . . V (tj+(m−1))

...
...

...

V (t0) V (t1) . . . V (tm−1)

 (2)

(Also see Eq. (1) in (Tirunagari et al., 2017)).

However, applying DMD in this way, the model is unable
to capture the nonlinear dynamics of voltage discharge, thus
failing to produce acceptable predictions (Figure 1).

This poor linearization forced us to explore alternatives to
the use of observable states only. An extension of DMD
was presented in (Williams, Kevrekidis, & Rowley, 2015),
where the authors proposed to augment the set of observ-
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ables with a set of basis functions that would aid the re-
gression. By doing so, the increased number of rows in the
snapshot matrices increases the dimensionality of the model
and its ability to reproduce the reduced-order dynamics (this
approach connects DMD with Koopman theory (Koopman,
1931)). However, the selection of the basis functions is ar-
bitrary, and there is no guarantee that the functions selected
for one application will work seamlessly for others. For the
same battery case study, we tried using radial basis functions
of type “thin plate spline” following the approach in (Korda
& Mezić, 2018), where one hundred basis functions with ran-
dom control points were used to augment the dimension of
the observable states. Korda and Mezić successfully found
a finite-dimensional approximation of the Koopman opera-
tor for the nonlinear systems they studied, and applied it to
model a predictive control problem. Their use-case required a
limited number of predictions steps, given the high-frequency
nature of feedback controls. In our case, however, the success
encountered in short-term state forecasts did not translate to
accurate predictions of a full voltage discharge curve, regard-
less of our many attempts to tune the model by changing the
type and number of basis functions.

In this work, we explore an alternative extension of DMD
that utilizes the internal states and equations of a high-fidelity
model of the system. Exploiting such a model (as in the
electrochemistry model of the Li-ion battery) provides ac-
cess to unobservable system state information, and we aug-
ment our snapshot matrices with this information. This pro-
vides the opportunity to enhance the DMD framework with
physics-based knowledge (instead of using basis functions
that are not driven by physical processes, as in (Williams et
al., 2015) and (Korda & Mezić, 2018) above). We define this
DMD extension as “physics-enhanced DMD”. We find that
such a physics-enhanced DMD allowed us to accurately cap-
ture battery voltage discharge predictions over a number of
blind tests. Thus, this work highlights the potential for using
physics-enhanced DMD for long-term predictions.

The rest of the paper is structured as follows: Section 2 sum-
marizes DMD and the basic equations necessary to imple-
ment the algorithm. Section 3 shows the application of the
physics-enhanced DMD as a surrogate for a simple toy prob-
lem (Section 3.1) and voltage discharge predictions generated
through the electrochemistry battery model (Sections 3.2 -
3.5). Section 4 concludes the paper with a critical analysis
and suggestions for future work.

2. BACKGROUND

This section summarizes the fundamentals of the DMD algo-
rithm, its connection with the Koopman operator, the SVD-
based approach to find matrix A (Eq. (1)) in large scale prob-
lems, and the application of DMD with control inputs. Most
of the material was retrieved from (Kutz et al., 2016; Williams

et al., 2015), and the interested reader is referred to those pub-
lications for more details.

We define the discrete dynamical system similarly to (Kutz et
al., 2016) as follows:

xk+1 = F (xk) ,

yk+1 = g(xk+1) ,

where xk ∈ IRn×1 is the vector of states representing the
dynamical system at time tk ∈ IR≥0, k ∈ IN. Vector yk ∈
IRq×1 represents the measurement vector. Symbols F (·) :
IRn×1 → IRn×1 and g(·) : IRn×1 → IRq×1 represent the
state-space functions.

It should be noticed that, in the DMD context, the measure-
ment function g(·) may be composed of equations derived
from physical relationships between the hidden states and the
“observable” y values, and/or data-driven kernels (such as
basis functions) that increase the state vector to a higher di-
mensionality (Korda & Mezić, 2018), so that DMD can be
applied to this higher-dimensional vector y to find a higher-
dimensional linearized system (see Section 2.2 for more de-
tails).

2.1. Basics of DMD: Estimating Matrix A

As described in (Kutz et al., 2016), DMD is “an equation-free
method capable of providing a decomposition of a complex
system into spatiotemporal coherent structures that may be
used for short-time future state prediction and control” (chap-
ter 1, page 1). One of the key advantages of DMD is its sim-
plicity. The algorithm starts by using the observable variables
of the system to construct snapshot matrices X and X ′, with
X ′ lagged by one time step, ∆t:

X(t) =


x1(t0) . . . x1(ti) . . . x1(tm−1)
x2(t0) . . . x2(ti) . . . x2(tm−1)
. . . . . . . . . . . . . . .

xn(t0) . . . xn(ti) . . . xn(tm−1)

 ,

X ′(t) =


x1(t1) . . . x1(ti+1) . . . x1(tm)
x2(t1) . . . x2(ti+1) . . . x2(tm)
. . . . . . . . . . . . . . .

xn(t1) . . . xn(ti+1) . . . xn(tm)

 .

Thus X, X ′ ∈ IRn×m. For simplicity of notation, we will
describe the dynamical system in its discrete form, omitting
the time dependency of the matrices. In the case of unforced
systems, DMD aims at finding the constant matrix A to sat-
isfy equality X ′ ≈ AX , and a best fit can be obtained by:

A = X ′ X+ , (3)

where + denotes the inverse (we use the Moore-Penrose
pseudo-inverse), and A ∈ IRn×n. This is equivalent to
minimizing the Frobenius norm of the residuals X ′ − AX ,
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(Kutz et al., 2016). Once A is computed, the dynamics
can then be approximated with discrete first order integration
xk+1 ≈ Axk.

2.2. Connection with Koopman Operator

DMD attempts to approximate a nonlinear system with a lin-
ear one. It can be viewed as a finite-dimensional approxi-
mation of the Koopman operator, K (Koopman, 1931; Kutz
et al., 2016), which is an infinite-dimensional, composition
operator for g and F :

K g = g ◦ F ,

K g(xk) = g(F (xk)) = g(xk+1) .

As stated in (Kutz et al., 2016), this is different from lineariz-
ing the system dynamics, where it is necessary to define an
equilibrium point, x0, around which the linearization is valid.
In the next section, we will utilize this principle by introduc-
ing hidden states of the physical model as observables to build
matrix A.

2.3. DMD for Large-Scale Problems

DMD was originally developed for use in the fluid dynam-
ics community and is routinely used on large scale problems
(Kutz et al., 2016). In these cases, where the state dimension
n is on the order of thousands, the inversion of X can be nu-
merically intractable, thus requiring rank reduction to build
the matrix A, such as singular-value decomposition (SVD)
(Stewart, 1993). While the problems presented here do not
require this (the electrochemistry model has n = 8 states),
the SVD-based algorithm is common in solving DMD, and
thus we provide a brief summary. The interested reader is
referred to (Kutz et al., 2016) for more details.

Matrix X is first split into U , Σ, V ∗ according to SVD, where
U and V are the left and right eigenvectors of X , respectively,
Σ is a square diagonal matrix of eigenvalues, and superscript
∗ indicates the complex conjugate. Matrix A is calculated
using the pseudo-inverse of X through SVD:

A = X ′ V Σ−1 U∗ . (4)

To reduce dimensionality, matrices U , Σ, V are truncated at
the desired reduced rank r such that Ũ ∈ Cn×r, Σ̃ ∈ Cr×r,
Ṽ ∈ Cm×r. The rank-reduced representation of A, Ã, can
be obtained from Eq. (4) by pre- and post-multiplying A by
U∗ and U , respectively, which leads to:

Ã = Ũ∗ X ′ Ṽ Σ̃−1 ,

thus obtaining the reduced-rank dynamical system: x̃k+1 =
Ã x̃k. The full state vector can be retrieved from xk = Ũ x̃k.

2.4. DMD with Control

In some systems, there are input variables that drive the sys-
tem dynamics (e.g. battery discharge is dependent on current
input). To adjust DMD methodology to accommodate this,
DMD with control seeks to estimate matrices A and B that
approximate the nonlinear system with a linear one, written
in canonical form:

xk+1 = Axk +B uk .

In this case, in addition to X and X ′, DMD requires the con-
struction of the input snapshot matrix Υ:

Υ =


u1(t0) . . . u1(ti) . . . u1(tm−1)
u2(t0) . . . u2(ti) . . . u2(tm−1)
. . . . . . . . . . . . . . .

uq(t0) . . . uq(ti) . . . uq(tm−1)

 ,

which leads to the state equation in matrix form:

X ′ ≈ AX +BΥ.

To solve, we can simply stack matrices X and Υ along the
state dimension, i.e., Ω = [XΥ], and then run DMD by sub-
stituting Ω to the original X . Matrices A and B then come
from the splitting of the left eigenvectors U into two separate
components (Kutz et al., 2016):

A ≈ X ′ V Σ−1 U∗
1 ,

B ≈ X ′ V Σ−1 U∗
2 ,

where U1 and U2 are the components of U such that U1 ∈
Cn×r, U2 ∈ Cq×r, and U =

[
U1

U2

]
.

It should be noticed that if a reduced-rank approximation of
A, B is desired (i.e., r < rank(X)), the user should replace
the full-rank matrices with the reduced rank ones and follow
the steps in Section 2.3. DMD with control has been imple-
mented in our battery case study as the discharge is driven by
the input current.

3. PHYSICS-ENHANCED DMD: APPLICATIONS AND
RESULTS

3.1. Toy Example: DMD and Thrown Object

As a preliminary test, we applied DMD to the simple
“thrown object” model from the prog models python
package (Teubert, Corbetta, Kulkarni, Jarvis, & Daigle,
2022). The ThrownObject model is a simple nonlinear model
that describes the 1D dynamics of a mass thrown vertically
into the air, using a standard drag equation with coefficient
CD producing the resistance force. The model is written in
state-space canonical form using state vector x = [x, ẋ]⊤,
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Figure 2. Prediction of a thrown object’s position (a) and ve-
locity (b) using DMD with (i) one-dimensional, lagged time
series of position, (ii) position and velocity, (iii) position, ve-
locity, and velocity-squared. Note: velocity was not predicted
with the lagged time series approach, as we only introduced
x in the algorithm.

and measurement vector y = [x],

dx

dt
= ẋ ,

dẋ

dt
=− g − ρCDA

2m
|ẋ|ẋ ,

(5)

where g is gravity, m is the object’s mass, A is the object ref-
erence area, and ρ is the air density. The reference frame is a
unit vertical axis pointing upwards normal to the ground. For
this case, we ignore the effect of the small altitude changes to
air density.

Beginning with a standard DMD approach, we constructed
a snapshot matrix consisting of lagged time series of only
the observable values, which in this case is the position of
the object (same as Eq. (2) but with position instead of volt-
age). By using lagged-time series, one may resort to using
longer lagged series to improve predictions (for example, us-
ing 10 or more previous position values in each column, i.e.
j = 10 in Eq. (2)). To maintain a fair comparison with the
physics-based method described below, we used a number of
lagged steps equal to the number of state variables, i.e. 2 (for
position and velocity). Next, we considered the addition of
physics-based information into the snapshot matrix. To do so,
we construct a snapshot matrix that includes internal states at
each point in time, such that both position and velocity are
included in X and X ′, giving

X =

[
x(t0) . . . x(ti) . . . x(tm−1)
ẋ(t0) . . . ẋ(ti) . . . ẋ(tm−1)

]
, (6)

and the corresponding X ′ shifted by one time step.

Figure 3. Root mean square error of the reconstructed posi-
tion (a) and velocity (b) using DMD, as a function of the drag
coefficient CD. The introduction of ẋ2 in matrices X, X ′ im-
proves predictions.

Further, we explore the configurability of a “physics-
enhanced” DMD by augmenting the state vector with ẋ2

(i.e. same as Eq. (6) with an additional row of ẋ2 throughout
time). This addition is obvious for this specific toy problem,
as ẋ2 appears in the state-space model (Eq. (5)). However,
which additional terms to include may not be clear when
creating surrogates of complex models.

It should be noted, nonetheless, that the results shown in
Fig. 2 were obtained by introducing gravity in the matrices X
and X ′ as a constant value, i.e., augmenting the state vector
with g. By so doing, the linear case with CD = 0 can be re-
constructed even with no additional physics-related variables.
This is strictly related to the addition of a “constant” to be es-
timated in linear regression, corresponding to the zero-order
parameter or intercept term. Regardless of the introduction of
g, we were unable to reconstruct the model analytically when
CD > 0, because we were unable to find a “closed” finite-
dimensional linear approximation of it (Kutz et al., 2016).

We compared the outcomes of the three scenarios: (i) lagged
time series, (ii) x, ẋ, and (iii) x, ẋ, ẋ2, in the snapshot matri-
ces, against a ground truth test case. The initial condition of
the object was set to x0 = 1.83m and ẋ0 = 20m/s, and we
used the following parameters:

CD = 1.1 ,

g = 9.81m/s2 ,

m = 0.02 kg ,

A = 0.01m2 , and

ρ = 1.225 kg/m3.

After estimating matrix A, and setting the appropriate initial
conditions, we then applied A iteratively to the augmented

5



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2022

state vector to approximate the dynamics throughout time.
The results illustrate that physics-enhanced DMD performs
better than a standard DMD approximation, and that the in-
troduction of ẋ2 allows for even more accurate predictions
(Fig. 2). The significant improvement of the DMD approx-
imation upon the addition of internal states in the snapshot
matrix highlights the benefit of including physics-based in-
formation in DMD.

As a final consideration, we explored the approximation ac-
curacy as the thrown object model became increasingly non-
linear, by sweeping through CD values from 0 (linear) up to
an unreasonably high drag coefficient of 7.0. Training and
testing the model for various drag coefficients, we find that
the accuracy with which DMD captures the system is nearly
constant, but the root mean square error obtained by including
ẋ2 in the state vector is much lower than the surrogate model
with only x and ẋ (Fig. 3). As expected, when the model is
linear (i.e. CD = 0), DMD both with and without ẋ2 can re-
construct the A matrix up to numerical precision, so the error
is zero.

3.2. Application of DMD to Battery Discharge Prediction

Next we applied DMD to an electrochemistry based
state-of-charge model for a Li-ion battery. The model
used as a high-fidelity reference was built upon first
principles derived from the work (Karthikeyan, Sikha,
& White, 2008), as well as empirical evidence1, and
the interested reader is referred to (Daigle & Kulkarni,
2013) where the model was first proposed. The model
used here is implemented in prog models (Teubert,
Corbetta, Kulkarni, Jarvis, & Daigle, 2022) as
prog models.models.BatteryElectroChemEOD.

It is worth noting that the state-of-charge degradation phe-
nomena operates in shorter time horizons than some other
forms of degradation. Because of this, the computational ben-
efits from surrogate models can be unnecessary. That said,
the computational costs of this model are too large for some
constrained environments like those present on spacecraft or
small unmanned vehicles. Future work could investigate pre-
diction for longer time horizon degradation modes, like bat-
tery aging.

The core model equations are: (i) Nernst’s equation for the
equilibrium potential (Eq. (7)), and (ii) Butler-Volmer equa-
tion from which the surface overpotential (Eq. (8)) derives.

VU,i = U0,i +
RT

m̃F
ln

(
1− x̃i

x̃i

)
+ Vni,i , (7)

Vη,i =
RT

Fα
arcsinh

(
Ji
2Ji0

)
. (8)

1Data available at https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-
data-repository/

The subscript i indicates the negative or positive electrode,
i = {n, p}. Term U0,i is the reference potential, R is the uni-
versal gas constant (and should not be confused with the total
resistance of the model, R0), T is the electrode temperature in
Kelvin, m̃ is the number of electrons transferred in the reac-
tion (m̃ = 1 for Li-ion batteries), F is the Faraday constant, x̃
is the mole fraction for the Lithium-intercalated host material,
and Vni is the activity correction term, defined for non-ideal
(ni) voltage, zero in ideal conditions. In Eq. (8), α is a sym-
metry factor, Ji is the current density and Ji0 is the exchange
current density, all defined in (Daigle & Kulkarni, 2013). The
battery output voltage V can then be approximated using:

V = VU,p − VU,n − V0 − Vη,p − Vη,n ,

where V0 is the nominal voltage drop defined by the required
current, iapp, multiplied by the lumped internal resistance,
R0. Mole fractions, amount of available Li-ions, as well as
concentration gradients can be retrieved from the original pa-
per (Daigle & Kulkarni, 2013), and are omitted for the sake
of brevity.

Similar to the thrown object example, the high-fidelity model
provides physics-based information about the system dynam-
ics in the form of internal system states. We leverage this
known physical information about the system by building
out the snapshot matrix to include the internal state infor-
mation, as well as the voltage (i.e., the observable output)
and the state-of-charge of the battery throughout time. State-
of-charge (SOC) is defined as the progress towards the event
end-of-discharge (EOD), where an SOC of 1 corresponds to
a fully charged battery and 0 corresponds to a state where the
event has occurred (i.e., the battery is fully discharged). SOC
is highly correlated with voltage, but they are not equivalent.
Thus, the snapshot matrix X is of the form,

X =



x1(t0) x1(t1) . . .
x2(t0) x2(t1) . . .
. . . . . . . . .

x8(t0) x8(t1) . . .
V (t0) V (t1) . . .

SOC(t0) SOC(t1) . . .
u(t0) u(t1) . . .


,

where xj are the eight internal states of the electrochemistry
battery model, V is the voltage, SOC is the state-of-charge,
and u is the current. The battery hidden state vector x ∈
IR8×1 is composed of temperature T , nominal voltage drop
V0, surface overpotential Vη,n, Vη,p, and charges for bulk qb,i
and surface qs,i:

x = [T, Vo, Vη,n, Vη,p, qb,n, qs,n, qb,p, qs,p]
⊤ .

With this structure, we constructed snapshots using a collec-
tion of training data with varying loading profiles, each se-
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quentially stacked to create one large training dataset, and
solved for the linear approximation as described in Section 2.

3.3. Introduction of Artificial Noise to Aid Regression

One of the challenges related to the estimation of matrices A
and B is the potential for linear dependencies among rows of
X and X ′. In fact, (Kutz et al., 2016) touches on the sub-
ject when presenting DMD with control (chapter 6, page 98).
Linear dependencies in the input variables prevent the correct
identification of A and B because the solution is not unique.
We observed empirically that quasi-linearly dependent rows
can also prevent DMD from finding an accurate solution, even
if matrices the X and X ′ have full rank.

In the battery use case presented here, some hidden states
show an almost-linearly dependent behavior, even if not ex-
act, and DMD indeed fails to generate a reliable model. To
overcome the problem, we introduced random perturbations
into X (and therefore X ′), which helps the stability of DMD
by “breaking” the dependency among the state variables. By
adding small Gaussian noise with a standard deviation of 0.01
when building the snapshot matrices, we observed more ro-
bust matrices A and B and a more reliable DMD model.

It is important to note that the introduction of noise into the in-
put data should be used carefully, as the standard DMD algo-
rithm introduces a bias in the estimation process when noise
is present (Dawson, Hemati, Williams, & Rowley, 2016).
Loosely, DMD can be considered a simple linear regression
approach where X is the independent variable and X ′ is the
dependent variable. In linear regression, noise is supposed
to be present in the dependent variable, but not in the inde-
pendent one. However in our case, noise is present in both
X and X ′. Thus, for a more rigorous approach, one should
rely on one of the more advanced DMD techniques presented
in (Dawson et al., 2016) to correct for sensor noise. How-
ever, the methods in (Dawson et al., 2016) are not tailored
for DMD with control, which is necessary in our battery use-
case. At this stage of the research, our attempt to use methods
similar to (Dawson et al., 2016) failed at reproducing a more
robust linear model. Future works will investigate the use of
bias-correction methods for the case studies where control is
necessary.

3.4. Prediction Accuracy

We performed a number of blind tests for a diverse set of load-
ing profiles (three of which are illustrated in Fig. 4). In each
test, only the initial condition of the internal states, voltage,
and SOC was known, as well as the expected load throughout
time. The linearized model was applied iteratively to perform
a multi-step look-ahead prediction, and the results were com-
pared to the original high-fidelity electrochemistry model,
from which the surrogate model was generated. The result-
ing physics-enhanced DMD model provides approximations

to the high-fidelity model and a significant improvement over
DMD with only observable values (Fig. 4a).

Notably, the approximations are accurate for long time hori-
zons, a new feature not achievable with a classic DMD
method (e.g. until SOC ≈ 20% compared to SOC ≈ 85%
for the standard, observable only surrogate). However, the
DMD approximation fails to capture the dynamics near end-
of-discharge (EOD) (e.g., ≥ 2000s in Fig. 4). We find that
this final stage of discharge is too nonlinear to be well approx-
imated with our DMD model, resulting in a poor approxima-
tion of the time of final EOD. Although the sudden drop in
state-of-charge and voltage are not captured, the model per-
forms well up to a state-of-charge (SOC) of 20%. High ac-
curacy until ∼20% SOC is particularly relevant because ap-
plications involving Li-ion batteries, such as UAV operations,
are typically not allowed to continue below such small SOC
values. Thus, using a conservative 30% minimum SOC, the
DMD predictions are satisfactory. In future work, we will
explore further extensions of DMD to improve this final fit.

As a final test of using DMD to predict battery voltage dis-
charge, we adjusted our model to be representative of an aged
battery by appropriately increasing the internal resistance pa-
rameter and decreasing the maximum battery capacity param-
eter. In doing so, the high-fidelity model describes a battery
that has degraded due to aging processes (Daigle & Kulkarni,
2016). Training on similar data, we find that the DMD model
is able to replicate the voltage discharge of the aged battery
(Figure 4b). Thus, the physics-enhanced DMD model cap-
tures the voltage discharge dynamics of both a healthy and
aged battery, and while we cannot conclude that it is also able
to capture aging degradation dynamics, these findings pro-
vide positive preliminary results for future work.

3.5. Prognostic Performance

One utility of a surrogate model is its ability to be used in
prognostics. So, as a final exploration into the benefits of a
physics-enhanced DMD, we considered the use of a DMD ap-
proximation within a prognostics framework. It was expected
that DMD would provide a reduction in computation time at
the cost of prediction accuracy.

To evaluate the prognostic performance, we calculate the
mean squared error (MSE) of predicted voltages at future
time-points when compared to a ground truth (a metric of in-
terest in many prognostic applications). For the ground truth,
we use the results from the high-fidelity model with a time
step of ∆t = 0.1s. This is an appropriate comparison, as
the goal of a surrogate model is to adequately represent the
behavior of the high-fidelity model.

To evaluate the computational performance, we mea-
sure the CPU time per second of simulation (using
time.process time in python, average of 50 runs re-
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Figure 4. (a) Prediction of battery voltage (ii) and battery SOC (iii) given loading profiles (i) using the electrochemistry model
(solid lines) and a physics-enhanced DMD method (dashed lines) for healthy battery. (b) Same, comparing a healthy and an
aged battery.

ported in Table 1). Standardizing per second of simulation
prevents an overestimation or underestimation of EOD from
affecting the metric, allowing for a fair comparison of the
computational efficiency of the methods. The results of this
investigation are illustrated in Table 1 and Fig. 5.

Results illustrate that prognostics performance is significantly
better for the high-fidelity model at small step sizes (∆t).
At comparable step sizes, the surrogate model produces only
modest or no performance improvements (e.g. compare ∆t=5
for the two models in Table 1). However, the performance
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Table 1. Prognostic and Computational Performance at Different Step Sizes

Model ∆t (s) CPU-time per sim second Voltage MSE
(seconds, mean ± SD) (volts)

High-fidelity ∆t = 5 (9.53± 0.37) · 10−5 4.10 · 10−5

High-fidelity ∆t = 10 (4.83± 0.23) · 10−5 7.60 · 10−4

High-fidelity ∆t = 28 (2.08± 0.19) · 10−5 18.47

Physics-enhanced DMD ∆t = 5 (6.35± 1.96) · 10−5 1.04 · 10−3

Physics-enhanced DMD ∆t = 10 (3.26± 2.03) · 10−5 9.80 · 10−4

Physics-enhanced DMD ∆t = 28 (1.09± 0.09) · 10−5 7.26 · 10−4

of the high-fidelity model decreases dramatically as the step
size increases (Jarvis, Teubert, Okolo, & Kulkarni, 2022).
At larger step sizes, the DMD model outperforms the high-
fidelity model significantly (Fig. 5 and ∆t=28 in Table 1).

Applications using prognostics generally define a prognostics
performance requirement. For example, for a battery applica-
tion with an acceptable MSE of 8 · 10−4, this can only be
achieved for the high-fidelity model with a ∆t of 10 seconds
or less. Using the surrogate model, the same accuracy can be
achieved with a ∆t of 28 seconds. For the same accuracy, the
surrogate model would perform the simulation in almost 1/5
of the time required by the equivalent higher-fidelity model.

The identification of proper ∆t is very application-dependent.
Some applications have rapidly varying inputs or require a
precise end-of-discharge estimate, and may not be able to use
a ∆t above 10 seconds, in which case this surrogate model
would only offer small performance improvement. For other
applications, a ∆t above 28 seconds is acceptable.

4. DISCUSSION AND FUTURE WORK

This work explored the use of DMD as a surrogate model-
ing tool for long-term predictions in the context of battery
discharge prognostics. We made use of an extended DMD
approach to lift the state vector to a higher dimension in the
search for a finite approximation of the Koopman operator.
Instead of using basis functions or other traditional machine
learning tools, we leveraged the hidden states of the higher-
fidelity Li-ion battery model to construct the snapshot matri-
ces X and X ′, thus including state variables inherently linked
to the physics of the system.

The introduction of physics-related quantities enabled the
creation of a successful DMD-based surrogate model. While
we observed some accuracy loss when predicting voltage dis-
charge (as expected with a surrogate model), the physics-
enhanced DMD method was able to make acceptable predic-
tions for the entire duration of the discharge process, which
was the goal of out work. Other techniques such as lagged

time-series (Tirunagari et al., 2017) and lifting through ra-
dial basis functions (Korda & Mezić, 2018) did not produce
a robust model. While these methods and others can still ap-
proximate voltage and SOC appropriately for few time steps
(i.e. small time horizon), they failed at predicting voltage dis-
charge for many time steps ahead.

Our error and computational cost analysis (Section 3.5)
shows performance in a prognostic setting, and highlights the
advantage of using the DMD-based linear model for multi-
step predictions. The time step size (∆t) used to propagate
the linear dynamics can be increased drastically for physics-
enhanced DMD when compared against the requirement of
the full-order model, without reduction in performance. In
specific applications, this can provide significant improve-
ment in computational efficiency.

In the context of prognostics, the linearization of nonlinear
dynamical systems also opens the door to faster uncertainty
propagation methods, which are crucial for system diagnos-
tics, remaining-useful-life predictions, and more in general
PHM. Uncertainty in initial conditions, model parameters,
and model form error can be propagated more easily in lin-
ear systems, while full-order models often require sampling-
based methods (e.g., Monte Carlo) for a characterization of
future state uncertainty, which can be computationally costly.

4.1. Limitations

The scope of this work is limited to substituting a fast sur-
rogate model in place of a higher-fidelity model. By using
internal state information from the full order model, we pre-
clude the use of field data, from which internal states of the
system cannot be measured, except in rare cases. DMD meth-
ods using only observables and/or data-driven extensions do
not suffer from the same limitation, and they could be applied
to experimental data as well.

The selection of the additional variables to include, either as
hidden states from the full order dynamics or other physics-
related quantities, remains an open problem. There is no
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Figure 5. Simulation Benchmarking Results: (a) Voltage Curves at different ∆t, and (b) MSE vs Time Step

guarantee that using the full state vector, as we did in the
prognosis of battery voltage and SOC, will produce an ac-
ceptable reduced order model. At this stage of the research,
we observed, empirically, that introducing all hidden states
allowed us to build a battery reduced order model robust to
different initial conditions and current input profiles. How-
ever, we cannot point to a rigorous approach to infer which
variables should be included in X and X ′, and determining
such a method is left to future work.

Additionally, it is important to reiterate that the prediction
of battery discharge was chosen as a test-case with which to
study the potential use of DMD in prognostics due to its rel-
ative simplicity. Therefore, long-term aging degradation for
the battery was not considered. The introduction of capacity
fading effects into the prediction of voltage discharge curves
will likely require a DMD matrix that evolves as the system
ages like, for example, a parameterized DMD model. We left
this endeavor to future work.

4.2. Implementation in prog models

We have implemented a generic version of this physics-
enhanced DMD framework within the open-source ProgPy
packages (Teubert, Corbetta, Kulkarni, Jarvis, & Daigle,
2022), allowing the surrogate method to be applied to any
model created using that package. This is done using

the data model with the dmd specification. See the
generate surrogate example within prog models
for details. The resulting surrogate model can be used
interchangeably for simulation or prognostics (using the
prog algs python package (Teubert, Corbetta, & Kulkarni,
2022)).

4.3. Future Work

We plan to explore further extensions to the physics-enhanced
DMD method and apply it to a wider range of applications.
In the context of battery discharge prediction, we hope to im-
prove the DMD approximation to more accurately capture be-
havior near end of discharge. As one approach, we plan to ex-
plore the potential of fitting an entire voltage curve by stitch-
ing together linear approximations made from DMD matrices
trained on different sections of the training data.

As discussed in subsection 4.1, the introduction of aging ef-
fects into the DMD matrix may enable the use of DMD for a
number of additional prognostic scenarios, including predic-
tion of remaining-useful-life for Li-ion batteries, like the one
used for this work.

Additionally, it will be worthwhile to further explore the con-
figurability of a DMD approximation by including differ-
ent subsets of the known physical information. A rigorous
method for determining what physical information to include
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would lead to a more robust physics-enhanced DMD tech-
nique.

Finally, we intend to explore alternative surrogate model gen-
eration methods, such as those emerging from the physics-
informed machine learning communities, and compare with
the benefits of the current DMD approach.
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