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ABSTRACT

Anomaly Detection, the recognition of faulty behavior, and
diagnosis, the process of identification of the root cause of a
fault, in Cyber-Physical Production Systems (CPPS) are com-
plex tasks, due to the increasing complexity and modularity
of modern production systems. But the increasing amount of
data, generated by sensors, offers a solution: Machine Learn-
ing (ML) can be used to automatically generate models for
Anomaly Detection and diagnosis based on data — at least
in addition to manual models. While nowadays huge data
sets for CPPS exist, they mainly cover repetitive OK situa-
tions and lack fault modes, which is problematic for the train-
ing of ML algorithms. In this work we present a possibil-
ity to overcome this problem by generating data with a sim-
ulation of modular CPPS. For simulation we use the game
engine Unity, which has already been employed to generate
data for the training of self-driving cars and the simulation
of robots. Within Unity, modules of CPPS are designed and
programmed. Afterwards they are combined into complex
CPPS, which are then used for simulation using the built-in
physics engine of Unity. The built-in physics engine is not
constrained to certain applications, but can adequately simu-
late a wide variety of scenarios, allowing for the combination
of different simulation types. The generated data can be ex-
ported for training purposes. In the simulation, faults can be
inserted and data sets containing faults and normal behavior
can be exported. This way, ML algorithms can be trained for
fault detection and diagnosis. The data is especially useful for
pre-training of ML algorithms, which can later be fine-tuned
using data sets from the real CPPS. This way, the problem
of repetitive data sets which lack data for fault cases can be
overcome. Furthermore, the simulation can be utilized as a
test environment for newly developed ML algorithm before
they are employed in real systems.
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of the Creative Commons Attribution 3.0 United States License, which per-
mits unrestricted use, distribution, and reproduction in any medium, provided
the original author and source are credited.

1. INTRODUCTION

Modern production facilities are complex systems of inter-
connected machines controlled by computational algorithms.
These systems are referred to as Cyber-Physical Production
Systems (CPPS) (Monostori, 2014). Due to the increasing
complexity within these systems, tasks such as Anomaly De-
tection, maintenance decisions and diagnosis in case of fault
need to be automated and are often carried out with the help
of Artificial Intelligence (AI). Improvements in data acquisi-
tion and computational power have also led to the increased
use of Machine Learning (ML) algorithms.

Anomaly Detection refers to the process of identifying be-
havior within a system that does not conform with a pre-
defined, expected behavior (Chandola, Banerjee, & Kumar,
2009). With the introduction of ML algorithms in this field,
Anomaly Detection refers more to the identification of data
points which deviate from the bulk of data (Pang, Shen,
Cao, & Hengel, 2021). To train these algorithms, large data
sets are necessary to define what the normal behavior of
a system looks like. Supervised, unsupervised and deep-
learning strategies have been employed to achieve this goal
(Angelopoulos et al., 2019).

Once an anomaly is detected, its cause needs to be located.
This process is termed diagnosis. It aims at identifying the
root cause of a fault in order to enable repairs and return the
facility to normal operation (Gertler, 2017). Often, diagnosis
is performed with the help of AI to identify the root cause
using model-based diagnosis, which needs a human expert to
formulate the model. However, there have been approaches
to use ML methods for diagnosis, for example by combining
model-based diagnosis with machine learning (Bunte, Stein,
& Niggemann, 2019).

All ML approaches need large data sets covering a variety of
OK and fault modes for training, but many available real data
sets do not cover fault scenarios, since they do not appear fre-
quently in real CPPS. A possibility to overcome this problem
is to use simulated data sets. However, this requires a realis-
tic simulation of the CPPS to be analyzed. Many simulation
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tools currently employed in the simulation of CPPS do not
adequately represent all aspects of a CPPS and are therefore
not capable of simulating realistic data sets.

Here, tools from the game and media design industry can be
employed to adequately simulate a given CPPS and generate
realistic training data sets based on the simulation. Specif-
ically, game engines are useful for simulation, since they
provide a built-in physics engine to simulate interactions be-
tween components and, through embedded programming lan-
guages also allow the adaptation of components to the needs
of the simulation problem.

In this work, we present FliPSi, the Flexible Production Sim-
ulation, based on the game engine Unity. This paper intro-
duces a simulation tool, which is currently under develop-
ment in our group. We show some preliminary simulation
views and describe the tool. FliPSi is a simulation environ-
ment for modular CPPS, which can be used to generate re-
alistic training data sets for (pre-)training and testing of ML
algorithms.

With FliPSi, models of CPPS can be designed and simulated.
Models can be designed for many different cases, such as
rarely occurring faults. Even if all fault modes could be antic-
ipated before and, therefore, explicitly modeled, it would still
be necessary to recognize and categorize these faults once
they occur. For this task ML algorithm employed, as it is
not possible to pre-programm every possible fault signature.

When data for a certain ML task is limited, using data sets
from similar tasks can be helpful as a pre-training exercise.
This is the aim of transfer learning (Torrey & Shavlik, 2010),
which is often employed in e.g. image categorization (Shaha
& Pawar, 2018) or language processing (Devlin, Chang, Lee,
& Toutanova, 2018). An algorithm is first presented with one
kind of task, e.g. telling apart photos of cats and dogs, and
in a second step has to solve a different, but similar task like
classifying photos of other animals. It is assumed that many
factors which are necessary to fulfil the first task will also be
helpful in the second, i.e. in the earlier example both meth-
ods correspond to each other in the layers for edge detection.
Since often not enough real data of CPPS is available, using
simulated data es a pre-training exercise could help allevi-
ating blocking issues in using ML methods for diagnosis of
CPPS.

Another important aspect of developing ML algorithms for
anomaly detection and diagnosis in CPPS is the testing of
newly developed methods. These cannot be directly tested
on an industrial CPPS. Here, using a simulation model of the
real system can be useful.

FliPSi has an intuitive user interface and, since it is based
on Unity, is easily modifiable and extendable. This makes it
useful for education purposes. It can be used to teach aspects
of CPPS as well as subjects such as diagnosis or machine

learning.

With these aspects in mind, we pose the following Research
Questions (RQ):

RQ1: How are ML algorithms currently employed in the field
of anomaly detection and diagnosis?

RQ2: Which limitations are present in currently existing real
data sets and data generation approaches for the training and
testing of ML algorithms for anomaly detection and diagnosis
in CPPS?

RQ3: How can these limitations be addressed by employing
FliPSi?

With FliPSi we present a possibility to generate realistic train-
ing data sets which we think will help overcome a blocking
issue in the current use of ML algorithms for diagnosis of
CPPS. FliPSi is a modular simulation of CPPS, which com-
bines functional and design modeling and allows the genera-
tion of data sets featuring different types of faults. Thereby,
FliPSi can be employed to generate realistic, variable data
sets of CPPS and provides a testing environment for ML al-
gorithms.

The rest of the paper is structured as follows: Section 2
will briefly discuss the State of the Art of the use of ML in
Anomaly Detection and Diagnosis, as well as deliver a short
overview of the current use of game engine within engineer-
ing. Next, Section 3 discusses the limitations of currently
available data sets for training of ML algorithms in anomaly
detection and diagnosis, while Section 4 will present solu-
tions to these problems using FliPSi. Finally, Section 6 will
summarize the findings and provide an outlook.

2. STATE OF THE ART

2.1. Use of Machine Learning in Anomaly Detection

Due to the complexity of modern CPPS, Anomaly Detection
is often carried out with the help of ML algorithms. Dif-
ferent approaches have been suggested, depending on data
availability. One main distinction is between Supervised and
Unsupervised Learning methods (Hastie, Tibshirani, Fried-
man, & Friedman, 2009). When no or very limited data for
fault cases and anomalies is available, unsupervised learning
strategies need to be used. Often, autoencoders (Lindemann,
Fesenmayr, Jazdi, & Weyrich, 2019) are employed to classify
anomalies in this case. This approach has been further re-
searched, for example by using an nonlinear autoencoder for
dimensionality reduction and Anomaly Detection, by exploit-
ing the neural-network autoencoder’s dual feature of perform-
ing dimensionality reduction, while simultaneously deliver-
ing a criterion for decisions on Anomaly Detection, namely
its reconstruction error (Eiteneuer, Hranisavljevic, & Nigge-
mann, 2019).
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Supervised learning methods can be employed when data sets
which contain anomalous behavior are available. These can
be methods of deep learning, which are highly suited for data
classification and feature extraction (Khan & Yairi, 2018),
or methods such as decision trees (Kaparthi & Bumblauskas,
2020) or support vector machines (Pittino, Puggl, Moldaschl,
& Hirschl, 2020).

A two-step approach to detecting anomalies in industrial pro-
cesses, which first classifies the phase of the process and then
whether the data is “Expected”, “Warning”, or “Critical”, has
been suggested (Quatrini, Costantino, Di Gravio, & Patri-
arca, 2020). As a classifier they used the decision forests
algorithm and the decision jungle algorithm. The advantage
with this method lies in the classification of production phases
by the algorithm, which allows better prediction.

The use of structured neural networks, which combine an
event ordering relationship based structuring technique with
deep neural networks, has been proposed both for supervised
and unsupervised learning (Liu et al., 2018). With the struc-
turing process, the weight initialization in the deep neural net-
work can be determined before training, which increases the
accuracy of the learned network.

2.2. Use of Machine Learning in Diagnosis

Diagnosis is often based on models, which need to be con-
structed based on expert knowledge. However, approaches to
use ML methods for generating these models exist. In (Bunte
et al., 2019) a learned model of a small production system
is employed for diagnosis. The algorithm first identifies the
modes of the system and subsequently learns the quantitative
behavior for each of them, thereby enabling faster diagnosis
in a mode-based system, compared to traditional model-based
diagnosis.

The combination of physics-derived models with ML meth-
ods is referred to as hybrid modeling. It has received grow-
ing attention in the past few years to address the challenges
of modeling CPS. Different methods of integrating physics
equations into ML models have been tested, such as using
physics-based equations as a regularization term in the loss
function of a neural network or physics-based pre-processing
of data (Rai & Sahu, 2020).

ML approaches have also been employed to directly diag-
nose systems, such as induction motors (Shao, Sun, Wang,
Gao, & Yan, 2016). A deep-belief network was employed to
learn features from vibration signals to classify failure modes.
However, to the best of the authors’ knowledge, no such al-
gorithm has been developed for CPPS.

2.3. Data Generation Approaches

ML algorithms can use real data sets collected from CPPS for
training purposes. However, often the data needed for train-

ing is not available in sufficiently large quantities. Therefore,
simulated data from models of CPPS is often used.

Models can be constructed in a variety of modeling lan-
guages. One of the most common ones is Modelica, which
can be simulated in several simulation environments, such as
OpenModelica (Fritzson et al., 2005), an open source sim-
ulation environment. Modelica is mostly used to simulate
different aspects of the physics within a system, such as elec-
trical, thermal or mechanical parts. Simulation of step-wise
processes is not easily possible. Another option for modeling
of CPPS is Simulink, a block-based modeling language based
on Matlab. It is most often employed for modeling and sim-
ulating mechatronical systems and can be used to design and
program software for these systems. Simulink is proprietary
and models cannot easily be exported to other simulation en-
vironments. Similarly, Labview is also a block-based model-
ing language mostly used for software generation and testing.
Furthermore, other simulation environments exist, which are
mostly proprietary software tailored to specific needs, such as
Plant Simulation by Siemens or ExtendSim, which are often
used in logistics simulation (Bangsow, 2020).

Generating data sets for ML training and evaluation is also an
ongoing field of research. In the field of Anomaly Detection
of cyber attacks, the Electra Dataset was generated, which
was used to evaluate cybersecurity in an electric traction sub-
station in the railway. However, this data set was generated
using a real electric traction substation and cyber attacks were
simulated to generate a useful training data set (Gómez et al.,
2019).

The BeRfiPl benchmark is a simulation environment for gen-
erating CPPS datasets from the process engineering domain
(Ehrhardt et al., 2022). The simulation environment is based
in OpenModelica. Generated datasets include hybrid sys-
tems, various faults, varying system complexity, complex de-
pendencies and recurrences (Ehrhardt et al., 2022)

2.4. Use of Game Engines in Data Generation

Game engines are already employed in modeling of engineer-
ing systems, particularly for the training of algorithms for
self-driving cars. Especially the capability of game engines
to generate visuals is useful to generate training data sets,
which can be combined with a simulation of the mechanics
of the vehicle’s engine using the physics engine (Rong et al.,
2020). Another similar approach was used to design CARLA,
a simulation environment for urban self driving vehicles. It
can simulate realistic scenarios in cities, including building,
people and weather conditions (Dosovitskiy, Ros, Codevilla,
Lopez, & Koltun, 2017).

Game engines are also already in use as simulation tools in
the robotics field, where the Robot Operating System (ROS)
is used to develop robots. The game engine Unity provides an
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interface for ROS to allow development of robotics software
within Unity. This has been employed to develop a simulation
environment which can be used to train robots to assemble
furniture and is used as a benchmark for deep reinforcement
learning algorithms (Lee, Hu, & Lim, 2021).

3. LIMITATIONS OF CURRENT APPROACHES

In the following we first cover data sets and then data gener-
ation approaches. A data set is by its nature limited in that it
is non-interactive, however, it is the only option for data from
real CPPS. Data generation uses a simulation to create data
sets. This allows not only more flexibility in what the data
sets should represent or cover, it also enables direct interac-
tion with the environment. The later can be useful for some
approaches based on reinforcement learning, e.g. (Lee et al.,
2021).

3.1. Real Data Sets

The main advantage and use case of a real data set is that it
represents the real world and can be used as a ground truth.
Cherry picking or manipulation aside its clear this advantage
holds over all other approaches and means that they need to
be used as a final reality check, for verification and validation
(Kleijnen, 1995).

However, they have a number of drawbacks. In real systems
faults or errors are sparse, therefore in many real data sets
they only make up a tiny amount of all data points (Zhang
et al., 2022). They also will not cover most possible faults:
Faults in production systems can be costly or even dangerous,
most fault cases will not be observed by chance and creating
a fault for test purposes might also be infeasible.

Additionally, interaction with a real environment is usually
impossible, as stated above. These rules out application of
approaches that require feedback, like reinforcement learn-
ing.

Real data sets are often hard to come by. The data gener-
ated by a factory is typically a well guarded trade secret of
the operating company. Even if they are used in a research
project, the data itself often remains undisclosed. This is es-
pecially true in a critical industry like defence. An overview
of existing data sets and their fields of application has been
compiled by the Fraunhofer IPT (Krauß, Dorißen, Mende,
Frye, & Schmitt, 2019).

Real world systems are not easily modified. This makes test-
ing of new approaches difficult. The total amount of data in
a real data set could also be insufficient for many ML algo-
rithms. While modern CPPS create a vast amount of data, the
time span covered is naturally limited.

3.2. Simulation and Data Generation

Simulations help to alleviate these drawbacks. Here we
can categorize them with functional simulation software like
Modelica and Simulink on one side and specialized, often
commercial tools like Plant Simulation on the other.

As introduced in Section 2.3 tools like Modelica and
Simulink are typically used to create functional models of
systems. The created models can cover fault cases and can
be used for Anomaly Detection or even diagnosis. The mod-
els can only depict what was explicitly added to them. This
is relevant as in reality, a lot of faults are the result of previ-
ously unknown behaviour or interaction. Errors only occur-
ring by chance are not covered and even random or stochastic
behaviour has to be explicitly modeled. When used for data
generation, the resulting data sets are as a result unnaturally
clean. This is a real issue for ML which relies on proper vari-
ance of the input data.

Functional models are very capable to depict complex rela-
tions between different values. Again these have to be ex-
plicitly designed, if there are unknown causal relations in the
actual system they will not be present in the simulation. This
makes diagnosis of them impossible. Real errors might be the
result of very different systems interacting with each other, a
purely functional simulation might not cover the actual cause.
For example, a product can get stuck on conveyor belt be-
cause of its shape. This is almost impossible to model without
the use of a 3D simulation. Such a simulation can however
be added to Simulink through the use of Simscape (Miller &
Wendlandt, 2010).

An alternative are specialized, usually commercial, tools. The
software introduced in Section 2.3, Plant Simulation, origi-
nates from a discrete event simulation but is extended with a
fully 3D visualisation. While the actual feature set of these
products obviously varies, there are a few common draw-
backs. The software is closed source, which might raise ques-
tions about the accuracy or viability of the simulation results.
The software has only limited options to modify it: CPPS are
very diverse and a fixed software might not come equipped
with the tools to cover each specific use case. Other issues
might arise with using the software to create data sets. De-
pending on the tool the options to interact with the software
for closed loop control might be limited, and even exporting
data sets could have limitations.

As mentioned above, challenges arise when merging ML and
simulation applications. This happens due to the fact that
there are different terminologies used in the applications. On
the one hand, there are many experts who deal with the cre-
ation of simulations and have thus increased their understand-
ing of processes. On the other hand, there are experts who
deal with the integration of ML applications and thus focus
on data processing. (von Rueden, Mayer, Sifa, Bauckhage, &
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Garcke, 2020)
Unexpected behavior (e.g., a slightly moved component) is
difficult to implement variably, realistically and without ex-
plicit programming in simulations. Since ML is very much
based on data diversity (e.g., oscillations, noise, etc.), the
challenges listed previously arise here, among others. Like-
wise, this heterogeneous reality leads to difficulties in adapt-
ing ML models for simulations, due to the different focus of
process and data diversity.

4. SOLUTIONS PROVIDED BY FLIPSI

To address the problems formulated in the preceding chap-
ter, we developed FliPSi, a simulation environment for CPPS.
FliPSi is implemented within the game engine Unity which
provides possibilities of modeling and simulation that bypass
problems, especially in functional modeling of CPPS and in
the combination of different types of faults.

4.1. How FliPSi is Designed

FliPSi can be executed within the Unity development envi-
ronment or as an application similar to a game. Once started,
the standard view appears, which is a bird-eye view on the
empty environment. Using the controls it is either possible
to add individual modules and build a CPPS from scratch
or to import pre-designed facilities. Figure 1A shows such
a pre-designed facility consisting of an input-module, which
generates the products, a milling module and a painting mod-
ule which alter the product, a sorting module which can sort
product according to color, and a storage module. These are
connected by conveyor belts. Additionally to the birds-eye
view, the simulation can also be viewed from the front and
the back.

A number of modules has already been implemented in
FliPSi.

For connecting modules, transport, storage and input/output
of products:

Conveyor Belt Rotary Table
Articulated Robot Input Module
Output Module Sorting Module
Storage Module Color Sensor
Action Sensor Barrier

For the processing of products:

Milling Module Drilling Module
CNC Machine Painting Module

Further modules can be implemented in Unity, using the built-
in programming language, or can be imported from external
sources, such as Digital Content Creation Tools. It is also
possible to import CAD data files, however, since these do
not contain information on the behavior and movement of the
module or on the effect it will have on the product, these fea-
tures need to be programmed in Unity.

Once the model has been assembled in Unity, the simulation
can be started. All interactions between modules and prod-
ucts are handled by the physics engine of Unity. Sensors
within the model record data during the simulation. The type
of data to be recorded can be defined by the user. It is possi-
ble to record technical data, such as the speed of the conveyor
belts and sensor data, such as the color of a product. Further
data points, including data that is not normally available from
a real CPPS, can be defined as well. Data is recorded once
the user pushes the ”Start Data” Button. The collected data is
saved as a csv file.

4.2. How FliPSi Solves the Aforementioned Problems

FliPSi allows for the generation of more realistic data sets,
as models of CPPS are initialized within a physical environ-
ment and the interactions between products and modules are
simulated using realistic physics. The physics engine is al-
ready implemeted in Unity and aspects such as gravity do not
need to be implemented. Compared with functional model-
ing of CPPS this enables the simulation of additional unfore-
seen faults in a complexity that exceeds functional simula-
tions, e.g. a warping in a single role of a conveyor-belt can
cause its blocking by unevenly aligned products several sta-
tions or curves later (cf. Figure 1 D). Therefore, FliPSi allows
the combination of functional and design simulation to gen-
erate large, diverse data sets.

Within FliPSi faults can be manually programmed and auto-
matically injected in a controlled way, such as a sudden stop
or change of speed in a conveyor belt, faults in the process-
ing of products or loss of power in the facility. Furthermore,
through realistic physical simulation, unforeseen faults can
be included in the data set, such as the geometry of a product
causing it to get stuck in the production line. Such faults can
only occur when the simulation is capable of combining func-
tional and design aspects. Through the physics engine, inter-
actions and the faults that occur through them are handled.
The combination of functional and design modeling also al-
lows the simultaneous simulation of multiple different types
of fault cases, e.g. a product becoming stuck on a conveyor
belt and the loss of power in a processing module.

Another advantage of using game engines for simulation of
CPPS is the visualization of the simulation. This is already
true during the modeling phase, because modules and facili-
ties are modeled visually in the game engine and any changes
can be directly observed in the 3D model of the system. Like-
wise, the effect of faults, whether injected on purpose or aris-
ing from the connection between modules and products, can
be visually observed during the simulation, making the pro-
cess more intuitive.

The simulation environment in Unity also allows for the au-
tomatic introduction and consideration of complex relation-
ships between variables within simulation models. By nature
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Figure 1. Different views of a simulation in FliPSi. (A) shows the bird-eye view of the simulation and product can be seen on
conveyors between the stations. The model of the CPPS consists of an input station, which generates the product, a milling
station and a painting station changing the product, a sorting station, a storage and conveyors connecting the stations. (B)
shows the front view of the simulation, product can be seen leaving the painting station. (C) shows a fault case caused by a
malfunctioning conveyor and (D) shows a fault case in which the product became stuck on the conveyor.

of this setup a complete simulation of rigid body physics is in-
cluded within every simulation run, enabling the simulation
and detection of complex dependencies from a single com-
ponent up to overarching dependencies over multiple com-
ponents within the CPPS. This allows for the generation of
more detailed and realistic data sets, while keeping the effort
of initial modeling reasonable. Because of its ability to gen-
erate more realistic data sets, which contain combinations of
different fault cases, FliPSi can be employed to generate data
sets for the (pre-)training and testing of ML algorithms.

As FliPSi is an open source platform, it offers complete ex-
plainability and accessibility. Compared to closed source ap-
plications, users of FliPSi can retrace all dependencies and
behavior within a simulation run. Additionally, the users can
implement their own models alongside the existing models
based on their own requirements on complexity and detail.
Thus, even specific scenarios can be modeled in an explain-
able manner, enabling the generation of realistic data sets of

CPPS for (pre-)training of ML models in the diagnosis do-
main.

Furthermore, FliPSi can also be employed to test newly de-
veloped and trained ML and diagnosis algorithms. The sim-
ulation can be run and fault cases can be injected, which
then need to be identified and, possibly, handled by the algo-
rithm. Based on the modularity of FliPSi, data sets for testing
asymptotic behavior of ML models can be easily assembled.
To achieve this, more and more complex models are created
and simulated and the data sets are then used to prove that the
ML algorithm shows an asymptotic behavior.

The features describes above additionally allow to use FliPSi
for educational purposes. The simulation can be used to
showcase the interdependencies of components that are dis-
tinctive to CPPS. Since FliPSi is designed in Unity it is easy
to understand the implementation and modify or expand it.
This makes it a good environment to create challenges for
students. As a learning environment it can be used to teach
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Table 1. Examples of data points which can be exported from the FliPSi simulation

Module Exportable Value Format of Data Point Possible Further Values (To be added)

Conveyor
Product on conveyor
Speed of conveyor

Angle of conveyor movement

Yes/No (0/1)
Integer
Integer

Power consumption
Multiple products on conveyor

Input Module Generation of product Yes/No (0/1) Time to next product

Color Sensor Color of Product Name of Color Color in RGB code

Drilling Module
Product in module

Speed of conveyor inside module
Hole drilled

Yes/No (0/1)
Integer

Yes/No (0/1)

Position of drill hole
Material use

both about the nature and challenges of CPPS as well as about
Anomaly Detection and other applications of ML.

4.3. Functionalities to be added

The physical game engine offers the possibility to simulate
scenarios as close to reality as possible. With the help of
simulated representations of machines and their associated
scripts, which collect process and sensor data, a highly ver-
satile modularity is created. Currently, modules can be added
manually and connected to the CPPS. The modules, which are
available at this point (see above), can be flexibly exchanged,
moved or replaced. The required modules (e.g. drilling mod-
ule) can be imported, aligned and located in the scenario via
a simplified user interface. The data is collected transparently
and can afterwards be processed as required. The large num-
ber of variants makes it possible to emulate CPPS of any kind
and to generate data sets that are normally difficult or im-
possible to access by industrial companies. It is planned that
CPPS can be created automatically with FliPSi in the future.
This means a reduction of the manual effort for the compila-
tion of CPPS, higher data set numbers and the achievement
of faster results. The basis for this is the specification of the
product to be manufactured, the machines to be used and the
available quantity of resources (e.g. number per machine).
With the help of ML applications, such as supervised learn-
ing methods, an optimal plan can be generated from this in-
formation, in which order the machines should be arranged
and the products manufactured. This data and the data gener-
ated during the simulation are saved and made transparently
available to the user. To achieve a better concordance with
reality, a model fitting will be implemented for models of ex-
isting CPPS. Time series data from real CPPS can be used
to fit the parameters in the simulation. Thereby, better mod-
els of real CPPS can be designed and the data can be used to
simulate faults in the real system.

5. DISCUSSION

In summary, a clear trend can be seen regarding the usage of
game engines as training ground for different real world prob-

lems like autonomous driving or robot behaviour. Although
the methods share the basic concept of using a game engine
as a tool for real world approximation by creating feasible
scenarios and mechanical simulations, the domain for its ap-
plications may differ fundamentally.
(Rong et al.,2020) used such an approach for the simulation
of self driving vehicle mechanics and as training environ-
ment. Here, the focus lies in the functionality of the vehicle
as a whole in relation to the outside environment. In compar-
ison, FliPSi’s central characteristic lies in the interaction of
different mechanical modules and the impact of such interac-
tions. Since (Lee, Hu, Lim, 2021) used game engine tools
for the simulation of the environment to train robots and as a
benchmark for deep reinforcement learning algorithms, there
has been a clear focus on the perfection of singular modules
and their tasks. Although in the current state there is a limited
number of modules, FliPSi can be seen as a generalization.
Robots like in (Lee, Hu, Lim, 2021) could be reimplemented
as an additional module to test the complex interaction with
the environment, different products and even other modules.
Here, the possibilities and advantages of FliPSi are already
recognizable especially regarding its accessibility. As an
open source development a collective improvement is pos-
sible even with extensions from a variety of different use
cases with distinct work fields. The nature of the engine it-
self grants a basic compatibility. Through the combination of
functional and design aspects it is possible to generate com-
plex error scenarios derived from the interaction of both of
those aspects. This scenario solves the problem of limited
fault data sets. The data sets are then suitable for ML train-
ing purposes. By constructing a model of a real CPPS within
FliPSi, data sets for pre-training of algorithms can be gener-
ated. Using the simulated data, a pre-training task of iden-
tifying anomalies and finding the root cause of these can be
created. This way, less data of the real system is needed to
train the ML algorithm. Modeling alone is not capable of
achieving the task of monitoring the state of a CPPS. Models
can generate data and can be used to simulate the behavior
in case of fault. Models created in FliPSi are even capable
of simulating unexpected or rarely occurring faults. How-
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ever, even if these faults can be modeled and simulated, they
still need to be recognized once they occur in the real sys-
tem. This task is achieved by using ML algorithms, which
can analyze the vast amount of data generated by a CPPS and
recognize faulty behavior. With FliPSi we provide are devel-
oping a simulation platform to generate better training sets
for ML algorithms. The flip side of generating multi-faceted
data sets is the need for the creation of complex modules and
adequate linking of those. Nonetheless the expected results
derived from the combination and interaction between mul-
tiple faults, errors and their consequences are visualized and
well documented with given data exports.
In summary, FliPSi’s application and expansion options far
outweigh current limitations and obstacles.

6. CONCLUSION

In this paper the simulation environment FliPSi is presented.
With it, realistic CPPS data can be flexibly generated, which
can be particularly beneficial in the diagnostic area of ML.
The current use of ML algorithms in the field of Anomaly
Detection (RQ1) mainly refers to the use of unsupervised or
supervised learning methods, such as classification or deci-
sion trees. In the field of diagnosis, the authors are not aware
of any algorithm for CPPS so far. The currently existing real
data sets often show deficits (RQ2). In particular, the missing
data of fault conditions, the challenge in obtaining such data
sets, and the aspect that such data is difficult to manipulate
in reality pose challenges to the creation of diagnostic algo-
rithms. FliPSi was created in a physical simulation environ-
ment whose data generation is transparent and can be handled
flexibly. Modular CPPS can be created, whose fault states can
be implemented variably. Due to the fact that a physical sim-
ulation environment is used, the data is close to reality and
adaptable to specific circumstances (RQ3). In the future, the
generated realistic data can be used to train diagnostic algo-
rithms and detect anomalies in CPPS. Thus, research gaps in
these areas can be closed. It can also serve as a learning en-
vironment to teach about CPPS as well as ML. FliPSi will
also be made publicly available to interested parties on the
institute’s website in the future.
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