
Self-supervised learning for efficient remaining useful life prediction
Wilhelm Söderkvist Vermelin1, Andreas Lövberg2, and Konstantinos Kyprianidis3

1,2 RISE Research Institutes of Sweden, Mölndal, Västra Götaland, 431 53, Sweden
wilhelm.soderkvist.vermelin@ri.se

andreas.lovberg@ri.se

1,3 Mälardalen University, Västerås, Västmanland, 722 20, Sweden
konstantinos.kyprianidis@mdu.se

ABSTRACT

Canonical deep learning-based remaining useful life predic-
tion relies on supervised learning methods, which in turn re-
quires large data sets of run-to-failure data to ensure model
performance. In a considerable class of cases, run-to-failure
data is difficult to collect in practice as it may be expensive
and unsafe to operate assets until failure. As such, there is
a need to leverage data that are not run-to-failure but may
still contain some measurable, and thus learnable, degrada-
tion signal. In this paper, we propose utilizing self-supervised
learning as a pretraining step to learn representations of data
which will enable efficient training on the downstream task of
remaining useful life prediction. The self-supervised learn-
ing task chosen is time series sequence ordering, a task that
involves constructing tuples each consisting of n sequences
sampled from the time series and reordered with some prob-
ability p. Subsequently, a classifier is trained on the resulting
binary classification task; distinguishing between correctly
ordered and shuffled tuples. The classifier’s weights are then
transferred to the remaining useful life prediction model and
fine-tuned using run-to-failure data. To conduct our exper-
iments, we use a data set of simulated run-to-failure turbo-
fan jet engines. We show that the proposed self-supervised
learning scheme can retain performance when training on a
fraction of the full data set. In addition, we show indications
that self-supervised learning as a pretraining step can enhance
the performance of the model even when training on the full
run-to-failure data set.

1. INTRODUCTION

Access to labeled data is a frequent issue in real-world ap-
plications and Prognostics and Health Management (PHM)
related use cases such as Remaining Useful Life (RUL) pre-

Wilhelm Söderkvist Vermelin et al. This is an open-access article distributed
under the terms of the Creative Commons Attribution 3.0 United States Li-
cense, which permits unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are credited.

diction, is no exception. This issue limits the applicability
of supervised learning techniques, the predominant machine
learning paradigm. RUL prediction of some asset is defined
as the task of mapping input data X to a target variable y
which represent the time or cycles left until (critical) failure
causes the asset to lose desired function:

f : X 7→ y, (1)

Approaching this problem with machine learning, the map-
ping f is learned using data of the form D = {Xn

t , y
n
t }

Tn
t=0 for

n = 1, . . . , N , where Xn
t is data collected until time t for the

n:th asset and ynt is the corresponding remaining useful life at
time t. In addition, ynTn

= 0, where Tn is the time or number
of cycles at failure for the n:th asset. It is often convenient
to scale RUL such that it is confined to the unit interval, i.e.
ynTn

∈ [0, 1], t = 1, . . . , Tn, n = 1, . . . , N . In this case,
ynTn

is interpreted as fractional remaining useful life. Super-
vised learning works well for this problem provided that the
data set D is sufficiently large and diverse, meaning it con-
tains a collection of assets monitored for some time.

What RUL and end-of-life (EOL) means in practice varies
across domains and needs to be defined for the system at
hand. In the case of aircraft turbofan jet engines, performance
degradation and mechanical failure are often two different
physical mechanisms. Aircraft turbofan jet engines typically
fail due to low-cycle thermal fatigue, creep or oxidation. On
the other hand, performance degradation occurs mainly due
to fouling, erosion as well as seal wear and blade tip rubbing.
RUL in a jet engine is often set through a limiting parame-
ter, like measured turbine temperature. Once that temperature
limit is reached – and temperature in the turbine is increasing
due to performance degradation of the different components
– then the engine is considered to have reached its life limit
and must go for overhaul. From an airworthiness perspec-
tive this is backed by a series of cyclic mechanical tests that
have been carried to that prescribed temperature level. This

1



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2022

is how RUL and performance degradation are linked and why
in some cases there is a focus on forecasting the evolution of
such temperatures (Kefalas et al., 2022). In this paper, such
discussions are not in scope and we will use the provided
RUL signal in the data set as given, however, such consid-
erations should be kept in mind.

In practice, collecting run-to-failure data is often associated
with high risk; letting assets run until end-of-life (EOL) can
have substantial monetary consequences and can be unsafe.
In fact, in the case of jet engines, the basis of airworthiness is
to show through cyclic mechanical tests that the engine will
not fail as long as it does not reach or exceed certain operat-
ing conditions. In this case, RUL becomes more of a remain-
ing time to certification limit, and the task is primarily about
predicting when performance degradation will cause certain
measure parameters to reach their upper certification limit, re-
quiring maintenance action (overhaul). In jet engines, one of-
ten speak of Time Between Overhaul (TBO) rather than RUL.
Consequently, for several classes of assets, true run-to-failure
data are rare or can only be obtained by means of simulation.
Low access to run-to-failure data means that the supervised
machine learning approach is less likely to yield fruitful re-
sults. It is, however, relatively cheap and safe to collect data
during asset operation which are not run-to-failure, meaning
that some Maintenance, Overhaul or Repair (MRO) action
has been taken before EOL. Hence, there is a need for lever-
aging data that are not run-to-failure in RUL prediction.

To address this issue, we look for strategies used in other
applications where unlabeled data are prevalent. The use
of weakly labeled or unlabeled data has previously been in-
vestigated within PHM research where the focus has been
on semi-supervised learning (Listou Ellefsen, Bjørlykhaug,
Æsøy, Ushakov, & Zhang, 2019; Yoon et al., 2017). Broadly
speaking, in semi-supervised learning one seeks to utilize un-
supervised learning techniques to enhance predictive perfor-
mance of supervised learning algorithms. Another promis-
ing approach is self-supervised learning (SSL) which will be
the focus of this paper. SSL is a new paradigm in machine
learning, in particular deep learning, which belongs to nei-
ther of the traditional machine learning branches; supervised
learning and unsupervised learning. In essence, SSL works
by constructing an artificial supervision signal from the train-
ing data and pretraining the deep neural network parameters
to this artificial task. The network parameters are then fine-
tuned to the target task using labeled data. SSL has seen good
success in areas such as Natural Language Processing (NLP)
(Zhou, Li, & Xie, 2021; Devlin, Chang, Lee, & Toutanova,
2018) and is expanding into other areas such as computer vi-
sion (Jing & Tian, 2021; Caron et al., 2021).

There has not been much research on using self-supervised
learning in predictive maintenance or prognostics and health
management. We have identified one prior work on SSL

within prognostics and health management (Krokotsch,
Knaak, & Gühmann, 2022). This work is addressing the
same issue identified in this paper; run-to-failure data are
scarce and there is a need to leverage data that are not full
run-to-failure trajectories. In our work the SSL scheme is
constructed differently from (Krokotsch et al., 2022) such
that our proposed SSL pretraining involves a classification
task whereas their SSL pretraining is a regression task.

The research questions addressed in this paper are the follow-
ing:

1. How can SSL pretraining be used to improve remain-
ing useful life predictions, in particular when full run-to-
failure trajectories constitute a small portion of the full
data set?

2. Can representations of data be learned from the proposed
sequence ordering self-supervision task that are useful
for remaining useful life prediction?

To conduct our experiments we use the “Commercial Modu-
lar Aero-Propulsion System Simulation” (CMAPSS) data set
(Saxena, Goebel, Simon, & Eklund, 2008). The CMAPSS
data set is a widely used data set for benchmarking and de-
veloping prognostics algorithms. It consists of simulated run-
to-failure trajectories of turbofan engines. The trajectories
comprise multivariate time series where 24 sensors and 3 op-
erational settings are given for each flight cycle until failure.
The objective is to use the trajectories a training set to create
a model that can predict the remaining useful life of a num-
ber of truncated trajectories in a test set. In other words, the
trajectories in the test set are incomplete. Details of the data
set can be found in (Saxena et al., 2008).

Since its release, a wide range of different neural network
architectures has been trained on the RUL estimation task us-
ing this data set. While these deep learning techniques typi-
cally outperform more traditional prognostics methods, they
still require large amounts of labeled data (i.e. run-to-failure
data). Very few studies has explored the use of semi- or un-
supervised learning methods to overcome this limitation.

2. METHODOLOGY

The main motivation for using SSL is that in typical condition
monitoring data, only a small portion of data (if any) are full
run-to-failure trajectories. Since the CMAPSS data set train-
ing data are full run-to-failure trajectories, we truncate these
time series for the self-supervised training to emulate a lack
of complete run-to-failure trajectories. More precisely, the
last 10 % of the full run-to-failure trajectory is left out in SSL
pretraining, meaning the age of the engine used in the SSL
training step at most 90 % of EOL. The self-supervised learn-
ing scheme we consider is a sequence ordering task where
sequences of the CMAPSS data are sampled and put into sets

2



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2022

of sequences, which we will refer to as k-tuples (k being the
number of sequences in the set).

This idea is inspired by a learning scheme called “shuffle and
learn” (Misra, Zitnick, & Hebert, 2016). In this paper the au-
thors are pretraining a deep neural network (DNN) to recog-
nize whether sequences of video frames are in order or shuf-
fled. They show that this pretraining step helps the DNN to
learn useful representations for the downstream task of ac-
tion recognition, so much so that they were able to exceed the
performance of the current state-of-the-art at the time.

Our self-supervision task is similar where we instead of
frames will use short slices of the engine time series data and
construct k-tuples which are either ordered or shuffled, see
Figure 1. This SSL pretraining task is useful for the down-
stream task of RUL estimation since the network will learn
to order sequences in terms of time until end-of-life. Since
sequences closer to end-of-life have a higher degree of degra-
dation, the network will be able will implicitly learn repre-
sentations of degradation level, which in turn is a proxy for
RUL.

SSL is used to train a feature extractor, referred to as g. The
feature extractor is a DNN with one-dimensional convolu-
tional layers and a fully connected layer which outputs em-
bedded input data (also referred to as encodings). In Figure 2
the architecture of the feature extractor is shown.

Time/cycles

Features

,

,

Positive

Negative

Figure 1. An overview of the sequence ordering SSL clas-
sification. A slice of the engine time series data is sampled
and split up into k parts (in the above image, k = 2), forming
a k-tuple of sequences of data from the original time series.
The tuple is then shuffled with some probability or the same
order is kept. If a tuple is shuffled or not it is referred to as a
negative or a positive tuple, respectively.

The full architecture of the SSL scheme is shown in Figure
3. The self-supervised training is performed by feeding se-
quences from the k-tuple into k copies of the feature extractor
g, also known as siamese networks (Chicco, 2021), to obtain
k encodings e1, . . . , ek where ei ∈ Rde , i = 1, . . . , k. de is

In
pu

t

(b

at
ch

=3
2,

 fe
at

ur
e=

17
, l

en
gt

h=
60

)

R
eL

U

C
on

v1
d


(fi
lte

r_
in

=1
7,

 fi
lte

r_
ou

t=
10

, k
er

ne
l_

si
ze

=7
)

C
on

v1
d


(1
0,

 2
0,

 5
)

C
on

v1
d


(2
0,

 4
0,

 4
)

R
eL

U

C
on

v1
d


(4
0,

 8
0,

 3
)

R
eL

U

Av
er

ag
e 

Po
ol

in
g

D
en

se



(in
=8

0,
 e

m
be

d_
di

m
=8

)

Figure 2. Overview of the feature extractor model archi-
tecture. The model is a deep neural network with four
one-dimensional convolutional layers and a fully connected
(dense) output layer.

referred to as the encoding dimension, which is a hyperpa-
rameter to be chosen as such. Concatenation of the encoded
slices is performed and we obtain a k × de-dimensional vec-
tor: e1 ⊕ · · · ⊕ ek ∈ Rk×de which is finally fed into a classi-
fication head which is fully connected multilayer perceptron
(MLP). Since the SSL task has two classes, either the k-tuple
is correctly ordered or not, the classification error is measured
using binary cross entropy loss, defined as follows:

ℓBCE = −[y log (ŷ) + (1− y) log (1− ŷ)] (2)

where y is the true class label and ŷ is the estimated probabil-
ity of the class.

concatenation

...

...

{ }...Input

Concatenation

Feature
extraction

Encoding

Classification

...

shared

weights

Figure 3. An overview of the SSL pretraining scheme. A k-
tuple consisting of k slices of engine time series data is fed
into the feature extractor g to obtain encodings e1, . . . , ek.
The encodings are concatenated and subsequently fed into the
classification head which is trained to learn if the original tu-
ple was correctly or incorrectly ordered.

The final RUL estimation model is shown in Figure 4. This
model consists of the feature extractor g which produces the

3



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2022

embedded time series sequences (encodings) discussed pre-
viously. To obtain RUL estimates the encodings are passed
through a RUL prediction head. The RUL prediction head
is a feed-forward neural network with one hidden layer and
ReLU activations. The final layer in the RUL head maps to a
single real number which is interpreted as the estimated RUL,
ŷRUL. Since the RUL is scaled such that yRUL ∈ [0, 1] the
final output is transformed by a hard sigmoid activation func-
tion, defined as

Hardsigmoid(x) =

 0 for x < −3
1 for x ≥ 3
x
6 + 1

2 otherwise
(3)

The RUL model is trained using mean-square-error (MSE)
loss defined as follows:

ℓMSE =
1

N

N∑
i=1

(yRUL − ŷRUL)
2, (4)

where yRUL is the true RUL, ŷRUL is the estimated RUL and
N is the number of devices under test (engines). For the base-
line model training, the entire model (g and the RUL head) is
trained with randomly initialized weights with ordinary su-
pervised learning and MSE-loss.

Embedding

(80, embed_dim)

RUL head

Figure 4. RUL estimation model. The model consists of
the feature extraction network g with a fully connected layer
which maps encodings to a single real number which is inter-
preted as the estimated RUL ŷRUL.

In our implementation of the above models, we have cho-
sen the size of the k-tuples as two (meaning k = 2). We
set the embedding dimension de = 8. These values were
obtained through experimentation and chosen due to better
performance on the downstream task of RUL prediction. In-
tuitively, choosing a low value of k ensures that longer se-
quences of the time series is seen during pretraining which

Em
be

dd
in

g

(8

0,
 e

m
be

d_
di

m
)

R
eL

U

D
en

se



(e
m

be
d_

di
m

, h
id

de
n_

di
m

)

D
en

se



(h
id

de
n_

di
m

, h
id

de
n_

di
m

)

D
en

se



(h
id

de
n_

di
m

, 1
)

R
eL

U

H
ar

d 
Si

gm
oi

d

Figure 5. Remaining useful life prediction head. The em-
bedded sequences produced by the feature extractor is passed
through the RUL prediction head to obtain RUL estimates.

is closer to the downstream task. The embedding dimension
is chosen such that it is large enough to capture variations
in the input sequences but small enough to compress the in-
put such that only relevant features are preserved. We use
a batch size of 32 and a learning rate of 0.001. The model
weights are updated through stochastic optimization using
the Adam-optimizer (Kingma & Ba, 2015) with weight decay
(Loshchilov & Hutter, 2019). The models were implemented
in Python (Van Rossum & Drake Jr, 1995) using the PyTorch
deep learning library (Paszke et al., 2019).

In the next section, we will compare the performance of the
RUL model with and without SSL pretraining.

3. RESULTS

To measure the effects on applying SSL as a pretraining step
we will use two performance metrics, root-mean-squared er-
ror (RSME) and a scoring function, as proposed in (Saxena et
al., 2008), defined as follows

RMSE =

√√√√ 1

N

N∑
i=1

d2, (5)

s =


∑N

i=1 exp
(
− d

a1

)
− 1 for d < 0∑N

i=1 exp
(

d
a2

)
− 1 for d ≥ 0

(6)

where s is the resulting score, d = ŷ − y the difference be-
tween the estimated RUL and the true RUL, N is the number
of devices under test (engines), and a1 = 10, a2 = 13. The
scoring function is defined such that overestimation of RUL
is more penalized than underestimation.

In Figure 6 we see a UMAP dimension reduction plot
(McInnes, Healy, Saul, & Großberger, 2018) on the embed-
ded time series sequences obtained from the feature extrac-

4




