Evaluation of NVIDIA Jetson System for Vibration HUMS
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ABSTRACT

An NVIDIA Jetson graphical processing unit (GPU) was eval-
uated for utilization in a health and usage monitoring system
by computing vibration-based condition indicators (CIs) and
evaluating autoencoders for anomaly detectors. The GPU
performance was subsequently compared to a central pro-
cessing unit (CPU) performing the the same computations,
included signal preprocessing. Two distinct cases of interest
were considered with neural network autoencoders: model
evaluation and model adaptation with limited training. The
experiments found that computations associated with signal
preprocessing and condition indicators performed faster on
the CPU, but neural network model evaluation and adaptation
were faster on the GPU. Utilizing the GPU capability of the
Jetson Nano, it was estimated that 42 accelerometer signals
could be evaluated through autoencoders in real time, when
data was processed in one second batches.

1. INTRODUCTION

Emergence of lower cost micro electromechanical systems
(MEMS) accelerometers (specifically Analog Devices’ ADXL
1001/ADXL 1002) made vibration monitoring more afford-
able by reducing not only the sensor cost, compared to tradi-
tional piezoelectric accelerometers, but also by reducing the
overall cost of the data acquisition channel because their low
impedance voltage output obviates the charge amplifier and
its accompanied cost. The reduced cost of vibration sensing
opens the potential to expand their deployment to health and
usage monitoring systems (HUMS) of ground vehicles. With
sampling rates at 10 kHz or more, the vibration data volumes
are considerably larger than that of pressure or temperature
sensors, thus requiring more on-board computational power
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(or computational power on the edge). The NVIDIA Jetson
family of hardware, specifically designed for efficiency and
edge computing, has been adopted into multiple commercial
products, ranging from tablets and phones to vehicle vision
systems. Computational performance is measured in float-
ing point operations per second (FLOPS). Current versions
of the Jetson have stated computational performance of 472
gigaFLOPS (10%) for the 128 CUDA core Jetson Nano to ap-
proximately 5.3 teraFLOPS (10'2) for the Jetson AGX Orin
64GB.

NVIDIA has put significant effort into developing hardware
specifically for Al-powered self-driving vehicles, developing
the NVIDIA Drive Platform for this specific market segment,
even partnering with major automotive parts supplier Bosch.
Self-driving vehicles are typically equipped with a set of sen-
sors that include multiple cameras, LIDAR, acoustic/ultrasonic
sensors, and radar systems. The sensor data is fused to pro-
vide the vehicle with a complete, detailed representation of
the surrounding environment. Computer vision algorithms
process video frames to identify key objects and structures.
This picture of the environment is also merged with GPS data,
requiring significant processing power on a continuous basis,
to allow the vehicle to follow a predetermined path to its des-
tination.

As significant research efforts exist in applying neural net-
works and deep learning to CBM, the next logical step is to
apply mobile GPU enabled SoC computing platforms into
CBM applications. The use case considered here was vi-
bration monitoring, included computing vibration-based con-
dition indicators (Cls) (Lebold, McClintic, Campbell, By-
ington, & Maynard, 2000; Samuel & Pines, 2005; Sait &
Sharaf-Eldeen, 2011; Sharma & Parey, 2016). Specifically, in
this study the following classical CIs were computed: RMS,
Kurtosis, Crest factor (Swansson, 1980),Energy ratio, FM4
(Stewart, 1977), M6A, M8A (Martin, 1989), NA4 (Zakrajsek,
Townsend, & Decker, 1993), NA4*, and NP4 (Polyshchuk,
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Choy, & Braun, 2002).

In addition to these classical Cls, autoencoder neural net-
works were trained. With the emergence of deep learning,
with powerful open-source frameworks TensorFlow (Abadi et
al., 2016) and PyTorch (Paszke et al., 2019), the autoencoders
have become the most efficient anomaly detectors (Eklund,
2018). However, a successful implementation and deploy-

ment of an autoencoder in prognostics health monitoring (PHM)

predates the emergence of deep learning (Japkowicz, Myers,
& Gluck, 1995). More recently, autoencoder-based anomaly
detectors have been shown to have considerable promise be-

cause, unlike classical classifiers that demand balanced datasets,

their training can be based on data associated with normal
operation, which comes in abundance, as opposed to data
associated with failures, which is difficult to come by (Yan
& Yu, 2015). Anomaly detection is a first and lowest level
of PHM capability, followed by diagnostics and prognostics
(Vachtsevanos, Lewis, Roemer, Hess, & Wu, 2006; Goebel
et al.,, 2017). The addition of low cost MEMS sensors and
autoencoders may open the door to lower cost HUMS capa-
bilities that have been limited in ground vehicle applications
(Heine & Barker, 2007; Rajesh & Francis, 2012).

2. USE CASE AND TEST SYSTEM SETUP

As stated in Section 1, lower-cost accelerometers enable ex-
pansion of vibration monitoring to a wider-range of HUMS,
including HUMS for ground vehicles. High sampling rates
of accelerometer data immediately introduces the question of
where computations should take place, at the edge or in the
centralized location, with trade-offs between the cost of edge
computations and cost of bandwidth associated with transfer
of large volume of data.

These considerations promote a lower cost vibration monitor-
ing system as an important and highly-relevant use case for
PHM systems. Figure 1 shows a block diagram of a legacy
HUMS, which employs vibration data.

“Acceleration
(fast)”

“Everything
else”

Figure 1. Legacy HUMS

It features two data acquisition system (DAQ)-CPU pairs:

one for low sampling rate contextual data (e.g. temperature,
speed, torque) and the other for high sampling rate vibration
data. The master storage exists at the processing units, as the
bandwidth requirements of high sample vibration data can-
not be met by off-board communication systems. In this in-
vestigation we used a modified HUMS, illustrated with the
block-diagram in Figure 2. The addition of a GPU allows for
complex computations, e.g. autoencoders, to be performed at
the edge; decreasing the vehicle based storage and bandwidth
requirements.

“Acceleration
(fast)”
“Everything
else”

Figure 2. Modified HUMS, equipped with GPU
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While this modified HUMS is still a prototype (it has not been
implemented on an asset), the envisioned main outputs, that
would be stored in the master storage, are: Cls, computed
once per second, including data-driven CIs such as mean av-
erage error (MAE) of the autoencoder’s error; a single TSA
sample (4,096 points) for each instance of a predefined steady-
state operation (specified torque and speed), and an associated
10 seconds of raw vibration data, with decimation of 10X, to
yield 100,000 points for 10 seconds.

Two types of computations were employed: computing clas-
sical vibration-based CIs and data-driven CIs. Classical CIs
were computed using a Python toolbox for gearbox compu-
tations!. Data-driven Cls were computed as mean-squared
error (MSE) of the autoencoder, applied to time synchronous
averaged (TSA) vibration data. The TSA data was computed
using a tachometer to average over multiple shaft rotations,
effectively converting time-domain data into angle domain
data in the range 0 < 6 < 2m. An accelerometer vector,
a(t), with length of 10°, associated with one second of op-
eration, was compressed into the TSA vector x7g4(6) with
a length of 2'2 points. Twenty-four revolutions were used
for computing the average, where the remaining points (10°-
24x2'2 ~ 1.7 x 103 per second) were discarded. More de-
tails on TSA in general can be found in (Bechhoefer & Kings-
ley, 2009).

Table 1 lists three GPU cards, with their specifications in the
descending order of their computational power. The V100
and Titan V cards have an additional 640 Tensor Cores which

"manuscript in preparation
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Table 1. GPU specifications for three cards.

Hardware GPU Card Memory Power
Model Cores Arch. (GB) (GB/s) (W)
Tesla V100 5120  Volta 16 900 250
GTX 1070 1920  Pascal 8 256 150
Jetson Nano 128 Maxwell 4 25.6 10

handle 4x4 matrices, which are not available on the low cost,
entry level Jetson Nano.

A Jetson Nano Developer Kit was selected for analysis as it
is a fully functional system that includes a CPU, GPU and
memory. Additionally, it is the lowest cost option and there-
fore, if successful would be the entry level of computational
performance. On the other hand, the V100 and GTX 1070 are
more likely to be utilized in server or desktop applications, es-
pecially given their power requirements. For the purpose of
evaluating GPU performance, the data acquisition was sim-
ulated with previously collected data from a helicopter gear
test fixture. Each data file consists of 1 second of vibration
data collected at 104.167 kHz. The data is read in and pro-
cessed computationally according to Figure 3.

Raw Signal Data

Figure 3. The flow of process computations

TSA Autoencoder Error

Two types of autoencoder models were considered: one based
on fully-connected layers (Figure 4) and one based on convo-
lutional neural network (CNN) layers (Figure 5).

Figure 4. Autoencoder with fully-connected layers

3. CPU/GPU CI AND AUTOENCODER COMPUTATIONAL
PERFORMANCE

The performance testing was broken down into two simulated
runs of real-time edge processing. First, the computational
performance for calculating the 16 selected vibration Cls, in-
cluding the preprocessing step of computing TSA from raw
vibration, and second, the evaluation performance of the two
autoencoders. The first part was run for two lengths of time;
900 files representing 15 minutes of data and 54,000 files rep-

Batch Normalization
Convolution
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Figure 5. Autoencoder with CNN layers
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resenting 15 hours of data. The shorter run was chosen to
represent a short but realistic time period of data acquisition.
The longer processing run was performed to ensure that any
impacts from background processes of the system/OS are in-
cluded in the results. Several detailed comparisons are pro-
vided in this paper including CI computation on the CPU vs.
GPU, autoencoder evaluation on the CPU vs. GPU, and sev-
eral pipeline figures comparing the end-to-end process with
and without the utilization of the GPU.

Table 2. CPU vs. GPU computations for different hardware

Card No. Files CPU(s) GPU (s)
Tesla V100 900 3.95 19.81
Tesla V100 54000 212.43 1150.27
GeForce GTX 1070 900 3.90 16.61
GeForce GTX 1070 54000 238.28 870.11
Jeston Nano 900 14.08 93.15
Jetson Nano 54000 813.87 5043.95
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Figure 6. Computational run time for a simulation of 900
seconds worth of accelerometer data processed into TSA on
the Jetson Nano.
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Figure 7. Summary of AE performance computations

Table 2 shows the computational time necessary for calculat-
ing the vibration CIs on the three different GPU devices. This
is largely attributed to the extra time needed for data transfer
between CPU and GPU memory outweighing any benefits
from computing on the GPU. Figure 6 shows the difference in
computational time (in milliseconds) for each file processed
on the Jetson Nano CPU vs. the GPU.

However, evaluation of autoencoder models were consider-
ably faster when computed on the GPU as summarized in
Figure 7, which shows four distributions, based on computa-
tion location and type of autoencoder, from the 54,000 second
data runs. It should be noted that all of these distributions ap-
pear to be right skewed. Therefore, in our calculations of pro-
cessing time, we utilized average processing times to avoid
outliers. Although outliers may slow performance during a
single processing cycle, over the duration, the average time is
more representative of actual performance.

The performance across the end-to-end pipeline, that includes
TSA computations, computing classical CIs, and CNN au-
toencoder is summarized in Figure 8. The entire pipeline re-
quires 43.5 ms to compute the 16 CIs on the CPU and the
CNN on the GPU per 1 second of accelerometer data. There-
fore, a single Jetson board is capable of processing 22 ac-
celerometers of data. Whereas, a similar pipeline utilizing
only the CPU would require 101.4 ms, allowing for only 10
accelerometers. In the 22 accelerometer case, they are pro-
cessed in sequence with total run-time reaching just under
1 second (0.957). Processing multiple accelerometer signals
simultaneously was not part of this study. This would re-
quire splitting already parallel GPU operations among differ-
ent running accelerometer signals and would likely increase
the processing time due to overhead on the GPU memory
transfers. This conceptual design did not have specific re-
quirements for the number of accelerometers; instead, we
wanted to determine how many could be processed with a sin-
gle unit within the required buffer time interval, in this case, 1

second between data acquisitions. Note, however, that some
existing helicopter HUMS systems can collect data from a
large number of accelerometers: e.g. the IMD-HUM main
processing units are capable of collecting up to 46 accelerom-
eters, although only 32 accelerometers and index sensors are
utilized for CH-53E IMD-HUMS, and 22 accelerometers for
SH-60B (2 engines). (Duke, Bailer, Thitchener, & Gebauer,
2001). However, legacy systems do not include autoencoder
processing.

2 signals: 1 kHz: 1s GPU

Aut d
Raw Signal TSA m
Data (13 ms) (CNN: 23.5ms)
cs :
(20 ms) TSA (part of Cl calculations)

Total time for CPU/GPU computations: 43.5 milliseconds

2 signals: 1 kHz: 1s

Raw Signal TSA Aw‘t:ﬁlr;ct?::r
Data (23 ms) (CNN: 81.4ms)
cs i
(20 H'LS) TSA (part of CI calculations)

Total time for CPU only computations: 101.4 milliseconds

Figure 8. Computation performance summary across the two
pipeline options

A more detailed view on timing of specific operations on
NVIDIA’s Jetson CPU and GPU are provided in Figure 9.
Three main steps were identified: 1) placing data on the de-
vice, 2) running autoencoder, and 3) reading data from the
device and computing the error metric associated with the au-
toencoder’s output. Figure 9a and Figure 9b compare 4-core
CPU to 128-core GPU computations for the case of fully-
connected and CNN autoencoders, respectively.

In the case of fully-connected autoencoder (Figure 9a), au-
toencoder evaluation is faster on the GPU than on the CPU,
but overall process actually is computed slightly slower on
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Figure 9. Detailed CPU vs. GPU comparison for (a) AE with fully-connected layers (b) AE with CNN layers

the GPU than on the CPU, because both placing of the data
on the device and reading data from the device during error
computation were slower on the GPU.

By contrast, the CNN autoencoder (Figure 9b) model evalu-
ation is vastly faster on the GPU than on the CPU, resulting
in overall ~3.5x speed-up on the GPU. Comparing the time
scales of Figure 9a and Figure 9b, we see that convolutions
of the CNN autoencoder were considerably slower than ma-
trix computations of the fully-connected autoencoder: ~6x
slower on the GPU, and more than 20 x slower on the CPU.

4. MODEL ADAPTATION AT THE EDGE

Most edge computing is limited to model evaluation for two
reasons: 1) model training is generally much more compu-
tationally intense than model evaluation and 2) there are dif-
ficulties associated with arranging and automating on-board
training. However, there are some use cases where on-board
training may be very useful. One such use case is model
adaptation where a pre-trained model is adapted to a specific
asset; weight updates to the model based on new data, where
parameters associated with training are already known. After

a significant maintenance event, such as replacing fuel injec-
tors in an engine with vibration monitoring, the model can
re-learn the new healthy state which may be represented dif-
ferently than the previously known healthy state.

To demonstrate model adaptation utilizing the previously sam-
pled vibration data, a second data set was collected from a
different gear on the helicopter gear test fixture. Instead of
training a new model, the previous model (Model A) is re-
trained, or adapted, with each new data file. The adapta-
tion process continues across 7,200 files of data, effectively
re-training on 2 hours of data from the new gear. The aver-
age training time per step (1 second of data) was 70.16 ms,
as shown in Figure 10. Similar to the evaluation pipeline,
retraining requires the calculation of the TSA by the CPU,
which, as stated above, averages 24 rotations to compute 22
points from 10° points of raw vibration for every second of
operation. The entire pipeline for retraining (see Figure 11)
is approximately 71.4 ms, allowing for retraining of up to 13
models at a time. The adapted model will be referred to as
Model B.

The performance of Model A on baseline and failure prop-
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Figure 10. GPU processing time for retraining the autoen-
coder on 1 second of new gear data

( \ ( GPU
Raw Signal DaC;;U TSA e Autoencoder Retrain
9 (1.3ms) (70.16ms)

Figure 11. Computation pipeline for retraining the autoen-
coder on 1 second of new gear data

agation data of the original gear (Gear A) can be seen in
Figure 12. Evaluation of the adapted autoencoder no longer
provided the ability to differentiate the original gear’s base-
line and failure propagation; they completely overlapped each
other, however, the adapted autoencoder model showed good
separation on the new gear (Gear B), see Figure 13.

A similar adaptation process was performed utilizing 5 sec-
ond steps of data in the hopes that it would improve data
processing times. The idea was to collect a small batch of
data to be processed during the time the next batch was being
collected. The processing time for each retraining step on 5
seconds of data only increased by 11.23 ms. This is equiva-
lent to a 5% decrease in time to read input data per second,
which allows for larger batches. however, the performance
of the autoencoder model was significantly degraded. This
trade-off between faster processing of larger batches and bet-
ter outcomes of smaller batches is very common in training
neural networks (Geron, 2019). A noticeable overlap in the
mean absolute error of the baseline and propagation data is
shown for the 5-second case in Figure 14.

5. CONCLUSION

We compared computational performance on CPU to the as-
sociated performance on GPU, using vibration-based engi-
neered and data driven CIs. We simulated a modified HUMS
to demonstrate a real-time edge processing scenario that com-
puted TSA from raw accelerometer data, produced 16 tradi-
tional ClIs, and evaluated a neural network anomaly detector.

12 4 B Model A, Gear A, Baseline 6 (validation)
I Model A, Gear A, Propagation

10 A

count

0 - T T T T
0.25 0.50 0.75 100 125 150 175 2.00
MAE

Figure 12. Mean absolute error of the original autoencoder
model under baseline and crack propagation conditions for
Gear A

301 Bl Model B, Gear B, Baseline

@ Model B, Gear B, Propagation

count

" 00 0.5 1.0 1.5 2.0 2.5 3.0 35 4.0
MAE

Figure 13. Mean absolute error of the adapted autoencoder
model under baseline and crack propagation conditions for
Gear B

We showed the number of accelerometer signals that could
be concurrently processed within each second of data input.
We found GPU utilization was most effective for CNN ar-
chitectures. The modified HUMS with the entry level Jet-
son Nano was capable of processing autoencoders for 2.2X
as many accelerometer signals concurrently on the GPU as
opposed to running them on the CPU. We showed that clas-
sical engineered Cls do not benefit significantly from GPU
computations, but data-driven autoencoder MSE can be com-
puted significantly faster on a portable GPU. We found model
adaptation on the edge to be useful in the cases where data,
model, and error metric were fixed for detection of near future
anomalies on different assets. The case of updating a model’s
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Figure 14. Mean absolute error of the 5 second training step
adapted autoencoder model under baseline and crack propa-
gation conditions for Gear B

weights to provide the ability to differentiate healthy state op-
eration from failure was accomplished with an adapted model
to a new gear. The benefit of an immediately transferable
anomaly detector was considered for large fleets on similar
vehicles, where the cost and labor associated with physically
transfer data from these vehicles was infeasible. While the
updated model lost the ability to differentiate its original gear’s
failure, it was successful in identifying anomalies in its new
gear. The usefulness of this computation adaption is promis-
ing for computing on the edge in applications where model
training is fixed. Fleets with hundreds or thousands of as-
sets can significantly benefit from edge computations like that
demonstrated in this research. Edge devices are a rapidly
growing area of focus and will continue to improve at an
increasing rate. This research provides a starting point and

baseline for low-cost edge computing in vibration-based anomaly pagzke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J

detection.
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