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ABSTRACT 

Data-driven modeling of dynamical systems has drawn much 
research attention recently, with the goal of approximating 
the underlying governing rules of a dynamical system with 
data-driven differential equations. Many real-world 
dynamical systems can be modeled as coupled oscillators, 
such as chemical reactors, ecological systems, integrated 
circuits, and mechanical systems. In those systems, the 
response can be described by coupled differential equations 
in which multi-dimensional state variables describe the time-
evolution. However, in practice, the full set of state variables 
is often difficult or expensive to measure. This paper shows 
an attempt to develop a data-driven model for damped 
coupled oscillators from a mixed-mode response signal using 
neural differential equations. The univariate time-series data 
of the impulse response is first resampled into a multi-variate 
time-delayed embedding. A singular value decomposition is 
then applied to find the dominant orthogonal basis (oscillator 
modes). The decoupled modes are then modeled with 
parameterized neural differential equations. The unknown 
parameters can be learned from a segment of historical data. 
The proposed methodology is validated using impact testing 
data of an end mill in a machine tool spindle. The results 
demonstrate that the proposed method can effectively model 
damped coupled oscillators.  

1. INTRODUCTION 

Accurate modeling of dynamical systems is an important task 
towards health monitoring, prediction, and control. 
Traditionally, dynamical models are derived from known 
physical laws and the inherent properties of the systems. Such 
a dynamical model is typically represented by one or more 
differential equations, which can be used to model and 

simulate the system responses. The term ‘dynamical’ 
generally refers to the autonomous evolving process over 
time, governed by inherent system properties. In contrast, a 
‘dynamic’ system can refer to any time-evolving system that 
either evolves autonomously or is driven by external forces. 
To model a dynamic system with an external force, we often 
first need to understand and model the dynamical behaviors 
of the system. Mathematically, many of the prediction 
problems of dynamical systems can be formulated as initial 
value problems. Furthermore, the goal of dynamical system 
modeling includes two parts: solving differential equations 
and identifying differential equations if unknown. For a 
simple human-designed system, an accurate physics-based 
dynamical model via differential equations may be 
constructed with high confidence. In that case, efficient 
solving of the differential equations is the main remaining 
task. However, for complex systems or in-situ systems, 
where the system parameters cannot be measured accurately, 
one would first need to identify the underlying differential 
equations. To achieve that, the missing information on the 
system properties can be determined with historical 
observation data. In practice, data-driven models or hybrid 
models can utilize the observed system data to help construct 
a dynamic model (Kutz et al., 2016).  

Physics-informed machine learning is one of the most 
popular hybrid methods for the data-driven discovery of 
dynamic systems. Physics-informed neural networks 
(PINNs) have been proposed to learn and solve the 
underlying differential equations (Raissi et al., 2019). When 
the underlying physics is fully known, a neural network can 
be used as a numerical solver for either ordinary differential 
equations (ODEs) or partial differential equations (PDEs), as 
first reported by Lagaris et al. (Lagaris et al., 1998). In the 
case that the underlying differential equations are not fully 
known, a PINN can be adopted to learn the unknown 
coefficients in the differential equations with the help of 
historical data. The diagram given in Figure 1 summarizes 
how a PINN works with an ODE. The PINN assumes that the 
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solution to an ODE or a PDE can be approximated by a neural 
network. The solution is then constrained by the underlying 
physics-based differential equations. By minimizing the loss 
of the data and physics constraints, a data-driven solution and 
the unknown coefficients of the underlying ODE can be 
learned. 

 
Figure 1. Schematic of a PINN to learn a physics-informed 

ordinary differential equation. 
 

However, PINNs can only be applied when the forms of the 
underlying differential equations are fully defined, while the 
coefficients can be unknown. For complex and in-situ 
systems, one may not be able to fully determine an accurate 
form of the equations. In those cases, PINNs fail to learn and 
model the unknown systems. Intuitively, fully data-driven 
models can be built without any physics to model in-situ 
dynamic systems. In previous work, Fabro et al. built a 
regression model with a nonlinear function basis to represent 
a fully data-driven frequency response function in the 
frequency domain for machine spindles (Fabro et al., 2022). 
However, the model did not mimic physics in a physics-
aware manner.  

Recently, neural ordinary differential equations (NODEs) 
have been proposed to learn the underlying differential 
equations with no or little physics (Chen et al., 2018). In 
contrast to a PINN, a NODE constructs a parameterized 
differential equation and integrates an ODE solver into the 
model. Details of the learning process will be introduced in 
Section 2.1.2. NODEs provide a physics-aware approach to 
learning the underlying differential equations only from data. 
The term ‘physics-aware’ refers to the preservation of certain 
physical rules, such as a differential relationship. This 
research aims to investigate the feasibility of learning 
coupled differential equations from data.  

Coupled oscillators are commonly found in practical 
engineering systems, such as bridges, buildings, geared 
systems, and machining spindles. Also, many in-situ systems 
can be modeled as coupled oscillators since there exists 
complex coupling among the sub-components. One of the 
characteristics of coupled oscillators is mixed modes in the 
measured system response. For example, a simple coupled 
oscillator with two springs and two masses will have two 
modes, one for each degree of freedom (DOF). Furthermore, 
each mode will have its own natural frequency. In practice, if 
the response for each DOF can be measured, the modes can 

be separated as an eigen-decomposition problem, even if the 
modes are coupled together in each measurement. If the 
response cannot be measured separately, then modal 
separation is needed. For coupled oscillators without 
damping, modal separation can be achieved with Fourier 
transforms to separate different frequency components. 
However, when damping is present, modal separation 
becomes more complicated as both the frequencies and 
associated time-decay terms must be separated. Therefore, 
the data-driven learning of damped coupled oscillators 
requires three steps: 1. Modal separation from data; 2. ODE 
learning for each mode; 3. Model synthesis. For linearly 
coupled systems, the model synthesis is just a simple sum of 
all modes.  

Towards this end, this paper summarizes an attempt to 
investigate the feasibility of learning a data-driven model for 
damped coupled oscillators and use it to describe and predict 
the system dynamics. The rest of the paper is organized as 
follows: Section 2 presents the related background and the 
proposed learning method; Section 3 briefly introduces the 
experimental study to collect data and test the proposed 
method; Section 4 discusses the results and Section 5 
concludes the paper. 

2. METHODOLOGY 

2.1. Related Background 

In this section, we will introduce the existing methods for 
modal separation and ODE learning.  
 
2.1.1 Mixed-mode decomposition 

Modal separation of univariate mixed-mode signals has been 
extensively studied. Fourier transforms can effectively 
decompose a mixed-mode signal into various frequency 
components. In that case, each frequency component is 
represented with sinusoidal basis functions, so Fourier 
transforms are best suited for the analysis of steady-state 
responses. While Fourier transforms are effective and 
efficient for periodic signals, to approximate a non-periodic 
signal, an infinite number of Fourier basis functions are 
required, which is numerically inefficient. Independent 
component analysis (ICA) is one of the statistics-based 
methods for mixed-mode separation, which is widely used in 
the cocktail party problem or similar situations (De Lauro et 
al., 2005; Hyvärinen, 2013). ICA assumes the underlying 
processes are independent of each other and can handle non-
Gaussian processes. However, ICA does not guarantee that 
the separated components are orthogonal, as with Fourier 
basis functions. Empirical mode decomposition (EMD) is 
another popular method for modal decomposition (Huang et 
al., 1998). Similar to ICA, EMD does not generate orthogonal 
modes, either.  
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Recently, Dylewsky et al. proposed a learning method named 
principal component trajectories to model spectrally 
continuous dynamics (Dylewsky et al., 2022). It was proved 
that by constructing a time-delay embedding for the time 
series and applying singular value decomposition (SVD) to 
the embedding data matrix, the principal component 
trajectories, which is a set of orthogonal basis functions, can 
be separated. While Dylewsky et al. modeled the underlying 
system as linear dynamics with dynamic mode 
decomposition (DMD), this work proposes to learn a neural 
ODE model for each mode and then assemble the models.  

2.1.2 Neural Ordinary Differential Equations 

As discussed above, NODEs provide a data-driven approach 
to learning the underlying differential equations. The learning 
process is summarized as follows. First, assume we have a 
differential equation in the form of Eq. 1. 

 �̇� = 𝑓(𝑋) (1) 

It was first proposed by Chen et al. that the function 𝑓(𝑋) can 
be defined as a neural network with 𝑋 as the inputs and �̇� as 
the outputs of the neural network (Chen et al., 2018). Then, 
the solution of this neural differential equation can be solved 
with an integration-based ODE solver, such as the Runge-
Kutta fourth-order method. More advanced ODE solvers, 
such as Dopri5 (Dormand and Prince, 1980), can also be 
utilized in this process with varying step sizes as an attempt 
to obtain a more accurate solution, especially for irregular 
time intervals. Next, assume that the solution of the 
underlying differential equation can be written as a function 
of 𝑋, more precisely as 𝑓(𝑋(𝑡)). With an ODE solver using 
the neural network as the differential function, and 𝑋(𝑡!) as 
the initial condition, 𝑋(𝑡! + ∆𝑡) can be solved as: 

 
𝑋(𝑡! + ∆𝑡) = 	𝑋(𝑡!) + + 𝑋′(𝜏)𝑑𝜏

"!#∆"

"!

= 𝑋(𝑡!) ++ 𝑓(𝑋(𝜏))𝑑𝜏
"!#∆"

"!
 

(2) 

Finally, the overall process of the neural ODE method can be 
written as:  

 �̇�(𝑡!) = 	𝑛𝑛0𝑋(𝑡!)1 (3) 

 𝑋(𝑡%) = 𝑂𝐷𝐸𝑆𝑜𝑙𝑣𝑒𝑟(�̇�(𝑡!), 	𝑋(𝑡!), 	𝑡!, 𝑡%)	 (4) 

where 𝑛𝑛(∙) represents a neural network.  

The flowchart in Figure 2 shows the process of learning a 
neural differential equation to represent the system dynamics. 
If an example dataset in the form of a time series for 𝑋(𝑡) can 
be collected, data pairs of 𝑋(𝑡)  and 𝑋(𝑡 + ∆𝑡)  can be 
constructed as training data to train the data-driven model 

such that Eq. (2) can be satisfied. As a result, the optimized 
function 𝑓(𝑋(𝑡))  will represent a data-driven form of the 
underlying differential equation. 

 
Figure 2. Schematic of NODE. 

2.2. Proposed Approaches 

Based on the information presented in the introduction, a 
data-driven model for damped coupled oscillators is 
summarized in Figure 3. First, one can collect the impulse 
response from an in-situ dynamic system. Typically, a 
univariate mixed-mode response signal can be measured, 
denoted as 𝑋 = [𝑥%, 𝑥&, 𝑥', … , 𝑥(], where 𝑛 is the number of 
samples. 

 
Figure 3. Overall learning method for impulse response. 

 

Next, a time-delayed embedding can be constructed as: 

 𝑋𝑋 =	 A

𝑥%							 𝑥&
𝑥&							 𝑥'

⋯
⋯

𝑥(*+#%
𝑥(*+#&

⋮									 ⋮ ⋱ ⋮
					𝑥+ 						𝑥+#% ⋯ 𝑥(

E (5) 

where 𝑘 is the number of embeddings. Then, a SVD can be 
performed on the embedding matrix as 𝑋𝑋 = 𝑈Σ𝑉, . If we 
consider the columns as the spatial direction and the rows as 
the temporal direction, in an analogy to a spatial-temporal 
data matrix, the time-evolving trends will be captured by the 
columns of 𝑉 after SVD. In the ideal scenario, each column 
of 𝑉 will represent one temporal mode that can be modeled 
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as an ODE function. For a spectrally-continuous system, we 
truncate 𝑉 to keep only the dominant modes. Each preserved 
mode is then learned separately as a NODE model. The 
NODE model can represent the dynamic response at any 
time. To predict the response, one can reconstruct the 
dynamic response with the simulated multiple-mode 
dynamics of 𝑉-./0 and the corresponding 𝑈 and truncated 𝛴K. 
The corresponding 𝑈 and 𝛴K  are constant assuming that the 
dynamical system is a linear time-invariant (LTI) system. 
This will allow us to use a small segment of the dynamical 
response to learn the system and extrapolate the full dynamic 
response. 

3. EXPERIMENTAL SETUP AND CASE STUDY 

The discussions in Section 3 are organized as follows: 
Section 3.1 introduces the experimental setup and data 
collection process, and Section 3.2 presents the learning 
process with the collected response data from an end mill.  

3.1. Experimental Setup and Data Collection 

Figure 4 shows the experimental setup used to collect tool 
impact data on a machine tool.  

 
Figure 4: (a) Experimental setup within a machine tool and 

(b) close-up view of end mill and displacement sensor. 
 

As seen in Figure 4a, an end mill with a diameter of 12.7 mm 
(0.5 in) was placed within a tool holder in a machine tool 
spindle, and an automated impactor was attached to the 

machine tool worktable. During impacting, a solenoid 
actuates the hammer of the impactor to cause an impact 
against the end mill, and a force sensor attached to the 
hammer measures the impact force while a fiber-optic 
displacement sensor measures the tool-to-workpiece 
displacement (Figure 4b). Furthermore, the fiber optic 
displacement sensor is mounted on a linear positioning stage 
with motion measured by a digital micrometer for sensor 
calibration purposes to convert voltage to displacement. For 
each of 50 impacts, force and displacement data were 
collected for two seconds at 51.2 kHz, with at least one 
second occurring after the impact. Figure 5 shows an example 
of the univariate (displacement) impulse response data. 
Because the displacement due to impacting is the tool-to-
workpiece response, the displacement includes multiple 
modes that account for the entire structural loop within the 
machine tool. Hence, the system in Figure 4 represents a 
coupled mechanical system, and each impulse response, such 
as the example in Figure 5, is for mixed modes. 

Figure 5: Mixed-mode impulse response of coupled 
mechanical system. 

3.2. Learning Data-Driven Impulse Response Model of 
an End Mill 

The univariate data is first embedded to a multivariate space 
to allow the extraction of oscillatory modes. After SVD was 
performed on the time-delayed embedding data, the first 𝑟 
SVD components, columns of the 𝑉 matrix, were extracted. 
The first four modes are shown in Figure 6. It is worth noting 
that, in the decomposed singular vectors, 𝑣% and 𝑣& represent 
together the first intrinsic mode, because 𝑣% and 𝑣& share the 
same frequency (1187.84 Hz) but differ with a phase shift of 
𝜋 2⁄  rad. This can be understood since SVD constructs two 
sinusoidal functions of the same frequency to represent one 
underlying mode with a phase shift, like 𝐴	sin(𝜔𝑡) +
𝐵	cos(𝜔𝑡) = √𝐴& + 𝐵&	cos(𝜔𝑡 + 𝜑) , where 𝜑  is a phase 
angle. Similarly, 𝑣'  and 𝑣1  represent the second intrinsic 
mode (942.08 Hz).  

Figure 7 shows the frequency spectrum of the mixed-mode 
impulse response. It can be seen that the decomposed 
oscillation frequencies (1187.84 Hz and 942.08 Hz) from 
SVD are relatively close to the dominant frequencies 
(1186.13 and 938.67 Hz) in the impulse response. 
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The decomposed modes after the first four components do 
not possess a consistent convergent dynamical process and 
are not shown. However, to evaluate their effects and 
determine how many modes are needed for accurate response 
modeling, we tested the results by using the first four and first 
six SVD components.  

Figure 6: Plots of decomposed SVD components, 𝒗𝟏 to 𝒗𝟒. 
 

 
Figure 7. The frequency spectrum of the impulse response. 

 

One difficulty with learning oscillational responses is that to 
learn an ODE, each point on the trajectories must be unique 
over time. However, for trajectories that exhibit oscillation, 
the points along the trajectory are not unique, as shown in 
Figure 8, where multiple points on the curve at different times 
can take exactly the same value. 

To uniquely define an oscillational trajectory, data with more 
than one dimension are needed. In order to solve this issue, a 
NODE model with two-dimensional (2D) inputs is used for 
the ODE learning. Since each pair of the temporal modes in 
𝑉  correspond essentially to one intrinsic mode, a pair of 
temporal components can be learned together by a two-
dimensional NODE model. Thus, a two-dimensional ODE 

can be learned with the combination of SVD components 𝑣% 
and 𝑣&  for the first mode, components 𝑣'  and 𝑣1  for the 
second mode, etc. This allows, in most scenarios, a unique 
state along the entire trajectory; the trajectory does not cross 
itself at separate times. Figure 9 shows the two-dimensional 
trajectory of SVD components 𝑣%  and 𝑣& , with the red 
asterisk showing the initial condition at 𝑡 = 0.  

 
Figure 8: SVD component 1, 𝒗𝟏.  

 
Figure 9: 2D system of SVD components, 𝒗𝟏 and 𝒗𝟐. 

 

A two-dimensional NODE simply uses two-dimensional 
vectors as the input and output: 

 [�̇�%�̇�&
\ = 𝑛𝑛 ]^

𝑥%
𝑥&_` (6) 

 a
𝑥%
""

𝑥&
""b = 𝑂𝐷𝐸𝑆𝑜𝑙𝑣𝑒𝑟 c𝑛𝑛 ]^

𝑥%
𝑥&_` , a

𝑥%
"!

𝑥&
"!b , 𝑡!, 𝑡%d (7) 

The two-dimensional NODE obtains a unique solution in the 
functional space such that the system response is sufficiently 
learned. The learning process of the model is explained as 
follows. First, the model iteratively solves an initial value 
problem, where a random point along the curve is taken as 
the initial condition and then the model predicts a short 
segment forward in time. Then, this process is repeated for 𝑚 
initial conditions in a batch. The loss is then calculated 
between the predicted response and the true response. This 
process is repeated until the loss converges. Finally, the 
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learned modes are reconstructed back to the original mixed-
mode impulse response, as illustrated in Figure 3. 

4. RESULTS AND DISCUSSIONS 

This section presents the results of the proposed method for 
impulse response modeling. Section 4.1 presents the 
reconstruction results with NODEs to determine if the multi-
modal response can be approximated from learned SVD 
components using full-length data. Then, in Section 4.2, we 
show the prediction results from the learned data-driven ODE 
function when only a small segment of data is used for 
training. 

4.1. Case Study A: Learning of Multi-Modal Dynamics 
from SVD Components using Full-Length Data 

The task of the first case study is to determine whether or not 
a multi-modal impulse response can be effectively 
reconstructed from learned SVD components. The measured 
impulse response of the end mill in the machine tool spindle, 
as described in Section 3.1, was used for this case study. For 
the first evaluation, the entire measured impulse response was 
used to perform the time-delay embedding and thereafter, the 
SVD. A total of 6000 data points, about 0.12 seconds of data, 
were used to construct a 1000-step time-delayed embedding 
of size [5000*1000], following Eq (5). The first six columns 
of the 𝑉 matrix, which represent the first six temporal modes, 
were taken and learned by the two-dimensional NODE 
model. Those SVD components can also be called ‘principal 
component trajectories’, as in (Dylewsky et al., 2022), or 
simply ‘modes’. After each principal component trajectory is 
learned by a NODE, the impulse response was reconstructed 
with the original 𝑈  and 𝛴K  matrices. Figure 10 shows the 
learned first SVD component, 𝑣% , versus the decomposed 
mode. The reconstruction shows high accuracy, with slight 
accumulated frequency mismatch over a relatively long 
period.  

 
Figure 10: Learned SVD component 𝑣% with NODE. 

 

The NODE model exhibits some difficulties when learning 
the SVD components during the training process. The learned 
ODE model can fail to converge sufficiently: the loss can stop 

decreasing and remain at a value that is relatively high, 
resulting in convergence failures. To remedy this issue, the 
model is simply reinitialized and trained again. The primary 
reason is the optimization process can get stuck in a local 
minimum and fails to converge to a lower loss, due to poor 
initialization. Similar instability issues have also been 
reported by other ODE papers (Norcliffe et al., 2020). 

Two different reconstructions were made with four or six 
respective SVD components. The product of the original 𝑈, 
𝛴K , and the new 𝑉-./0  matrices are used to obtain the 
reconstructed results. Firstly, the four-component 
reconstruction was performed. The results are shown in 
Figure 11 and Figure 12. It can be seen that with four 
components, the reconstructed impulse response is mostly 
accurate in both the amplitude and frequency. The learned 
response has a slightly lower amplitude as can be seen when 
time trends to 0.04 s (see Figure 11). As the result is evaluated 
further in time for 0.1 s, the learned response follows an 
accurate decay trend as the true response (see Figure 12). 

 
Figure 11: Mixed-mode impulse response reconstruction on 

four SVD components over 0.04 s. 

 
Figure 12: Mixed-mode impulse response reconstruction on 

four SVD components over 0.1 s. 

The reconstructed impulse responses with the first six SVD 
components are shown in Figure 13 (0.04 s window) and 
Figure 14 (0.1 s window). It can be seen in Figure 13 that the 
model again effectively learns the multi-modal response 
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since the reconstructed result matches the true response quite 
well. As the time approaches 0.04 s (see Figure 13), it can be 
seen that there is a slight discrepancy in terms of amplitude. 
When the plot is extended to 0.1 s (see Figure 14), an 
overfitting trend develops as time progresses, as seen in the 
inset of Figure 14. In that case, the true response begins to 
dampen out while the learned response still exhibits strong 
multi-modal characteristics. 

 
Figure 13: Mixed-mode response reconstruction from 2D 

NODE model on six SVD components over 0.04 s. 

 
Figure 14: Mixed-mode response reconstruction from 2D 

NODE model on six SVD components over 0.1 s. 
 

Components for Model RMSE 

4 1.3350 (µm) 

6 1.3853 (µm) 

Table I: RMSE of four and six component 
reconstructions. 

The overfitting that existed in the six-component 
reconstruction does not exist in the four-component 
reconstruction, which lends to the conclusion that the mode 
approximation with SVD components 𝑣5  and 𝑣6  were the 
sources of the long-term overfitting for the model. Table I 
shows each model’s reconstruction error in terms of the root 
mean square error (RMSE), which reveals that it is better to 
approximate the multi-modal response with only the first four 

principal component trajectories of the time-delay 
embedding SVD. 

4.2. Case Study B: Prediction of the Multi-Modal Impulse 
Response using Less Data 

After proving that the multi-modal response could be learned 
by the proposed learning methods, the remaining question is 
whether this model is capable of predicting the response into 
the future. In order to evaluate this, a time-delay embedding 
was performed over only the first 1500 points instead of the 
full 6000 points. This translated to about 0.03 s of data. In 
this case, 500 delay steps are used, resulting in the columns 
of 𝑉 with a length of only 1000 points (about 0.02 s of data). 
As previously discussed, the components beyond the first 
four principal component trajectories led to model 
inaccuracies as time progresses. Therefore, only the first four 
SVD components were used for this case study. 

The components were learned in the same manner as before, 
except that the NODE model was trained over only about 
0.02 s of data, which equates to 1000 points along the 𝑉 
matrix. Next, the model performed predictions up to about 
0.1 s, or 5000 points in length. When the reconstruction was 
performed, the original 𝛴K  matrices had to be padded with 
zeros to predict up to a time of 0.1 s. 

The reconstructed prediction from the first four principal 
component trajectories is shown in Figure 15 and Figure 16. 
Figure 15 shows that in the near term (0.04 s), the prediction 
captures fairly well the amplitude and the frequency of the 
multi-modal response. Figure 16 shows the long-term 
predicted response versus the true response. It can be seen 
that the predicted response matches the true response with 
relatively minor differences in amplitude after 0.04 s. In 
contrast, it can also be seen that the predicted response has a 
slightly larger amplitude compared to the true impulse 
response as time progresses. 

 
Figure 15: Mixed-mode response prediction on four SVD 

components over 0.04 s. 
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Figure 16: Mixed-mode response prediction on four SVD 

components over 0.1 s. 
 

Table II summarizes the RMSE of the prediction, which is 
higher than that for the model learned from the full-length 
data (see Table I), but is still relatively small compared to the 
measured displacements. The prediction was also evaluated 
with only 1000 points with 500 time-delay embeddings, 
resulting in 500 points length (0.01 s) for each column of  𝑉 
matrix. However, the training of the NODE model suffers 
more instability and non-convergence results due to the 
shorter training window. 
 

Test RMSE 

Prediction 2.8417 (µm) 

Table II: RMSE of four component prediction 
reconstruction. 

5. CONCLUSIONS AND FUTURE WORK 

Modeling in-situ dynamic system with unknown physics is 
an unsolved challenge. We present a machine learning 
method for impulse response function modeling in this paper.  
The learned data-driven differential equations for in-situ 
response modeling can be further used for real-time response 
prediction and in-process performance optimization. In-situ 
dynamic modeling can help close the loop of real-time feed-
back control for performance improvement and quality 
control, especially in cyber-physical manufacturing systems. 
 
The task of learning a multi-modal response was approached 
by first performing a SVD over a time-delayed embedding to 
further allow a NODE model to learn the principal 
component trajectories and then reconstruct the multi-modal 
impulse response. It was found that, by learning the dominant 
principal component trajectories with a NODE model, the 
multi-modal impulse response could be accurately 
reconstructed. Additionally, it was determined that prediction 
of the response forward in time could be achieved with a 
small segment of response data. However, the accuracy of 

prediction generally decreases for longer prediction times. 
Also, the accuracy improves when a longer segment is 
provided for training and learning. 
 
In the future, more robust mode separation methods, for 
example, to learn the implicit Laplacian basis, can be 
investigated besides SVD to get clean separated mode. 
Furthermore, continuous in-situ response predictions with 
external excitations can be approached by uniting the 
proposed methods within a convolutional kernel. 
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