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ABSTRACT 

Equipment failures can cause major disruptions to system 

operations. Although this is the case for engineered systems 

in general, it is especially applicable to autonomous systems 

as a maintenance crew may not be available to remediate the 

situation during operation. Autonomous vehicles, for 

instance, may be performing a critical mission miles away 

from the nearest manned support personnel when a failure 

occurs. In this work we propose and test an approach for 

automated predictive reconfiguration of an autonomous 

vehicle with the goal of delaying the occurrence of failures 

that would otherwise compromise mission accomplishment. 

The proposed approach is based on the Monte Carlo Tree 

Search (MCTS) method and assumes the availability of 

models describing relevant failure mechanisms and the 

relation between degradation and performance for each 

failure mode. Our solution introduces novel means for taking 

into account the uncertainty resulting from estimation of 

relevant parameters and states, with benefits in terms of 

reduction of computational cost compared to existing 

solutions. The proposed approach is successfully tested in a 

simulation environment. 

1. INTRODUCTION 

Failure diagnosis and prognosis solutions can potentially 

provide valuable information for operation and maintenance 

of a large variety of devices and systems. However, such 

potential is only converted into actual value when the 

corresponding information is used for taking operational and 

maintenance decisions. Therefore, the integration of 

decision-making and diagnosis/prognosis is of utmost 

importance for PHM researchers and practitioners. An 

increased interest in such integration can be noticed in recent 

years as evidenced, for instance, by recent review papers on 

this topic such as Bougacha, Varnier & Zerhouni (2020) who 

present a review of post-prognostics decision making and Hu, 

Miao, Si, Pan & Zio (2022) who present a review including 

decision making as one of the three main phases in PHM. 

The focus of this work is on the predictive reconfiguration of 

an autonomous vehicle during mission execution to avoid 

that equipment failures jeopardize the accomplishment of his 

mission. One important requirement in this case is that 

degradation associated to relevant failure modes is 

controllable (Balaban, Johnson and Kochenderfer, 2019), i.e. 

it is possible to alter the rate at which equipment degrades 

based on changes in system configuration/operation. 

Although the integration of PHM and automated decision-

making can be beneficial in various types of applications, 

autonomous systems correspond to a category of special 

relevance, as such type of system may operate for extended 

periods of time with no available manned support. The 

methodology is presented here in such context of an 

autonomous vehicle but it is potentially applicable to any 

situation where controllable failure modes may preclude the 

execution of a mission and it is beneficial to delay the failure 

so the mission can be accomplished.  

The methodology developed and employed here is in line 

with the analysis presented by Balaban et al. (2019) which 

suggests that prognostics itself is not meaningful for 

controllable degradation processes and therefore health 

monitoring (and not prognostics) should be integrated with 
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decision-making to achieve more efficient and effective 

solutions. The referred paper presents a detailed analysis on 

the topic. This contrasts with most of the predictive decision-

making work developed in the PHM field where prognostics 

is performed first to produce RUL estimates which are in turn 

employed in decision making (Bougacha et al.,2020). 

However, there are also important differences between the 

work presented here and that from Balaban et al. (2019). In 

the referred work, partially observable Markov decision 

process (POMDP) is presented as the mathematical 

framework to be employed for decision making under state 

estimation uncertainty. Although POMDP is a powerful 

framework which can be used for the type of problem 

described here, it brings considerable additional complexity 

compared to the standard Markov decision process (MDP) 

(Bellman, 1957), requiring computationally expensive 

methods such as POMCP (Silver & Veness, 2010) and 

DESPOT (Ye, Somani, Hsu & Lee, 2017) for achieving 

approximate solutions. Here we propose an alternative 

formulation which is based on the representation of the 

problem as a standard MDP and include novel adaptations to 

the standard Monte-Carlo Tree Search (MCTS) method 

(Browne et al., 2012) for efficiently solving the sequential 

planning problem taking into consideration state estimation 

uncertainty. Such uncertainty which plays a very relevant role 

in the context considered here as the predictive 

reconfiguration problem comprises estimating future 

degradation states of the system. Standard MCTS does not 

provide means for taking that into account. 

The paper is organized as follows: the proposed methodology 

is described in section 2; a description of the autonomous 

vehicle and associated use case is presented in section 3; 

section 4 comprises experiments and results and section 5 is 

the conclusion. 

2. METHODOLOGY 

2.1. MCTS with Uncertainty Propagation (MCTSUP) 

Since the proposed formulation is based on the MDP 

framework, corresponding definitions must be made. 𝑠𝑡 ∈ 𝑆 

is defined here as a vector containing the value of all relevant 

states at time instant 𝑡. One notable subset of states in vector 

𝑠𝑡 is  𝑠𝑡
𝑑 which corresponds to the degradations associated to 

all failure modes of interest. As the formulation takes into 

consideration the uncertainty in state estimation, �̂�𝑡  is also 

defined as the estimate of the state vector, corresponding to a 

multivariate random variable �̂�𝑡 ∼ Φ𝑠𝑡
. Actions 𝑎𝑡 ∈ 𝐴 

correspond to system configurations which belong to the 

finite set 𝐴 . Examples of configuration changes could 

correspond, for instance, to turning on or off a certain 

redundant component, changing the topology of an electrical 

or hydraulic circuit or defining a new power level among a 

set of pre-defined options. Although actions are assumed to 

be discrete, the method could be easily adapted to deal with 

continuous actions by means of usual MCTS variations such 

as Double Progressive Widening (DPW) (Couëtoux, 2011).  

Actions can also be state dependent, i.e. 𝑎𝑡 ∈ 𝐴(𝑠𝑡). State 

transition functions (Eq. (1)) describe how a new state (𝑠𝑡+1) 

is achieved as a function of the current state and the action 

taken.  

 𝑠𝑡+1 = 𝑇(𝑠𝑡 , 𝑎𝑡 , 𝑚𝑡; 𝜃) (1) 

For the degradation states (𝑠𝑡
𝑑) this transition corresponds to 

the failure mechanism models. Transitions are parameterized 

by vector 𝜃 which, in the case of failure mechanism models, 

define how fast the degradations should evolve over time. 

Transitions also depend on inputs associated to the operating 

conditions which in turn are function of mission requirements 

at each time instant (𝑚𝑡). A transition function similar to Eq. 

1 can be defined for updating state estimates (Eq. (2)):  

 �̂�𝑡+1 = 𝑇(�̂�𝑡 , 𝑎𝑡 , 𝑚𝑡; �̂�) (2) 

It can be noticed from Eq. 2 that uncertainty in parameters 

estimates (�̂� ∼ Φ𝜃) is also taken into consideration in such 

transition. The reward 𝑟𝑡 is a scalar value calculated based on 

state estimates as defined in Eq. 3. More specifically, point 

estimates of Φ𝑠𝑡
 or Φ𝑓(𝑠𝑡) are employed in the calculation. In 

Eq. (3) and Eq. (4), 𝑓(. ) is an arbitrary function and 𝛾(. ) 

corresponds to a point estimate. 

 𝑟𝑡 = 𝑅(�̂�𝑡 , 𝑎𝑡) = 𝑅(𝛾(𝛷𝑓(𝑠𝑡)), 𝑎𝑡) (3) 

 𝑓(�̂�𝑡) ∼ 𝛷𝑓(𝑠𝑡) (4) 

MCTS method comprises four steps: selection, expansion, 

rollout, and backpropagation (Browne et al., 2012). In the 

method proposed here, selection and backpropagation are the 

same as in standard MCTS, therefore they are not discussed 

further. Both other steps, expansion and rollout, include 

performing state transitions based on defined actions 

(although rollout may include simplifications to this process). 

Therefore, if the actual state and parameters were known, Eq. 

1 could be used for such calculations, leading to the standard 

MCTS. However, assuming only uncertain estimates of those 

values are available, adaptations are required. For the 

application described here, it is assumed that �̂�𝑡  and �̂�  are 

produced by a health monitoring algorithm at time instant 𝑡. 

𝜎 can then be defined according to Eq. (5), where Φ𝑠𝑡,𝜃𝑡
 is the 

joint probability distribution associated to the pair �̂�𝑡, �̂�.  

 𝜎 = �̂�𝑡 , �̂� ∼ 𝛷𝑠𝑡,𝜃𝑡
 (5) 

A set of samples 𝜎′(𝑖), 𝑖 = 1,2, … , 𝑛 is obtained from Φ𝑠𝑡,𝜃𝑡
, 

each of them combining a sample of the states (s′(𝑖)) and a 

sample of the parameters (𝜃′(𝑖)) as presented in Eq. (6). 

 𝜎′(𝑖) = [𝑠′(𝑖)

𝜃′(𝑖)
] (6) 

The definition presented here employs random unweighted 

samples, but other related approaches such as random 
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weighted samples as used in Particle Filters (Gordon, 

Salmond, & Smith, 1993) or structured weighted points such 

as Sigma Points (Julier & Uhlmann, 2002) could also be 

employed. Samples 𝜎′(𝑖) are employed as a representation of 

the states and parameters at the root node of the MCTS tree. 

Eqs. (7) and (8) present how those variables are updated when 

transitioning from the root node 𝑟 to a child node 𝑐 through 

action 𝑎, based on mission requirements 𝑚. In the equations, 

subscripts indicate the corresponding node. Updates 

corresponding to transitions between other nodes follow the 

same process. Therefore, each node in the search tree 

contains a full representation of the states and parameter 

probability distributions in the form of samples.  

 𝑠′𝑐
(𝑖)

= 𝑇(𝑠′𝑟
(𝑖)

, 𝑎, 𝑚; 𝜃′𝑟
(𝑖)

) (7) 

 𝜃′𝑐
(𝑖)

= 𝜃′𝑟
(𝑖)

 (8) 

One relevant point to consider is that, as all samples are 

submitted to the same calculations during transition between 

nodes, vectorization, as available in most modern 

computational platforms, can be employed to achieve 

computational costs that scale sublinearly as a function of the 

number of samples (Van Der Walt, S., Colbert, S. C. & 

Varoquaux, G., 2011). 

Calculation of the reward function at each node is performed 

using the corresponding state samples for obtaining the point 

estimate defined in Eq. (3). Eq. (9) presents the point estimate 

calculation for node 𝑜  where 𝛾′(. )  corresponds to the 

approximate calculation based on the set of samples:  

𝛾(𝛷𝑓(𝑠𝑜)) ≈ 𝛾′ ([𝑓(𝑠′
𝑜
(1)

), 𝑓(𝑠′
𝑜
(2)

), … , 𝑓(𝑠′𝑜
(𝑛)

)]) (9) 

The method described above is referred hereon as MCTS 

with Uncertainty Propagation (MCTSUP). In the case where 

samples correspond to random unweighted samples as 

described above, MCTSUP can be interpreted as including an 

additional layer of Monte Carlo calculations to the MCTS 

method, corresponding to the propagation of the samples 

through nodes for calculation of rewards taking into 

consideration the state and parameter uncertainties. 

The characteristics of MCTSUP create additional 

opportunities for tuning the method. For instance, the number 

of propagated samples could be reduced for rollout 

operations to speed up computation. 

2.2. Reconfiguration 

The diagram in Figure 1 presents the proposed MCTSUP-

based vehicle reconfiguration approach. The MCTSUP-

based agent defines current and future actions 𝑎𝑡:𝑡𝑓
, 𝑡𝑓 

corresponding to the end time of the mission and each action 

corresponding to a system configuration. A health monitoring 

system provides stochastic estimates of current degradation 

parameters and states ( �̂�𝑡  and �̂�𝑡
𝑑 , respectively) at time 𝑡 . 

Mission requirements for current and future steps in the 

mission are also know (𝑚𝑡:𝑡𝑓
). 

Failure mechanism models consist of the transition functions 

(Eq. (2)) which are used to extrapolate the uncertain 

degradation estimates (in the form of samples) for future 

points in time, given the estimates at time 𝑡 (�̂�𝑡:𝑡𝑓|𝑡
𝑑 ).  

Function f(. ) (Eq. (4)) consists of the estimator of system 

capabilities corresponding to a mission requirement as a 

function of current degradation states. For instance, 

supposing that the mission requirement for time instant 𝑡 is 

to have power produced by the system (𝑃𝑡) above a certain 

minimum level 𝑃𝑡,𝑚𝑖𝑛 , i.e. 𝑃𝑡 ≥ 𝑃𝑡,𝑚𝑖𝑛 , function f(. ) 

provides an estimate of how much power can be produced by 

the system given the degradation states at time instant 𝑡. 

Finally, the rewards (𝑟𝑡:𝑡𝑓
) are calculated based on the point 

estimate function (Eq. (9)) which consist of the negative of 

the risk of not fulfilling the mission requirement, e.g. 

considering minimum power level requirement as mentioned 

above, 𝑝(𝑃𝑡 < 𝑃𝑡,𝑚𝑖𝑛) would correspond to the risk of not 

fulfilling such requirement, where 𝑝 (.) corresponds to 

probability, and 𝑟𝑡 = −𝑝(𝑃𝑡 < 𝑃𝑡,𝑚𝑖𝑛) .  

 

 

Figure 1 - Reconfiguration methodology 

 

Description in this subsection corresponds to one version of 

the method, which is employed for analysis and experiments. 

However, alternative options for function f(. ), point estimate 

function and reward function could be employed. For 

instance, the reward function could include terms that 

penalize changes in system configuration or the difference 

between a defined configuration and a standard one. 

3. AUTONOMOUS VEHICLE 

The autonomous vehicle considered in this work is a surface 

ship where diesel engines and electric motors are employed 

respectively for generating electric power and driving the 

propellers. The diagram in Figure 2 provides a high-level 

view of the components of the vehicle’s propulsion system 

which are relevant for this work. The solid arrows in the 

diagram indicate how mechanical power is transmitted from 
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the diesel engines to the propulsion motors which in turn 

drive the propellers. Dashed lines indicate failure modes of 

interest affecting each piece of equipment. Given the 

architecture of the system as presented in Figure 2, propellers 

can still be driven in case of degradation or failure of an 

engine or a motor. However, degradations or failures will in 

general reduce the maximum power which can be employed 

by the system to drive the propellers. Therefore, even though 

the propellers may be driven using, for instance, a single 

engine, such configuration may not provide enough power for 

achieving required speeds at some points during the mission.  

 

Figure 2. Autonomous vehicle's propulsion system. Solid 

arrows indicate the power transmission from the diesel 

engines (𝐸1, 𝐸2), through the propulsion motors (𝑀1, 𝑀2), 

reaching the propellers. 𝑃𝑃 corresponds to the total power 

used to drive the propellers. Dashed arrows indicate the 

failure modes affecting each equipment. 

 

The following subsections provide more details about 

propulsion system equipment as well as failure modes and 

models which are relevant for this work. The system, its 

architecture and components do not reflect those of a real 

autonomous surface vehicle, but a fictitious one. 

Corresponding simulation models have been developed 

based on data from literature. 

3.1. Surface Vehicle Dynamics 

For the application considered in this work, mission 

requirements are defined in terms of vehicle speed. The 

corresponding power demand associated to those speeds 

must be obtained so it can be used as requirement for the 

propulsion system. In this subsection, the vehicle dynamics 

model is used to estimate the power consumption based on a 

vessel speed. The vehicle dynamic equation is shown in Eq. 

(10). 

 𝑀
𝑑𝑈

𝑑𝑡
= 𝑇(1 − 𝑡𝑑) − 𝑅𝑠ℎ𝑖𝑝 − 𝐹 (10) 

where, M is the total mass of the vehicle (kg), U is the vehicle 

speed (m/s), 𝑡𝑑 is thrust deduction coefficient, 𝑅𝑠ℎ𝑖𝑝 is total 

vehicle resistance (N), T is the total propeller thrust (N), and 

F is wave disturbance (N). The vehicle resistance equation 

can be express as in Eq. (11): 

 𝑅𝑠ℎ𝑖𝑝 = 𝑅𝐹 + 𝑅𝑅 + 𝑅𝑤𝑖𝑛𝑑  (11) 

where, 𝑅𝐹 , 𝑅𝑅 , and 𝑅𝑤𝑖𝑛𝑑  are frictional resistance, wave-

making resistance, and wind resistance, which are defined as 

presented in Eqs. (12):  

 

𝑅𝐹 =
1

2
𝐶𝐹𝜌𝑤𝑈2𝑆 

𝑅𝑅 =
1

2
𝐶𝑅𝜌𝑤𝑈2𝑆 

𝑅𝑤𝑖𝑛𝑑 =
1

2
𝐶𝑎𝑖𝑟𝜌𝑎𝑖𝑟𝑈2𝐴𝑇 

(12) 

where, 𝐶𝐹, 𝐶𝑅, and 𝐶𝑎𝑖𝑟  are drag coefficients for water-ship 

fraction, wave-making, and wind resistances, 𝐴𝑇  is the 

advance facing area in the air, 𝜌𝑤 and 𝜌𝑎𝑖𝑟  are water density 

and air density, and S is the wetted area. The thrust and torque 

equations can be expressed according to Eqs. (13): 

 

𝑇 = 𝑠𝑔𝑛(𝑛𝑝)𝛽𝜌𝑤𝑛𝑝
2𝐷4𝐾𝑇 

𝑇𝑇 = 𝑠𝑔𝑛(𝑛𝑝)𝛽𝜌𝑤𝑛𝑝
2𝐷5𝐾𝑃 

𝐾𝑇 = 0.4 − 0.364 ∙ 𝐽𝐴 

𝐾𝑃 = 0.06 − 0.0545 ∙ 𝐽𝐴 

𝐽𝐴 =
𝑈(1 − 𝜔)

𝑛𝑝𝐷
 

(13) 

where, 𝑇𝑇  is the propeller torque (N-m), 𝑛𝑝 is propeller speed 

(rps), 𝛽 is the loss factor (1: propeller stays in the water), D 

is the propeller diameter (m), and w is the wakefield. More 

model details could be found in Hou, Sun & Hofmann (2018) 

and Hou, Song, Hofmann & Sun (2021). The major model 

parameters are given in Table 1. 

Table 1. Key Parameters for Vehicle Dynamic Model 

Parameter name Value 

Ship mass M 145,000 kg 

Thrust deduction coefficient 𝑡𝑑 0.2 

Water resistance coefficient 𝐶𝐹+𝐶𝑅 0.0043 

Air resistance coefficient 𝐶𝑎𝑖𝑟  0.8 

Advance facing area in the air 𝐴𝑇 9 m2 

Wetted area S 100 m2 

Sea water density 𝜌𝑤 1023 kg/m3 

Air density 𝜌𝑎𝑖𝑟 1.225 kg/m3 

Loss factor 𝛽 1 

Propeller diameter D 1.4 m 

Wakefield w 0.1 
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If we ignore the wave disturbance in the model, the steady 

state equation for vehicle dynamics can be expressed as 

presented in Eq. (14): 

 𝑇(1 − 𝑡𝑑) − 𝑅𝑠ℎ𝑖𝑝 = 0 (14) 

Assuming that the two propellers equally share the power 

demand and using the parameters from Table 1, a steady state 

equation can be obtained and solved to obtain a unique 

propeller speed 𝑛𝑝 as a function of the ship speed U. The total 

power demand can then be obtained as a function of the ship 

speed as presented in Eq. (15): 

 

𝑃 = 4𝜋 ∙ 𝑠𝑔𝑛(𝑛𝑝)𝛽𝜌𝑤𝑛𝑝
3𝐷5 ∙ 

(0.06 − 0.0545 ∙
𝑈(1 − 𝑤)

𝑛𝑝𝐷
) 

(15) 

 

3.2. Diesel Engine System 

The engine employed in this work corresponds to a 4-stroke, 

compression-ignition diesel engine with variable geometry 

turbocharger and exhaust gas recirculation. Important engine 

specifications are given in Table 2. 

Table 2. Specifications for the Diesel Engine Model 

Specification name Value 

Number of cylinders 4 

Total displacement 4.4 L 

Piston strokes per power cycle 4 

Nominal operating speed 1800 rpm 

Maximum torque 620 Nm 

Rated power output 108 kW 

 

A corresponding diesel engine simulation model was 

developed based on MATLAB/Simulink Powertrain 

Blockset1. It consists of a Mean-Value Engine Model, which 

calculates engine processes and effects in terms of lumped 

parameters averaged across the entire engine cycle. 

Individual cylinder dynamics are not considered. 

The model includes a number of individual subsystems. The 

core engine subsystem calculates cylinder air mass-flow, 

engine output torque, and exhaust output temperature using a 

combination of physical equations and predefined lookup 

tables. The intake system model consists of several 

components modelling the dynamics of the air inlet, an air 

filter flow restriction, intake tubing, the turbocharger 

compressor, an intercooler, and a control volume 

representing the engine intake manifold. Similarly, the 

exhaust system model consists of an exhaust manifold control 

volume, the turbocharger turbine, exhaust tubing, exhaust 

flow restrictions, and finally an exhaust outlet. Torque 

calculated from excess exhaust gas enthalpy provided to the 

 
1 ttps://www.mathworks.com/help/autoblks/propulsion.html 

turbocharger turbine is transferred to the turbocharger 

compressor by a simple rotating shaft model. This allows the 

compressor model to calculate an increased, or boosted, 

intake pressure. The intake and exhaust system models 

calculate the resulting pressures, temperatures, mass flows, 

and energy flows entering and exiting the core engine 

subsystem. 

In addition to the engine dynamics models, a controller model 

is included to manage simulated fuel delivery rates in 

response to engine load. This controller model uses 

predefined fuel map lookup tables to determine the amount 

of fuel provided for a given engine speed and load. To load 

the simulated engine, a simple generator model and speed 

governor is used. 

Several failure mechanisms have been integrated into the 

engine model simulation. For the purposes of this paper, only 

the boost leak failure mode will be discussed. A boost leak 

failure can be described as the loss of increased intake 

pressure generated by the turbocharger as the result of a leak 

in the intake system venting to atmosphere. This leak may be 

created by an improper seal, damaged manifold gasket, 

cracked intake tubing, etc. Such a leak has the effect of 

reducing available engine output power, reducing fuel 

efficiency, and increasing emissions related to unburnt fuel 

in the exhaust. Unburnt fuel may also cause further damage 

to exhaust components, in particular the turbocharger or any 

catalysts or particulate filters that may be installed 

[Heywood, 1988]. 

 

Figure 3. Effects of boost leak size on intake manifold 

pressure. 

 

To simulate a boost leak, the intake system model is modified 

to include an orifice with variable cross-sectional area at the 

intake manifold, leading directly to atmosphere. The cross-

sectional flow area is defined in terms of an equivalent 
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circular diameter. Figure 3 shows the effects of leak size on 

the intake manifold (boost) pressure during a short ramp to 

operating speed at 50kW load. It can be noticed from the plot 

that boost leak can significantly reduce engine performance. 

Because diesel engines control torque by varying the fuel 

rate, reduced intake air flow as a direct result of reduced 

intake manifold pressure requires additional fuel to maintain 

a constant engine speed. The ability of the engine fuel rate 

controller to compensate for reduced intake pressure is 

limited, eventually causing the engine to stall, or in the case 

of a generator system, the engine speed to drop below the 

threshold necessary to maintain the correct electrical output 

frequency [Heywood, 1988]. 

The failure mechanism model presented in Eq. (16) is 

employed to describe how booster leakage evolves over time 

as a function of engine operation. 

 

min (∫ (𝐶𝑃 max (
𝑝𝑖𝑛𝑡

2 (𝑡) − 𝑝𝑎𝑚𝑏
2

𝑝𝑎𝑚𝑏

, 0)
𝑇

𝑡0

+ 𝐶𝑁(𝑓(𝑁(𝑡)))) 𝑑𝑡, 𝐴𝐿,𝑚𝑎𝑥) = 𝐴𝐿 

(16) 

Leak area, 𝐴𝐿 (m2), growth is assumed to be a function of the 

intake manifold pressure, 𝑝𝑖𝑛𝑡  (Pa), ambient pressure 𝑝𝑎𝑚𝑏  

(Pa), and engine vibration [Naval Surface Warfare Center 

Carderock Division, 1992]. Operating load affects the 

equation through 𝑝𝑖𝑛𝑡 . 𝐶𝑃  (m2/(Pa·s)) and 𝐶𝑁  (m2/s) are 

tuning parameters that can be used to control the leak growth 

rate regarding boost pressure and engine speed, respectively.  

Table 3. Engine speed scaling factors for the leak growth 

model 

Engine Speed (rpm) Scaling Factor 

0 0 

800 0.1 

1000 0.3 

1800 0.1 

2000 0.5 

2500 1 

 

Table 4. Baseline parameter values for the leak area growth 

model 

Parameter name Value 

𝐴𝐿,𝑚𝑎𝑥  0.01 m2 

𝐶𝑃 1.4 ∙ 10−12 m2/(Pa·s) 

𝐶𝑁 1.2 ∙ 10−8 m2/s 

𝑃𝑎𝑚𝑏  1.01325 ∙ 10−5 Pa 

 

The maximum leakage area is limited to the value of 𝐴𝐿,𝑚𝑎𝑥  

(m2) Engine vibration effects are implemented as a 1-D 

lookup table of scaling factors correlated to engine speed 𝑁 

(rpm), shown in Table 3. Vibration effects are assumed to be 

minimized at idle and nominal operating speed due to 

physical engine balancing and design. Baseline parameter 

values for the leak growth model are provided in Table 4. 

3.3. Propulsion Motor 

The propulsion motors are supplied by variable frequency 

drives to drive propellers and maintain ship speed at the 

desired level. In this study, squirrel-cage induction machines 

are considered. During field service, propulsion motors may 

experience various failure modes such as winding insulation 

failure, transient overload, eccentricity, and cracked stator 

housing. Eccentricity is chosen as the failure mode of interest 

affecting propulsion motors for this study. 

Incorrect bearing positioning during assembly, worn 

bearings, or bent rotor shaft may cause rotor eccentricity in 

induction machines. Two common forms of rotor eccentricity 

include static eccentricity and dynamic eccentricity. The 

static eccentricity is caused by a static rotor displacement 

from stator bore center, but the rotor still rotates upon its own 

center. The static eccentricity rotor tends to pull in one 

direction, which makes the unbalanced magnetic pull 

difficult to detect. The dynamic eccentricity rotor rotates 

upon the stator center, but the rotor does not rotate upon its 

own center. The dynamic eccentricity rotor produces 

unbalanced magnetic pull and the force will reflect on the 

rotor’s angular velocity in normal operation. It is relatively 

straightforward to detect the dynamic eccentricity through 

vibration monitoring. In this work, the focus is on the static 

eccentricity. 

Equation (17) presents the failure mechanism model assumed 

for eccentricity, corresponding to a discrete time exponential 

growth. In the equation, 𝑒𝑡 corresponds to motor eccentricity 

at time 𝑡, 𝑃𝑀 is the mechanical power produced by the motor, 

𝜙𝑡 corresponds to the ratio between the power produced by 

the motor and the total power produced by both motors and 

𝛼 adjusts the rate at which the degradation evolves. Baseline 

value considered for 𝛼  is 0.1 and maximum eccentricity 

value, which corresponds to motor failure, is 10. When 

eccentricity exceeds this maximum value, the motor has 

reached failure. 

𝑒𝑡+1 = 𝑚𝑎𝑥([𝑚𝑎𝑥(𝛼 ∙ 𝑃𝑀 , 1) (0.6 + 𝜙𝑡)𝑒𝑡], 𝑒𝑡) (17) 

Degradation associated to eccentricity is not considered to 

affect the capability of the motor to drive the propeller. 

Eccentricity will only limit vessel propulsion power and 

consequently speed when it turns into motor failure so the 

corresponding motor cannot operate any longer. 

4. EXPERIMENTS AND RESULTS 

Simulated experiments have been performed to assess the 

performance of the proposed method. The methodology 

depicted in Figure 1 was implemented and tested. Failure 

mechanism models and models of system capabilities were 

based on the information described in section 3. The 

corresponding MDP model and MCTS were implemented 
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based on the POMDP library for Julia language 2 . More 

details about experiments and results are described in the 

following subsections. The reward function is based on the 

risk of not fulfilling the mission due to equipment 

degradation or failure as presented in section 2.1. 

4.1. Mission and Requirements 

The mission to be accomplished by the autonomous vehicle 

has a duration of 16 days, also referred to as steps hereon. At 

each day, a certain speed is required to accomplish the 

mission. Such speed can be converted to required power by 

using Eq. (15). Figure 4 presents the power requirements for 

each step in the mission (𝑃𝑚,𝑡) employed for the experiments. 

It can be noticed that different activities are performed in 

each step of the mission, leading to different power 

requirements for each step. 𝑃𝑚,𝑡 in this case corresponds to 

𝑃𝑡,𝑚𝑖𝑛  as defined in section 2.2. Using the definition of 𝑃𝑡 

from the same section, corresponding to the power the 

propulsion system can produce during step 𝑡 , mission 

requirements 𝑚𝑡  correspond to a single requirement: 𝑃𝑡 ≥
𝑃𝑚,𝑡  and the reward function corresponds to 𝑟𝑡 = −𝑝(𝑃𝑡 <

𝑃𝑚,𝑡). 

 

Figure 4. Required power (kW) for each step (day) in the 

mission. 

 

It is assumed that the predictive reconfiguration yielded by 

the method proposed here can be applied at the beginning of 

each day, therefore, each day corresponds to a (potentially 

different) configuration. 

4.2. Experiments 

Possible configurations for the experiments consist of 

defining which diesel engines and propulsion motors are 

operating at a certain step in the mission. Standard 

configuration consists of both engines and both motors 

operating the whole time. Possible engine configurations will 

be referred to E1, E2 or E12 indicating which engines are 

 
2 https://github.com/JuliaPOMDP/POMDPs.jl 

operating (respectively engine 1, engine 2 or both above). 

Possible motor configurations are M1, M2 and M12 

analogously. When both engines or both motors are operating 

they equally share the loads. In this case, standard 

configuration corresponds to (E12, M12). It must be noticed 

that configuration can be defined independently for diesel 

engines and propulsion motors. Therefore, the set of actions 

𝐴 , as defined in section 2.1, corresponds to all possible 

combinations of engine and motor configurations. 

Defining 𝑙𝑖,𝑡 as the degradation (corresponding to leak area) 

associated to engine 𝑖, 𝑖 = 1,2  at time 𝑡 , and  𝑒𝑗,𝑡  as the 

eccentricity affecting motor 𝑗, 𝑗 = 1,2  at time 𝑡 , the state 

vector st, as defined in section 2.1, here corresponds to the 

definition in Eq. (18). Eq. (19) describes the initial conditions 

employed for the experiments. 

 𝑠𝑡 = [𝑙1,𝑡 , 𝑙2,𝑡 , 𝑒1,𝑡 , 𝑒2,𝑡]
𝑇

 (18) 

 [𝑙1,0, 𝑙2,0, 𝑒1,0, 𝑒2,0] = [0,0,2 ∙ 10−3, 1 ∙ 10−5] (19) 

It is assumed that a health monitoring system provides 

stochastic estimates of such degradation values and of 

corresponding parameters required for extrapolating 

degradation to future times. Those parameters correspond to 

𝐶𝑃 and 𝐶𝑁 for the booster leak at each engine (Eq. (16)) and  

𝛼 for eccentricity at each motor (Eq. (17)). Therefore 𝜃, as 

defined in section 2.1, here corresponds to the definition in 

Eq. (20). 

 𝜃 = [𝐶𝑃, 𝐶𝑁 , 𝛼]𝑇 (20) 

Estimated states and parameters are updated after each step 

in the mission so that configuration can be defined for the 

following step. Initial uncertainty associated to each 

parameter is defined in the form of Gaussian distributions as 

presented in Eq. (21).  

 

�̂�𝑃 ∼ N(1.4 ∙ 10−12, 2 ∙ 10−13) 

�̂�𝑁 ∼ N(1.2 ∙ 10−8, 2 ∙ 10−9) 

�̂� ∼ N(0.1, 3 ∙ 10−3) 

(21) 

100 samples from the joint state/parameter distribution are 

employed in the experiments (Eq. (6)) 

4.3. Results 

Before analyzing the results of application of MCTSUP, the 

baseline solution is considered for comparison consisting of 

the system operation under the standard configuration (E12, 

M12) throughout the whole mission. Initial conditions and 

parameter uncertainties are according to Eqs. (19) and (21) 

respectively and power requirements as presented in Figure 

4.  
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Table 5. Experiment results for standard configuration 

Step Configuration Risk 

1 (E12, M12) 0 

2 (E12, M12) 0 

3 (E12, M12) 0 

4 (E12, M12) 0 

5 (E12, M12) 0 

6 (E12, M12) 0 

7 (E12, M12) 0 

8 (E12, M12) 0 

9 (E12, M12) 0 

10 (E12, M12) 0 

11 (E12, M12) 0 

12 (E12, M12) 0.09 

13 (E12, M12) 0 

14 (E12, M12) 0.33 

15 (E12, M12) 0 

16 (E12, M12) 0.91 

 

Figure 5 presents the quartiles associated with the evolution 

of the four failure modes of interest. 

Table 5 presents the risk of not being able to fulfill mission 

requirements at each step. It can be noticed that such risks 

become considerable during the final steps of the mission, 

achieving 91% at the final step. 

For the MTCTUP-based solution 10000 iterations were used. 

Table 6 presents results of application of the method for each 

time step including the selected configuration, risk of not 

fulfilling the mission and computation time. It can be noticed 

that computation time is in most cases reduced from one step 

to the next. This is expected as in each step the current and  

future steps until end of the mission are considered in the 

calculations. A standard laptop computer with i7-6820HQ 

processor, 32GB of RAM and MS Windows 10 Enterprise 

operating system was employed for computation. Comparing 

these results to those yielded by the standard configuration 

(Table 5) it can be noticed that system is predictively 

reconfigured since step 1, with engines and motors being 

selectively turned off whenever possible to delay 

degradation. Risk of not fulfilling mission requirements is 

successfully reduced, achieving a maximum value of 12% at 

the last step of the mission (compared to 91% for the standard 

configuration case). 

Figure 6 presents quartiles associated with the evolution of 

the failure modes of interest. Comparing those plots with the 

ones presented in Figure 5 it can be noticed that degradation 

has been delayed in a significant way. 

 

 

 

Figure 5. Quartiles associated to degradation evolution for 

each failure mode of interest (standard configuration). Top 

and bottom plots present respectively evolution of booster 

leak for engines 1 and 2 and eccentricity for motors 1 and 2. 

 

Table 6. Experiment results for MCTSUP application 

Step Computation Time [s] Configuration Risk 

1 1303.39805 (E12, M2) 0 

2 1473.245654 (E1, M12) 0 

3 1226.815517 (E12, M12) 0 

4 1003.561821 (E1, M2) 0 

5 924.4212584 (E2, M2) 0 

6 988.6514444 (E12, M12) 0 

7 796.3154714 (E2, M2) 0 

8 793.7924268 (E12, M12) 0 

9 622.0841589 (E2, M2) 0 

10 539.383497 (E12, M12) 0 

11 480.2801492 (E12, M12) 0 

12 367.8734899 (E12, M12) 0 

13 309.5346775 (E1, M2) 0 

14 211.391253 (E12, M12) 0.03 

15 147.4896767 (E2, M2) 0 

16 65.25488496 (E12, M12) 0.12 
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A final test was performed increasing the number of samples 

to evaluate the corresponding impact in processing time. As 

the proposed methodology enables the use of vectorization, it 

is expected that the processing time should grow slower than 

linearly as a function of the number of samples. For this test 

the number of samples was increased 10x compared to the 

previous test, resulting in 1000 samples. Processing time at 

each step in this case increased on average 7.86x compared 

to the original calculations, confirming the expected 

performance. 

 

 

Figure 6. Quartiles associated to degradation evolution for 

each failure mode of interest (MCTSUP-based solution). 

Top and bottom plots present respectively evolution of 

booster leak for engines 1 and 2 and eccentricity for motors 

1 and 2. 

5. CONCLUSION 

This paper presented a sequential decision-making 

methodology for predictively reconfiguring a system in order 

to delay the evolution of equipment degradation. The goal is 

to considerably reduce the risk of mission failure due to 

equipment failure when compared to operation using the 

standard system configuration. The methodology includes a 

novel adaptation of MCTS method which adds efficient 

means for propagating the uncertainty associated to 

estimation of states and parameters within a MDP 

framework.  

The proposed methodology is tested based on a use case of 

an autonomous surface ship, taking into consideration failure 

modes that would affect its propulsion system. Results 

successfully demonstrate considerable reduction in risk 

associated with not fulfilling mission requirements when 

compared to the standard system configuration. 

Future work includes benchmarking the proposed 

methodology with alternative state-of-the-art sequential 

decision-making approaches and its application to additional 

operational profiles and more complex and realistic use cases. 

Improvements to the methodology itself are also envisioned, 

such as taking into consideration constraints associated to 

reconfiguration options, additional sources of uncertainty and 

alternative means for propagating uncertainty. Extensions to 

the problem may also be considered, such as proposing 

alternative mission profiles in cases where reconfiguration of 

the system is not sufficient to assure success of the mission. 
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