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ABSTRACT 

Down hole safety valve plays and important role in the safety 

of the constructed wells of oil and gas; failures in this element 

are very problematic to both, the environment and the 

production losses; down hole safety valve failure prediction 

is critical to prevent such catastrophic events. This paper 

provides a comparative study and proposes a new feedback 

mechanism to enhance the performance of linear regression 

models in predicting the Remaining Useful Life of the Down 

Hole Safety Valve used in oil and natural gas well completion 

operations. The data used are part of the publicly available 

3W database developed by Petrobras, the Brazilian oil 

holding. Three variations of linear regression models were 

investigated, and evaluated using prognosis performance 

metrics. Two experiments were conducted to evaluate the 

performance of the system and its reaction to new data, 

coefficient of determination reached 94% on average 

indicating a successful prediction with 95% confidence level 

reached once the feedback mechanism is applied. 

1. INTRODUCTION 

Natural gas is considered to be playing a crucial and 

important part in fulfilling energy demands, its reliability and 

cost-efficiency for power generation has been proven; and it 

is not stopping there, moreover it is expected to be the fastest 

growing major fuel source of the next two decades. Natural 

gas has many environmental benefits due to its low 

emissions, and reduced surface footprint. It is considered to 

be the cleanest burning fossil fuel, and less carbon intensive 

than other fossil fuels (XTO Energy, 2019).  

Oil and natural gas extraction goes through multiple steps and 

procedure; one of the final operations is "Well Completion", 

and it is the process of descending the production tubing into 

the cemented casing, and completing the well construction to 

make it ready for production. The production tubing contains 

numerous elements, some are necessary, others are 

complementary. One of the main elements of the completion 

tubing is the Down Hole Safety Valve (DHSV), this last have 

multiple names in the industry here are a few of them: Tubing 

Retrievable Safety Valve (TRSV), Surface Controlled 

Subsurface Safety Valve (SCSSV), Wireline Retrievable 

Safety Valve (WRSV), and many others, each one of them 

has some unique properties but they all share the same 

purpose. DHSVs are one of the critical element during the 

completion process of the well, as these are fail-safe devices, 

and act to prevent an uncontrolled release of oil and natural 

gas, that will cause a surge in the pressure inside the wellbore 

and create a blowout situation (Resato International, 2020).  

Failure in the DHSV can be very detrimental, both to the 

environment as well as to the production losses and costs of 

repair. In general, the failure that occurs in the DHSV is the 

spurious closure, where there the DHSV closes and cuts the 

production; and in order to correct this failure a tool called 

‘Lock-Open Tool’ is ran inside the production tubing to 

bypass the DHSV and resume the production.  

To get a visual representation of a production well. Figure 1 

presents a schematic of an offshore well. The oil and gas flow 

from a reservoir through production tubing and then through 

a production line to a platform. A subsea Christmas tree is a 

type of equipment installed on the seabed and is basically 

composed of valves and sensors operated remotely through 

an electro-hydraulic umbilical. A Permanent Downhole 

Gauge (PDG) and a Temperature and Pressure Transducer 

(TPT) are devices that contain pressure and temperature 

sensors, respectively. The PDG remains fixed in a certain 
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position of the production tubing, and the TPT is part of the 

subsea Christmas tree (Vargas et al. 2019). 

 

Figure 1: Simplified schematic of a typical offshore naturally 

(Vergas et al., 2019) 

 
The time taken for the correction or the fix to take place is 

called Non-Productive Time (NPT). NPT is the time when 

any operation on the rig is interrupted for whatever reason, it 

is used as a measure of the effectiveness of the rig site 

operations. Usually it is represented as a percentage of idle 

time with respect to the total operation time (Krygier, Solarin 

and Ivanka, 2020), (Emhanna, 2018).  

NPT and many other negatively influencing measures can be 

avoided or at least lowered if they have been correctly 

forecasted or foreseen. This is where fault prognosis 

techniques come in place. Fault prognosis is to use of current 

and past machine condition in order to predict how much time 

left for the failure to occur. The time left for the failure to 

occur is called Time to Failure (TTF), or the Remaining 

Useful Life (RUL) (Xiao-Sheng, Wenbin, Chang-Hua and 

Dong-Hua, 2011). Information about the fault propagation 

and failure mechanism is needed in order to predict the RUL. 

These mechanisms are found in sensor measurements and 

condition indicator that can be later used as features (inputs) 

for the prediction algorithm.  

Prognosis methods fall into three main categories: 

Statistical/probability based techniques, Model-based 

techniques, and Data-driven techniques; each with its 

advantages and disadvantages (Salem & Sayed-Mouchaweh, 

2020). The simplest form of prognosis techniques is the 

statistical approach; it is done by collecting statistical 

information from numerous component samples in order to 

indicate the time left for the failure to occur (Tran and Yang, 

2009). Logistic regression has been used by Yan, Koc and 

Lee (2004), to calculate the probability function of the failure 

occurrence and used an autoregressive moving average to 

trend the condition variable for failure prediction. The 

advantage of statistical approaches that they do not require 

condition monitoring, population characteristics enable 

longer-range forecast, however, they only provide general 

estimates for the entire population of identical unites (Yan et 

al. 2004), (Phelps, Willett and Kirubarajan, 2001), (Banjevic 

and Jardine, 2005), (Vlok, Wnek and Zygmunt, 2004), 

(Chinnam and Baruah, 2003), (Kwan, Zhang, Xu and 

Haynes, 2003), (Lin and Makis, 2004), (Wang, Scarf  and 

Smith, 2000), (Wang, 2002). 

If a mathematical model is available, Model-based prognosis 

approaches can be constructed from physical systems. 

Features of these models are the residuals, which are the 

differences between the sensed measurements and the 

outputs of the mathematical model (Tran and Yang, 2009) 

(Derbal & Houari, 2018). Two defect propagation models 

were introduced by Li, Billington, Zhang, Kurfess, Danyluk 

and Liang (1999), a mechanistic modeling was used to 

estimate the RUL of bearings (Li, Kurfess and Liang, 2000). 

Data-driven techniques or also known as machine learning 

techniques, use a large amount of historical failure data in 

order to build and train a prognostic model that learns the 

system behavior (Houari T., 2021). Due to the flexibility in 

generating a prognosis model, artificial intelligence 

techniques were used regularly. Artificial Neural Networks 

(ANN) were used in several approaches to model the system 

and estimate the RUL. Self-organizing neural networks were 

used by Zhang and Ganesan (1997) for multivariable trending 

of fault development in a bearing system in order to estimate 

its residual life.  

Failure prediction has a very crucial impact on cost cutting 

and NPT reduction. We can imagine two scenarios, the first 

one is when using a failure prediction approach, the second 

one is when there is no use of a failure prediction approach; 

the first scenario will have less NPT than the second. This 

point of view can be applied to many engineering or 

manufacturing industries, however it is closely related to the 

oil and natural gas extraction field. The difference in 

production is very crucial to both, the client and the service 

company, where a decent amount of time is used in planning, 

preparing and transporting tools, equipment and trained 

personnel to the rig site to conduct the maintenance job. The 

more oil or natural gas produce the better, hence, the need for 

failure prediction is emphasized. 

The major contributions of this paper can be stated as 

follows: 

- Comparative study of three linear regression models 

to predict the RUL of the DHSV; 

- A new proposed performance enhancement scheme 

using a feedback loop mechanism improving the 

RUL prediction. 

The algorithm is evaluated using failure data of DHSV in 

order to predict its RUL. The results are evaluated using 

performance prognosis metrics mentioned in the article 
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(Saxena, Celaya, Balaban, Goebel, Saha, B., Saha, S. and 

Schwabacher, 2008). 

This paper is organized as follows: Section 2 describes the 

function of the DHSV, failure description, and the used 

datasets; Section 3 introduces the proposed approaches and 

the workflow; experimentation methodology and the 

evaluation process; Experiments and results are discussed in 

section 4. Finally, Section 5 closes the paper emphasizing its 

main contributions. 

2. CASE STUDY 

2.1. Down Hole Safety Valve Working Principle and 

Failure 

Down Hole Safety Valve is a Completion tools, considered 

as a safety device that allows the oil or natural gas to flow 

from the reservoir up to the surface (Brown, 1984), (Purser, 

1997), however, in case of an emergency or physical 

disconnection of the hydraulic control line Figure 2, it closes 

automatically blocking the oil and natural gas to flow to the 

surface therefore avoid any surface spillage.  

Figure 2 shows a vertical cut on a surface controlled 

subsurface safety valve, the working principle of a SCSSV is 

as follows: starting from the closed position, pressure flows 

from the surface though a hydraulic control line into the 

yellow chamber to press the control sleeve, the control sleeve 

presses down on a spring that has a Fail-safe mechanism in 

order for the flapper to open; this is the opening sequence of 

the SCSSV. Pressure inside the hydraulic control line can be 

controlled from the surface to close the flapper in case of a 

detected emergency; in addition, any damage to the hydraulic 

control line will result in a pressure drop and the flapper 

closes. Sometimes the closure function fails in a spurious 

manner without any indication on the surface, in order to 

correct this failure, an exercising tool is deployed into the 

production tubing to force the flapper back to its normal state, 

if this procedure fails, a ‘Lock-Open Tool’ is ran into the 

production tubing to lock the flapper in its open state. 

                          

Figure 2 : Down Hole Safety Valve Vertical Cut and 

Components (Garcia, Jacinto, Lima, Pires and Droguett, 

2006) 

2.2. 3W Dataset description 

The data used for this article is the 3W Dataset. It is structured 

as described in Table 1 and is available at (Vargas, Munaro, 

Ciarelli, Medeiros, Amaral, Barrionuevo, Dias de Araújo, 

Ribeiro, Magalhães, 2019). It is a collection of real sensor 

measurements taken from real operation in oil wells; the 

dataset also contains a collection of simulated data and 

sketched data. All instances were generated with 

observations obtained with a fixed sampling rate (1 Hz). 

The dataset contains nine classes of events; the first class is 

the normal behavior; the eight other events are different 

faulty behaviors: 1) Abrupt increase of Basic Sediment and 

Water (BSW); 2) Spurious closure of DHSV; 3) Severe 

slugging; 4) Flow instability; 5) Rapid productivity loss; 6) 

Quick restriction in Production choke (PCK); 7) Scaling in 

PCK, and 8) Hydrate in production line. 

Table 1: Quantitative Description of 3W database per event 

type. 
Class Description Real Simulated Sketched Total 

0 Normal 597 0 0 597 

1 Abrupt BSW Increase 5 114 10 129 

2 Spurious DHSV Closure 22 16 0 36 

3 Severe Slugging 32 74 0 106 

4 Flow Instability 344 0 0 344 

5 Rapid Productivity Loss 12 439 0 451 

6 Quick PCK Restriction 6 215 0 221 

7 Scaling in PCK 4 0 10 14 

8 Hydrate in Prod. Line 3 81 0 84 

 Total 1025 939 20 1984 

 

The faulty behavior data contains full measurements starting 

from the healthy state, passing through the transient period, 

ending with the faulty steady state; Table 1 gives a 

quantitative description of 3W database per event type, where 

we count the number of instances belonging to each class. 

The number of instances is unbalanced due to the rarity of the 

events recorded; taking the “Scaling in PCK” event as an 

example, which is considered as a rare event in the industry 

(Vergas et al., 2019). 

Each acquisition session contains eight process variables of 

different pressure and temperature values, in addition to the 

Gas life flow rate, the description of each measurement is 

presented in Table 2, with the corresponding units. 

Table 2: List of tags in 3 W database, including tag names, 

descriptions, and measuring units. 
Name Description Unit 

P-PDG Pressure at permanent downhole gauge 
(PDG) 

Pa 

P-TPT Pressure at temperature/pressure 

transducer (TPT) 

Pa 

T-TPT Temperature at temperature/pressure 
transducer (TPT) 

℃ 

P-MON-CKP Pressure upstream of production choke 

(CKP) 

Pa 

T-JUS-CKP Temperature downstream of production 
choke (CKP) 

℃ 
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P-JUS-CKGL Pressure downstream of gas lift choke 
(CKGL) 

Pa 

T-JUS-CKGL Temperature downstream of gas lift 

choke (CKGL) 
℃ 

QGL Gas lift flow rate 𝑚3 𝑠⁄  
   

3. PROPOSED APPROACH 

In this section, the three proposed linear regression 

algorithms are described, in addition to the workflow of 

systems used in the comparative study, and most importantly 

the feedback loop mechanism used to improve or enhance the 

performance of the prediction; the validation process and 

method are also described alongside the prognosis 

performance metrics used to evaluate this work. 

3.1. Linear Regression 

Linear regression is used to study the linear relationship 

between a dependent variable (considered as the response to 

the regression algorithm), and one or more dependent 

variables (considered as features for the regression 

algorithm). 

Linear regression can be univariable or multivariable, in 

many cases, the use of one dependent variable in inadequate 

to explain the dependent variable behavior; in such cases, the 

use of a multivariable linear regression is needed. 

Multivariable linear regression model can be described in the 

following equation:   

 𝑌 = 𝑎 + 𝑏1𝑋1 + 𝑏2𝑋2 + 𝑏3𝑋3 + ⋯+ 𝑏𝑛𝑋𝑛   (1) 

Where:  

𝑌  : is the dependent variable. 

𝑋𝑖 : is the independent variable. 

𝑏𝑖 : is the regression coefficient of 𝑋𝑖. 

𝑎 : is a constant (𝑌 intersect). 

Where the dependent variable in this study is the Remaining 

Useful Life (RUL) of the DHSV, and the independent 

variables are the four tags (P-PDG, P-TPT, T-TPT, and T-

JUS-CKP) 

If we implement the previous variables in equation (1) we 

will get:  

 𝑅𝑈𝐿 = 𝑎 + 𝑏1𝑃𝑃𝐷𝐺 + 𝑏2𝑃𝑇𝑃𝑇 + 𝑏3𝑇𝑇𝑃𝑇 + 𝑏4 𝐽𝑈𝑆𝐶𝐾𝑃 (2) 

3.2. Stepwise Regression 

Robust regression model needs to include independent 

variables that describe and explain a large part of the 

dependent variable. Variable selection methods vary from 

forward selection to backward selection and even stepwise 

selection (Fahrmeir, Kneib and Lang, 2009), (Schneider, 

Hommel and Blettner, 2010). 

Forward variable selection, is a method that keeps adding 

these variables: P-PDG, P-TPT, T-TPT, and T-JUS-CKP; to 

the model as long as they contribute towards explaining the 

dependent variable which is the RUL in our case. 

Backward variable elimination on the other hand, starts with 

a model that has all the independent variables (P-PDG, P-

TPT, T-TPT, and T-JUS-CKP), the variables that worsen the 

prediction of the dependent variable (RUL) are then removed 

starting from the ones that has the most effect, to the least 

effect; this part is iterative until all the worsening variables 

are removed. 

The stepwise variables selection combines aspects from 

forward selection and backward elimination. It starts with a 

null model, like the forward selection, and adds an 

independent variable that most describes the dependent 

variable and it keeps iterating. In addition, in every iteration 

a test is performed to see whether one of the added variables 

became invaluable, if this is the case, then the variable shall 

be removed. This selection is done to the four tags (P-PDG, 

P-TPT, T-TPT, and T-JUS-CKP) to test their performance 

and verify their value to predict the RUL. 

3.3. Interactions Linear Regression 

An interaction occurs not only when one independent 

variable has an effect on the dependent variable, but also its 

relation with other independent variables (Hong, Gui, Baran 

and Willis, 2010), (Ning and Hao, 2017). 

If we consider a typical regression equation without 

interactions:  

 𝑌 = 𝑎 + 𝑏1𝑋1 + 𝑏2𝑋2   (3) 

However, with the inclusion of the interaction effect the 

previous equation will be as follows: 

 𝑌 = 𝑎 + 𝑏1𝑋1 + 𝑏2𝑋2 + 𝑏3𝑋1𝑋2   (4) 

Where: 

𝑋1𝑋2 : is the interaction between 𝑋1and 𝑋2. 

This is called a two-way interaction, because there are two 

variables interacting with each other; higher order 

interactions are possible, however, the number of terms of the 

regression equation follows: 

 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑟𝑚𝑠 = 2𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑠 𝑜𝑟𝑑𝑒𝑟     (5) 

If we pick two variables from our study the equation will 

become:  

 𝑅𝑈𝐿 = 𝑎 + 𝑏1. 𝑃𝑇𝑃𝑇 + 𝑏2. 𝑇𝑇𝑃𝑇 + 𝑏3. 𝑃𝑇𝑃𝑇. 𝑇𝑇𝑃𝑇 (6) 

If we insert all four variables we would get 16 terms:  

 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑟𝑚𝑠 = 24 = 16    (7) 
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Figure 3: Block Diagram of the proposed comparative study system. 

3.4. System Overview 

3.4.1. Comparative Study System 

The proposed system is represented in Figure 3.Error! 

Reference source not found. which shows the data 

flow starting from its raw form to be acquired to the system, 

passing through a pre-processing phase where modification 

is done to the data by keeping only the transient period where 

the deterioration started to reduce the procession power and 

concentrate only on the degradation phase;  and adding the 

RUL variable from the last healthy behavior timestamp to the 

first faulty behavior timestamp to compensate for the absence 

of the RUL variable in the dataset. The pre-processed data are 

fed to the training model, the validation process using K-fold 

cross validation aims at validating the model for unseen 

instances in the training phase, the prognosis performance 

metrics were calculated afterwards; The best performing 

models will be picked to be optimized by changing their 

hyper parameters. Once the model is fully developed the 

testing phase takes place by feeding a new set of data to the 

model and check its performance with untrained data, and 

evaluate the results using prognosis performance metrics 

discussed in section 3.5.2. 

3.4.2. Feedback Loop Mechanism 

The best performing model from the comparative study is 

chosen for a furthermore performance improvement. 

The performance improvement is conducted through using a 

new proposed scheme. The main idea is to influence the 

features used for the prediction; to do that a feature vector 

will be added to the feature space, therefore, instead of using 

" 𝑛" number of features, the model will be using " 𝑛 + 1" 

features. The implementation of this scheme will be 

discussed in this section. 

The main questions are, where the added feature will be 

integrated from; how will this feature be added to the feature 

space; and can this feature be updated to provide a dynamic 

nature to the algorithm.  

The added feature will be integrated from the previously 

predicted RUL, meaning that we will be using a Feedback 

Loop Mechanism in order to integrate the new feature in the 

feature space; therefore, at the start, the added feature vector 

will be empty due to the lack of predicted RUL data. After 

the first iteration the added feature will be constantly updated 

to provide a dynamic nature to the algorithm.  

To further understand the proposed scheme Figure 4 shows a 

block diagram where the Feedback Loop Mechanism is 

implemented. 

The "Training dataset" is fed into the trained model 

containing features (sensor measurements) and real RUL. 

The output of the "Model Training" block is a prediction 

function used to predict new data. The next step is to test the 

prediction function with a new "Testing dataset", the output 

of this phase is the predicted RUL. This last is used for 

computing the prognosis performance metrics, but most 

importantly it is used as a feedback feature to retrain the 

model and test it. 

The update scheme is implemented following these main 

steps:  

1. In the first iteration (𝑖 = 0), a new empty feature 

vector is created and used for training, however it 

won’t have any effect due to its emptiness, 

therefore it will neither benefit or hurt the 

prediction. 

2. The prediction function is created and will be used 

to test the model on new unseen data. 

3. The model is tested and the predicted RUL is 

computed. 

4. In the second iteration (𝑖 = 1), the empty feature 

vector is filled with the predicted RUL computed in 

the first iteration. 

5. The new feature vector is used alongside the system 

features (sensor measurements) to retrain the 

model. 

6. The model testing is done for the second time and 

the predicted RUL is computed. 

7. The algorithm keeps iterating until satisfactory 

results are obtained, or a conversion happens.  

In the fifth step, we kept the original features (sensor 

measurements) unmodified and unweighted to let the added 

feature act as a support and not as an original feature this will 

ensure that the prediction is not deviated from the original 

system. 

This feedback mechanism can be described using the 

following set of equations for 𝑛  iteration in the case of a 

regular Linear Regression: 
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Figure 4: Block Diagram of the proposed Feedback Mechanism for performance enhancement. 

 

 𝑌1 = 𝑎 + 𝑏1𝑋1 + 𝑏2𝑋2 + ⋯+ 𝑏𝑛𝑋𝑛 + 0 

𝑌2 = 𝑎 + 𝑏1𝑋1 + 𝑏2𝑋2 + ⋯+ 𝑏𝑛𝑋𝑛 + �̂�1 

𝑌3 = 𝑎 + 𝑏1𝑋1 + 𝑏2𝑋2 + ⋯+ 𝑏𝑛𝑋𝑛 + �̂�2 

⋮ 

𝑌𝑛 = 𝑎 + 𝑏1𝑋1 + 𝑏2𝑋2 + ⋯+ 𝑏𝑛𝑋𝑛 + �̂�𝑛−1 

   

 

(8) 

Or as   
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�̂�1

�̂�2

⋮
�̂�𝑛−1]

 
 
 
 

 

 

(9) 

3.5. Evaluation Methodology 

In order to evaluate the obtained results, prognosis 

performance metrics were computed using a K-fold cross 

validation technique. In this section, the validation and the 

performance metrics are explained. 

3.5.1. K-Fold Cross Validation 

During the model training, K-Fold cross validation technique 

is performed to evaluate and compare the performance of 

different machine learning models on the same dataset; by 

giving results of the training accuracy, and a broad picture of 

the testing accuracy. The number of folds is set to five due to  

the lack of differences in accuracy estimation with higher fold 

cross validations, compared to the processing time; 5-Fold 

cross validation divide the training set into five equal 

sections, the training is done using four sections and the fifth 

one is used for testing, then in the second iteration four 

different sections are selected including the section used in 

testing. 

in the last iteration, and one is left for testing; the algorithm 

keeps iterating for five times and until all the sections have 

been used for training and testing the model; Figure  shows 

the cross validation method. 

 

Figure 5: K-Fold cross validation method (Qiubing, 

Mingchao and Shuai, 2019).  

3.5.2. Prognosis Performance Metrics 

Evaluation of the model training and testing is done using the 

following prognosis performance metrics: 

 Root Mean Squared Error 

Root Mean Squared Error is used to evaluate the standard 

deviations of the residuals of the prediction results (the 

difference between the predicted and the observed data), 

equation 5 describes the 𝑅𝑀𝑆𝐸:  

 
𝑅𝑀𝑆𝐸 = √(�̂� − 𝑦)2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 

(10) 

Where:  

�̂� : is the predicted response. 

𝑦 : is the observed response. 

 Mean Squared Error 

Mean Squared error evaluates our model in terms of the 

variance of the residuals, using the following equation: 
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Figure 5: Sensor measurements used in model training (Plot 1), Remaining Useful Life (Plot 2). 

 

 𝑀𝑆𝐸 = (�̂� − 𝑦)2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ (11) 

 R-squared (coefficient of determination)  

the proportion of the variance in the dependent variable that 

is explained by the linear regression model. It is calculated 

for the proposed models using the following equation: 

 
𝑅2 = 1 −

∑(�̂� − 𝑦)2

∑(𝑦 − �̅�)2
 

(12) 

Where: 

�̅� : is the mean of the observed response. 

 Mean Absolute Error 

Mean Absolute Error measures the average of the residuals 

of the prediction results of the proposed models using the 

following equation: 

 𝑀𝐴𝐸 = |�̂� − 𝑦̅̅ ̅̅ ̅̅ ̅| (13) 

After the computation of the prognosis performance metrics, 

different model hyper parameters were optimized through 

trial and error, until the best hyper parameters were obtained. 

Once the optimization is finished and the model is fully 

developed; the models are then tested on two new sets that 

has not been trained on before, to check their performance 

with new data. 

4. EXPERIMENTATION AND RESULTS 

4.1. Experimentation  

In order to test our proposed models, two kind of experiments 

were conducted, by testing the previously trained models on 

new unseen data. Both data sequences had an RUL of 3600 

second (timestamp), however the sensor measurements were 

not the same. The first experiment recorded noisy 

measurements due the reaction between the closing 

mechanism of the DHSV and the high reservoir upward 

pressure. The second experiment was recorded from different 

well conditions, the sensor measurements showed cleaner 

behavior of the DHSV closing mechanism, due to the 

stabilized reservoir upward pressure. 

The degradation process lasting 3600 second (1 hour) is quite 

fast, and the reaction time will be small in order to do the 

maintenance; however, it was the maximum length provided 

by the dataset creators (Vergas et al., 2019); these experiment 

will be used to prove that the proposed methods have a 

significance, future work will be evaluated with real data. 

4.1.1. Model Training 

The dataset used contains real and simulated data, for this 

comparative study only the simulated data was considered; 

transient period from healthy to faulty, only ten files have the 

full transient period, which are inadequate for a robust model 

training as pointed in section 2.2 to the unbalance of the 

recorded instances; therefore, data augmentation is needed, 

however, it will not be considered in this comparative study. 

Features discussed in section 4.1.2 were used as predictors 

and the RUL variable as the response. 

4.1.2. Features Used 

Four measurements are considered as features in training the 

regression models, P-PDG, P-TPT, T-TPT, and T-JUS-CKP, 

due to the physical characteristics of the system; other 

measurements are either been constant or have negligible 

values (Figure 5).  

To explain the behavior of these measurements we can go 

back to Figure 2 and imagine that the DHSV is closing bit by 

bit until it is fully closed; knowing that the oil or gas is 

coming below from the reservoir, once it faces a closed 

DHSV, the pressure below the DHSV is increased which 

explains the increase in P-PDG. On the other side, the 
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pressure and temperature above the closed DHSV is 

decreased, which explains the drop in P-TPT, T-TPT. 

In order to further verify the usefulness of these 

measurements a correlation matrix was generated from the 

training data between these measurements (features) and the 

response. Figure 5 elucidate that no correlation above 0.73 

exist between the features used. 

 

Figure 7: Correlation matrix for feature selection 

4.2. Comparative Study Results 

In this section results obtained during the validation process 

and during the testing phase are presented. Validation results 

were computed using a 5-Fold cross validation, prognosis 

performance metrics were calculated for each one of the 

regression models. RMSE for all the models indicated a 

promising training session, due to the fact that the total 

training sample size was around 50,000 timestamp. 

Interaction Linear Regression model performed better than 

the Linear Regression model by almost 10%, Stepwise 

Regression model on the other hand, showed the most 

promising results among the trained models, it performed 

better than the Linear Regression model by 33%, and by 26% 

better than the second model. Table 3 depicts the results 

obtained for all the trained models in details. 

Table 3: Model training validation results for the three 

regression models 
Performance 

Metrics 

Linear 

Regression 

Linear 

Interaction 
Regression 

Stepwise 

Linear 
Regression 

𝑹𝑴𝑺𝑬 425 384 286 

𝑹𝟐 0.83 0.86 0.92 

MSE 1.8 ∗ 105 1.5 ∗ 105 81550 

MAE 326 283 212 

In order to test our proposed models on new unseen data, two 

kind of experiments were conducted (Section 4.1). 

The obtained results show that the stepwise regression model 

performs better than the linear regression model and the 

interaction linear regression model in terms of RMSE and R-

squared values reaching up to 92% accuracy and 0.91 

coefficient of determination. which is due to selection 

mechanism of the model. The first experiment results are 

shown in Table 4. 

Table 4: First experiment results of the three linear 

regression models 
Performance 

Metrics 

Linear 

Regression 

Linear 

Interaction 
Regression 

Stepwise 

Linear 
Regression 

𝑹𝑴𝑺𝑬 398 380 304 

𝑹𝟐 0.85 0.87 0.91 

MSE 1.6 ∗ 105 1.4 ∗ 105 92695 

MAE 304 305 230 

Performance pattern was the same for the second experiment, 

however there was no huge difference numbers wise, Linear 

Regression model, Interactions Linear Regression, and 

Stepwise Regression model, got a coefficient of 

determination of 0.93, 0.96, and 0.97 respectively. Very low 

RMSE values were recorded reaching 172 for the Stepwise 

Regression model. The obtained results from the second 

experiment were expected to be better than the first one, due 

to the clean sensor measurement. Table 5 depicts the second 

experiment results in detail. 

Table 5: Second experiment results of the three linear 

regression models 
Performance 

Metrics 
Linear 

Regression 
Linear 

Interaction 

Regression 

Stepwise 
Linear 

Regression 

𝑹𝑴𝑺𝑬 278 215 172 

𝑹𝟐 0.93 0.96 0.97 

MSE 77800 46368 29802 

MAE 221 178 131 

Figure 6 and Figure 7 give a visual interpretation of the 

results obtained in the first experiment and second 

experiment respectively. One my notice that the best 

performing model is the Stepwise Linear Regression, 

followed by the Linear Interaction Regression model, then 

the traditional Linear model. The difference between the 

models is not huge, however it may affect the results if the 

RUL is longer, or the sensor measurements are noisier. One 

may also notice that the results in the second experiment were 

better than the first one, due to the clean sensor measurement 

 

Figure 6: First test results plot showing the predicted RUL 

using different regression models and the real RUL  
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Figure 7: Second test results plot showing the predicted 

RUL using different regression models and the real RUL 

 

Figure 8 shows the predicted RUL using the Stepwise Linear 

Regression and the upper and lower bounds of a 85% 

confidence interval.  

 
Figure 8: Predicted RUL with Stepwise regression within 

85% confidence interval. 

4.3. Feedback Loop Mechanism Results 

In this section, the results of the proposed feedback loop 

mechanism are presented. After the selection of the best 

model from the comparative study; that model is iterated 

through the feedback loop mechanism. Figure 9 shows the 

results of the original prediction, as well as the predicted RUL 

of the first and third iteration.  

 

Figure 9: Feedback Mechanism results of the first three 

iterations 

 

One can clearly notice the positive effect of the proposed 

mechanism, where the green plot of the predicted RUL (third 

iteration) is more accurate than the plot prior iterations. The 

improvements happened at the beginning of the prediction 

and across the full timeframe.  

From Table 6 one can notice that the training validation 

RMSE was decreasing after each iteration, on the other hand 

the confidence level kept increasing reaching 95% in the third 

iteration, which proves the effectiveness of the proposed 

dynamical approach in terms of accuracy.  (Figure 10). 

Table 6: Validation RMSE and confidence interval for each 

iteration 
Iterations RMSE 

(validation) 

Confidence  

interval 

0 268 85% 

1 113 92% 

2 80 93% 

3 71 95% 

 

 

Figure 10: Predicted RUL with Stepwise regression within 

95% confidence interval after the third iteration. 

 

Difference between Figure 8 and Figure 10 is clearly visible, 

where the prediction in Figure 10 is more accurate which 

depicts the usefulness of the proposed dynamical approach. 

5. CONCLUSION AND FUTURE WORK 

This paper presented an original performance enhancement 

method after a comparative study of three linear regression 

models, and applied them to predict the remaining useful life 

of the DHSV to reduce the non-productive time that the oil 

and gas industry faces in case of completion tools failures. 

Two tests were performed in order to select the best linear 

model for our application, and found that the Stepwise Linear 

Regression model was the best performing model in both 

tests. 

The proposed performance enhancement method is applied 

to the Stepwise Linear Regression model to optimize its 

performance. Positive effect was recorded; RMSE was 

significantly reduced, confidence interval was stretched to 

95%.  

Further studies will aim to improve the proposed feedback 

mechanism in terms of performance and reliability, as well as 

speed of convergence. On the other hand, future work will 
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aim to work with real data. In addition, RUL estimation 

techniques like similarity and degradation models can be 

implemented in order to give a real time estimate for the 

RUL. 
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