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Abstract

Application of data-driven solutions across an industry is
challenging, since the data are often stored locally, and in-
creasing privacy and security concerns restrict access to the
data. Because it is highly unlikely that all potential data pat-
terns are captured in a single data source, machine learning
(ML) models developed from a single source cannot be ro-
bust enough. An alternative is to train local ML model at
each source and at the central location combine all the local
models to generate a global model. In this work, we develop a
proof-of-concept of distributed machine learning model, fed-
erated transfer learning, using a multi-kernel-based adaptive
support vector machine. For federated learning, the multi-
kernel approach enables feature-specific model aggregation
under data heterogeneity; whereas for transfer learning the
adaptive model enables utilization of an aggregated model
from a different task. The proposed approach is validated us-
ing nuclear power plant vertical motor-driven pump data to
predict the health condition of vertical motor-driven pumps
as an anomaly detection. The efficiency of the proposed ap-
proach is also quantified and compared with neural network.

1. Introduction

Artificial intelligence is driving the advancement of tech-
nologies in the fields of healthcare, industrial automation,
transportation, etc. (National Artificial Intelligence Initiative,
2020). The enormous amount of data generated at different
locations from various sources such as sensors and Internet
of Things devices requires high bandwidth to transmit data.
Also, low-latency real-time decision making requires contin-
uous network connection. Failure to meet bandwidth or net-
work connection requirements would lead to unreliable deci-
sion making at a centralized location. This drives a localized
decision-making capability the more appropriate solution.
For localized decision making (i.e., edge computing) using
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data-driven models, it is challenging to incorporate all possi-
ble data patterns into the data-driven models. Data collected
from various sites provide a better estimation of the popu-
lation than do data collected at a single site. However, pri-
vacy, security, legal, and commercial concerns restrict data
sharing. For example, the U.S. Health Insurance Portability
and Accountability Act (Edemekong, Annamaraju, & Hay-
del, 2018) requires that medical and individual data only be
released with proper anonymization (Li & Qin, 2017). Simi-
larly, in commercial terms, data related to processes and man-
ufacturing are often a valuable business asset. However, the
central accumulation of summaries or obfuscated models may
be considered reasonable as long as the original data are not
revealed. Thus, it is essential to enable privacy-preserving
distributed mining of information and decision making. That
said, a comprehensive model can be developed by combining
all the local models into a single aggregated model. Realiza-
tion of a comprehensive model is achieved via a central entity
(server) with which all the distributed edge devices share their
local model at customized intervals. This relies on perform-
ing distributed training on the edge devices and edge servers
where the data is generated or collected, without necessar-
ily sending data outside the enterprise firewall to the central
server.
Often, edge devices have limited computational capabilities,
meaning frequent transmitting and receiving will not be en-
ergy efficient. This challenge increases with complex mod-
els such as deep neural networks (Goodfellow, Bengio, &
Courville, 2016). In addition, the more complex models are
“black box" in nature, and there is always an added challenge
in deriving the proper appreciation for the data-driven mod-
els from an enterprise/business perspective. In this research,
we focus on a specific classifier: the support vector machine
(SVM) (Suykens & Vandewalle, 1999). We leverage this pop-
ular classification model in machine learning (ML) to build a
collaborative framework for distributed learning, along with
a unique way to model aggregation.
Over the last decades, several collaborative SVM-based data
mining approaches have been proposed in order to enhance
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Figure 1. Federated transfer learning framework for condition assessments of vertical motor-driven pumps in the circulating
water systems of two plant sites.

distributed learning. A privacy-preserving SVM classifica-
tion was proposed in (Vaidya, Yu, & Jiang, 2008), construct-
ing the global SVM classification model from data distributed
at multiple parties without disclosing the parties’ data to each
other. Using a similar approach, a collaborative learning
framework (Que, Jiang, & Ohno-Machado, 2012) was devel-
oped for SVM. Collaborative multi-kernel SVM (MK-SVM)
with alternating direction method of multipliers was used to
globally optimize the distributed sub-models (Chen & Fan,
2012). In this approach, the training matrix is partitioned into
blocks in two different ways (i.e., column partitioning and
row partitioning), and multiple kernels are extracted for each
model and then aggregated. Federated learning (FL) with
SVM was implemented in (Carlsson, 2020), with the kernel
values being combined and then shared back to the local mod-
els.
To address collaborative learning challenges through SVM,
this work proposes multi-kernel-based adaptive SVM (MK-
A-SVM)-based federated transfer learning (FTL), as shown
in Figure 1. FTL is a combination of FL and transfer learning
(TL). FL is a collaborative learning technique in which many
clients collaboratively train a model under the orchestration
of a central controller, without exchanging the party’s origi-
nal data. FL enables focused data collection and data mini-
mization by reducing the systematic privacy risks and costs
resulting from traditional, centralized ML. The FL process is
typically driven by model engineers who develop ML models
for particular applications. TL builds an effective model for

the target domain while leveraging knowledge from the other
(source) domains. The main advantages of TL are that the
training time is significantly reduced and only a very small
amount of training data (or none at all) are required to lever-
age pretrained models. To enable FTL across heterogeneous
data, a feature-group-based MK-SVM was developed. The
features are grouped based on measurement type, with each
group having its own kernel/parameter settings. The pre-
dicted category is the weighted sum of the contributions from
each kernel. To enable TL, the MK-SVM is modified by inte-
grating an adaptive SVM framework and redefining the opti-
mization approach for SVM. The adaptive nature of the MK-
A-SVM also enables the integration of other ML models (e.g.,
neural networks [NN] and Bayesian methods) with SVMs in
TL. Unlike traditional SVM, MK-A-SVM supports (1) the
adoption of multiple and feature-specific kernels, and (2) a
resilient approach to dealing with missing measurements.

2. Multi-Kernel Adaptive Support VectorMachine

SVM (Suykens & Vandewalle, 1999) is a discriminative clas-
sifier that finds, in a higher dimensional space, a hyperplane
that distinctly classifies the data points. To separate two
classes, there may be many possible hyperplanes. SVM finds
the hyperplane of maximum margin with the longest distance
between the data points of both classes. Support vectors are
data points on the hyperplane that influence the position and
orientation of the hyperplane. For the input feature vector
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x ∈ X with labels Y , the general expression for the soft-margin
classifier in dual form with regularization parameter, C is
given by (Suykens & Vandewalle, 1999)

max
α

∑
i

αi−
1
2

∑
i, j

αiα jYiY jK(xi, x j)

s.t.
∑

i

αiYi = 0,

C ≥ αi ≥ 0,∀i,∀ j

(1)

where α is the Lagrange multiplier and K(xi, x j)= ϕ(xi) ·ϕ(x j)
is a kernel function.

2.1. MK-SVM

With the kernel function, the soft margin decision function
for SVM is defined by:

f (x) =
n∑

i=1

αiyiK(xi, x j)+b (2)

Let [X]m×n represent a data matrix with m samples and n fea-
tures. The sample set can be vertically partitioned based on
feature type. The MK-SVM across the vertically partitioned
sample set can be determined by computing a net kernel ma-
trix (i.e., a gram matrix) K = K(xi, x j) from individual ma-
trices determined from each vertically partitioned sample. In
the case of two partitions, the [X]m×n data matrix can be ver-
tically partitioned into X1 and X2. Then X1 and X2 will have
K1 = K(X1,X1T ) and K2 = K(X2,X2T ) as the gram matrix,
respectively. The net gram matrix can next be determined as
the linear combination of individual gram matrices. Let the
(i, j)th element of K represent K(xi, x j) and x1

i and x2
i be ver-

tically partitioned vectors of xi from X1 and X2, respectively.
Accordingly:

K(xi, x j) = K(x1
i , x

1
j )+K(x2

i , x
2
j )

∴ K(X,XT ) = K1+K2 = K(X1,X1T
)+K(X2,X2T

) (3)

The net gram matrix can also be obtained via the weighted
summation of individual kernels. Hence, for G vertical parti-
tions, equation (3) can be generalized as:

K(X,XT ) = β1K1+β2K2+ ...+βGKG =

G∑
i=1

βiK(Xi,XiT )

(4)

where βi is the weight associated with each local gram matrix
and
∑G

i βi = 1. Using the net kernel matrix applied in equation
(1), the SVM model parameters can be obtained by solving a
quadratic programming problem. Note that each gram matrix
will be a square matrix.
Thus, using the MK approach, FL across P parties can be
performed to generate a global (master) gram matrix as the
weighted sum of net kernel matrices Kt (determined in equa-

tion [4)], for t = [1,2, . . . ,P]. The formulation to generate a
global gram matrix is given by:

Kg(X,XT ) =
P∑

t=1

ptKt(X,XT ) (5)

where pt is the weight/importance associated with each net
gram matrix and

∑P
t pt = 1. The importance of each net gram

matrix can be considered equal (1/P), or be based on the in-
dividual contribution to overall performance (e.g., prediction
accuracy or Fβ−score) denoted as ACCt is determined as:

pt =
ACCt∑P

j=1 ACC j
(6)

As per equation (6), kernel aggregation is conducted by giv-
ing the highest importance to the most accurate individual
model, and the lowest importance to the least accurate model.
Then the Kg matrix, which captures patterns from all the indi-
vidual models, is used to retrain each individual model. After
retraining with Kg, all groups will have a global model, and
the above process of individually updating the kernel matrix
and constructing a global matrix from all the P parties con-
tinues. Substituting equation (4) for (5), we get:

Kg(X,XT ) =
P∑

t=1

pt

G∑
i=1

βiKt(Xi,XiT ) (7)

The global gram matrix will be shared with each party. Then,
using the global gram matrix in equation (1), each party can
obtain the SVM model parameters by solving a quadratic
programming problem. Creating a feature-group-based MK-
SVM model enables the aggregation of kernel matrices across
individual parties with similar or partially heterogeneous fea-
tures.

2.2. Adaptive SVM

Adaptive SVM is useful for transferring a trained model from
one system to another, or for performing domain adaptations.
The adaptive SVM learns from the source model f s(x) by
regularizing the distance between the learned model (target
model) f (x) and f s(x). These source models can be trained
using any algorithm (e.g., SVM, decision tree, NN, and naive
Bayes). Let [X]T

m′×n′ represent a data matrix with m′ samples
and n′ features for the target model. The distribution of the
target data is likely to be different from the source data. Let
f s(x) represent the decision model available from the source
data, our goal being to learn classifier f (x) using M different
source models f s(x) as per:

f (x) = f s(x)+∆ f (x)

=

M∑
i=1

tk f s
k (x)+∆ f (x) (8)
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where tk is the weight associated with each source model.
The objective is to determine a new decision boundary that
is close to

∑M
i=1 tk f s

k (x) and accurately predicts on [X]T
m′×n′ .

Thus: ∣∣∣∣∣∣
∣∣∣∣∣∣ f − M∑

i=1

tk f s
k

∣∣∣∣∣∣
∣∣∣∣∣∣2 = ||∆ f || (9)

Equation (9) is a more intuitive interpretation of regulariza-
tion aimed to minimize the distance between f (x) and the
source model f a(x). To learn the parameters, the objective
function in equation (1) can be rewritten as follows (Aytar &
Zisserman, 2011; Yang, Yan, & Hauptmann, 2007):

max
α

∑
i

(1−λi)αi−
1
2

∑
i, j

αiα jYiY jK(xi, x j)

s.t.
∑

i

αiYi = 0,

C ≥ αi ≥ 0,∀i,∀ j

(10)

where λi is defined as λi = yi
∑M

i=1 tk f s
k (xi).

Given the α̂ determined from equation (10) and the results
from the MK-SVM in equation (7), the MK-A-SVM decision
function using equation (8) can be written as:

f (x) =
M∑

i=1

tk f s
k (x)+∆ f (x)

=

M∑
i=1

tk f s
k (x)+

n∑
i=1

α̂iyiKg(xi, x j)+b (11)

3. Numerical Results

To validate FTL using MK-A-SVM, the circulating water sys-
tems (CWSs) at two nuclear power plants (NPPs) were se-
lected as the identified plant assets. The CWS is an impor-
tant non-safety-related system. As the heat sinks for the main
steam turbine and associated auxiliaries, the CWSs at Plant
Sites 1 and 2 are designed to maximize steam power cycle
efficiency (NRC, 2009). Plant Site 1 (a two-unit pressurized-
water reactor) features six circulators at each unit.
Schematic representations of the main condensers for Plant
Site 1 Unit 2 are shown in Figure 2a. Each pair of waterboxes
in the condenser is named according to the following conven-
tion: Unit #, Condenser #A, and Unit #, Condenser #B. Plant
Site 2 (a single-unit boiling-water reactor) has four circula-
tors. A schematic representation of the Plant Site 2 CWS is
shown in Figure 2b, and several distinct differences are seen
when comparing it to the Plant Site 1 CWS. These include:
(1) the water supply to the Plant Site 2 CWS comes from a
cooling tower water basin, not directly from the river; (2) the
Plant Site 2 CWS does not have traveling screens, but each
circulator has a single-pump screen to prevent debris trans-
mission to the waterboxes; and (3) the Plant Site 2 CWS has

Algorithm 1 : Federated Transfer Learning

Require: Feature matrix [X]t
m×n, and labels [Y]t, for t ∈ P

============ FEDERATED LEARNING =============
Central Server do:
1: Initialization: global model K0

g .
2: for each global iteration, k do
3: Determine number of participants, 1 ≤Ck ≤ P
4: for each party c ∈Ck do
5: #Get client improved/retrained model

Kk+1
c ,ACCk+1

c ← TrainLocally(c,Kk
g)

6: end for
7: #Determine model importance pc

pc =
ACCk+1

c∑Ck
j=1 ACCk+1

j

8: #Update the global model
Kk+1

g ←
∑Ck

c=1 pcKk+1
c

9: end for
10: if Global_model request then
11: #Send global model to party p

S endGlobalModel(Kk+1
g )

12: end if

Component/Plant Site do:
13: function TrainLocally(c,Kk

g)
14: for each local iteration, i j do
15: #Do local model training

Ki j
c ,ACCi j

c ← LocalU pdate([X]c
i j,K

k
g)

16: end for
17: return Kc,ACCc
18: end function
============= TRANSFER LEARNING =============
New Component/Plant Site do:
19: #Receive global model from central server

f s(x)← ReceiveGlobalModel()
20: #Adopt global model

f (x)← f s(x)+∆ f (x)
21: #Determine Model Performance

ACCT ← ModelS core( f (x))
22: if send_model_to_server then
23: S endModel( f (x),ACCT )
24: end if

four circulators feeding six waterboxes via a common header,
unlike the Plant Site 1 CWS, in which each waterbox has its
own circulator.

3.1. Fault Signatures of the NPP Asset

Fault signatures enable informed decision making to prevent
potential failure of a plant asset. They can also be used for
root cause analysis if failure occurs. In theory, the different
fault modes associated with a plant asset (e.g., the CWS) have
unique, consistently identifiable fault signatures. In practice,
fault signature identification and diagnosis are not straightfor-
ward and can benefit from analyses of historical data. Each
detected fault signature for a particular degradation mode
should have enhanced feature verification and confidence by
selecting additional process and condition monitoring data
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(a) Plant Site 1 Unit 2 CWP combination 21A and 21B. (b) Plant Site 2.

Figure 2. Schematic representation of CWS.

that provide complementary information.
Of the faults of interest examined, only waterbox fouling
caused numerous instances of CWP shutdowns, even though
this fault is not a pump/motor fault but rather a system fault
whose symptoms may affect pump performance. Because
waterbox fouling occurred so commonly, enough data was
available to allow development and testing of condition-based
monitoring algorithms. Fault types that caused only a single
instance of CWP shutdown provided limited information for
developing fault signatures and training ML algorithms. The
potential fault signatures contained within the data are not
readily resolvable at this time. A potential way of addressing
this sparseness in some of the fault signatures is to leverage
simulated data generated from the first-principles model of
the CWS motor and pump (M&P) set. It is anticipated that,
as ML technologies mature for operational plant applications,
these subtle faults will be identified.
This section discusses two examples of waterbox fouling.
The first is from Plant Site 1 and the second from Plant Site 2.
These two examples highlight the similarities and differences
in the fault signatures for waterbox fouling, and are a perfect
lead-in as to why FTL is required for predictive modeling.
The primary issue noted with the Plant Site 1 CWS is wa-
terbox fouling, which typically occurs due to accumulation
of grass/debris in the waterboxes and causes condenser tube
blockage and reduced circulator water flow. This is a unique
and frequent issue at Plant Site 1, since the Plant Site 1 CWP
intake comes directly from the river, which produces a signif-
icant quantity of grass/debris. The grassing season typically
occurs between February 1 and May 31 (NRC, 2009). Grass-
ing often emerges from the river during high-wind conditions
associated with storms. During these periods, the motor cur-
rent can oscillate with river level changes. Operations moni-
tors the waterbox motor current and inlet pressure, and sched-
ules waterbox cleanings based on deviations in motor current
and inlet pressure when compared against historical baseline
data. Waterbox fouling is typically identified via motor cur-

rent increase (also, though far less frequently, motor current
decrease), inlet pressure increase, waterbox differential tem-
perature (DT ) increase, and condenser thermal performance
loss.
Figure 3a shows an instance of waterbox fouling diagnosed
in Plant Site 1 Unit 2’s CWP 22B. An upward drift in DT and
motor current was identified on July 23, 2018. Consequently,
the gross load began to dip. Note that, in Figure 3a, the CWP
22B motor current increased from 231 to 245 amps, and the
DT increased from 14 to 16◦F, with the gross load not trend-
ing as expected. The motor current and DT decreased to 220
amps and 14◦F, respectively, following the waterbox cleaning
on August 25, 2018, resulting in a 30–40 MWe improvement
in gross load. The waterbox fault and approximate date of the
shutdown were found by searching the work order database
and narrative log information.
For Plant Site 2, waterbox fouling is not a major fault, yet re-
mains of interest. The cause of waterbox fouling at Plant Site
2 is once again debris (limited grassing) in the water circulat-
ing in and out of the cooling tower basin. Figure 3b shows
an instance of waterbox fouling in Plant Site 2 waterbox A.
Under normal operating conditions with no faults, the differ-
ential pressure (DP) across the Plant Site 2 CWPs averages
40–41 PSIG. Note that, in Figure 3b, on around December
23, 2017, CWP A’s DP began trending upward, exceeding
43 PSIG. Following the DP trend, the DT across the north
and south ends of waterbox A also trended upward in the
same time period. These slow, steady increases in DP and
DT trends are indicative of waterbox fouling. Following a
waterbox cleaning on around January 23, 2018, the DP re-
duced to near 41 PSIG, and the DT also stabilized.
These two examples show that different fault features can in-
dicate the same fault. Developing a comprehensive fault sig-
nature for each fault mode is key to achieving scalable, accu-
rate predictive models. For other CWP fault signatures, see
(Agarwal et al., 2021).
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(a) Plant Site 1 Unit 2’s CWP 22B.

(b) Plant Site 2’s waterbox A.

Figure 3. Example changes to the CWS process data both before and after waterbox fouling.

3.2. Feature Extraction

To develop a FTL-based predictive model, features were ex-
tracted based on identified fault signatures.

3.2.1. Plant Site 1

From the CWS-associated plant operational data, the follow-
ing features were extracted for each M&P set:

• DT was calculated as the difference between the outlet

water temperature associated with the M&P set and the
inlet river temperature

• The measured motor in-board (MIB) temperature, motor
outboard (MOB) temperature, and motor stator (MS) tem-
perature

• From historical CWS M&P replacement/refurbishment
dates; the M&P run-hours from one replacement to the
next were considered in calculating the motor age (MAge)
and pump age (PAge)
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• To consider the seasonal effects on the data, week of the
year was calculated for every timestamp and then used as
a feature.

Thus, a total of seven features were extracted from the CWS
plant operational data for each M&P set. Detailed infor-
mation on feature extraction from plant operation data—as
well as from vibration data—can be found in (Agarwal et
al., 2021). For model development, plant operational data
after 2016 were considered, because Plant Site 1 first adopted
a new six-year CWP replacement PM strategy at that time.
Since 2016, each Plant Site 1 unit has had its CWPs period-
ically replaced as per the updated PM strategy. The age of
the M&P set is estimated based on the date of replacement
of each CWP. If any faults in the M&P are identified post-
replacement, the data corresponding to that fault and time pe-
riod is labeled either unhealthy or healthy.

3.2.2. Plant Site 2

From the Plant Site 2 CWS-associated plant operational data,
the following features were extracted for each M&P set:

• DT as an average of the DTs measured at the north and
south condensers (the DT at each condenser was calcu-
lated as the difference between the respective condenser
inlet and condenser outlet temperatures)

• The measured MIB (thrust) temperature, MOB tempera-
ture, and motor winding (stator) (MS) temperature

• To consider the seasonal effects on the data, week of the
year was calculated for every timestamp and then used as
a feature.

Thus, five features were extracted from the Plant Site 2
data. As there was no historical CWS M&P replace-
ment/refurbishment date information available for Plant Site
2, motor age (MAge) and pump age (PAge) were not calculated.

Figures 4 and 5 show the distribution plot of each extracted
feature in the healthy and unhealthy classes for each CWP
(Plant Site 2) or combination thereof (Plant Site 1). The fig-
ures make it evident that DT is the most significant feature
for the classification algorithm. This makes sense because
most of the fault data captured in the unhealthy class are as-
sociated with waterbox fouling, which is best reflected by DT
information rather than the other six features discussed above.

3.3. FL-based CWP Motor Health Prediction

FL was demonstrated using an MK-SVM (Chen & Fan, 2012)
that classifies whether a CWP is in a healthy or unhealthy
state. FL was demonstrated on the Plant Site 1 data, with each
local model being developed for a pair of CWPs connected to
a common waterbox, as shown in Figure 2a. Since there are
three waterboxes for each Plant Site 1 unit, this gives six local
models that will be combined into a master model via the
FL approach (see Figure 1). The samples that were grouped

based on CWP combinations are then split into training and
test samples in accordance with a 80:20 ratio, as shown in
Table 1.

Data Group Training
Samples

Test
Samples

Group 1 (CWP 11A & CWP 11B) 6174 974
Group 2 (CWP 12A & CWP 12B) 8303 1309
Group 3 (CWP 13A & CWP 13B) 4366 822
Group 4 (CWP 21A & CWP 21B) 1720 288
Group 5 (CWP 22A & CWP 22B) 2356 476
Group 6 (CWP 23A & CWP 23B) 1496 358

Table 1. Data split into training and test sets per each of the
selected groups for predicting CWP conditions.

As per equation 11, the extracted features are grouped into
three categories, an individual kernel matrix is built for each
group, and the final decision f (x) is determined as a weighted
combination of predictions from each kernel associated with
each feature group, as shown in Figure 6. The selection of op-
timal hyperparameters C and γ for MK-A-SVM with radial
basis function kernels is performed using grid-search cross
validation to predict CWP conditions. Since there are three
feature groups, the MK-A-SVM takes three parameters of γ
(γ1, γ2, and γ3), each of which must be optimally tuned. In
this work, for the sake of simplicity, only one γ parameter is
tuned, and it is set as γ = γ1 = γ2 = γ3. The parameter γ was
varied from 10e−3 to 10e3, and the regularization parameter
C was varied from 10e−3 to 10e2. For predicting CWP con-
ditions, γ= 100 and C = 0.001 achieved the highest prediction
accuracy value: 95.58%. Note that determining the optimal
hyperparameter values separately for each feature group (and
weight βi associated with each feature group) is beyond the
scope of this work. The results of the MK-A-SVM based
individual learning and FL on Plant Site 1 are mentioned in
Table 2.
From Table 2, it is seen that individual models from each
group achieved a performance of close to 100% in most of
the MK-SVM models. This is a clear indication of overfit-
ting in individual models, with the models being unable to
predict other datasets or unseen data with the same level of
accuracy. In addition, for some models, the accuracy of the
test samples is higher than that of the training samples, since
the test data were sometimes easier for the model to predict
than the training data. Since the data labels are highly imbal-
anced, the F1 scores for all the models were above 98% (dur-
ing individual training and after FL aggregation), indicating
the prediction is not biased toward healthy class labels. Af-
ter applying FL-based model aggregation and retraining each
individual model, the accuracy levels decreased for most of
the models, though performance remained at acceptable lev-
els. As a comparison, FL aggregation was performed based
on NNs, and the results are closely comparable with MK-A-
SVM model. FL aggregation over several iterations can fur-
ther improve overfitting, while also maintaining acceptable
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(a) Group 1: CWP 11A and 11B. (b) Group 2: CWP 12A and 12B.

(c) Group 3: CWP 13A and 13B. (d) Group 4: CWP 21A and 21B.

(e) Group 5: CWP 22A and 22B. (f) Group 6: CWP 23A and 23B.

Figure 4. Distributions of “healthy" and “unhealthy" class labels for different CWP combinations from Plant Site 1.

(a) CWP A. (b) CWP C.

Figure 5. Distributions of “healthy" and “unhealthy" class labels for different CWP combinations from Plant Site 2.
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Figure 6. Feature-group-based MK-A-SVM framework for
Plant Site 1.

performance of the diagnostic model. This exemplifies how
FL-based model aggregation enables aggregation of diagnos-
tic models from the component level to the plant level. The
fact that the models are trained with limited datasets also im-
pacts FL performance, which is anticipated to improve with
larger training datasets.

3.3.1. MK-A-SVM Performance Analysis

Further work must be done to build more robust individ-
ual models that generalize more readily to previously unseen
data. However, as noted above, sufficiently high accuracy is
obtainable while retaining a uniform (and thus simpler) archi-
tecture for all individual models.
The FL approach showed much stronger test set performance
for the CWPs than was seen in the individual phase. The
added information afforded by examining all the pump data
en masse provided clear advantages to the federated-model
building process.

MK-A-SVM NN
Individual
Learning

Federated
Learning

Individual
Learning

Federated
Learning

CWP
Group

Train Test Train Test Train Test Train Test

Group 1 97.1 95.6 98.3 93.7 100 88.3 98.0 96.3

Group 2 100 99.9 100 99.9 93.8 97.3 98.7 96.0

Group 3 100 98.9 100 98.9 100 97.6 100 94.3

Group 4 100 99.3 100 99.3 100 75.0 100 96.9

Group 5 100 98.9 98.6 91.8 100 75 100 98.1

Group 6 100 98.3 99.3 99.2 100 82.1 98.5 99.7

Table 2. FL performance (in %) on Plant Site 1 data, using
MK-A-SVM and NN. Values are percent accuracy.

3.4. TL-based CWP Motor Health Prediction

TL aims to train a model on data from one domain (Plant Site
1), and then adapt that model to another (Plant Site 2) by par-
tial or full retrain. To match the features used in the FL model,
the DP was dropped, leaving only five features for TL. The
features were again grouped based on measurement type for
kernel selection, as discussed in Section 3.3. Thus, only three
kernels were used in the TL for MK-SVM. For demonstrating
TL on Plant Site 2 data, binary classification was considered,
with the healthy and unhealthy class labels being considered

based on plant operation data. For the unhealthy state, water-
box fouling fault data were extracted. Data prior to the occur-
rence of waterbox fouling were considered healthy. Healthy
and unhealthy samples extracted from CWPs A and C. From
CWP A 1916 training samples and 966 testing samples were
used while from CWP C 6502 training samples and 2558 test-
ing samples were used.For the extracted samples, the master
model from FL was used (both with and without retraining
for comparison) to predict CWP conditions by using the Plant
Site 2 data. Note that for TL without retraining, the extracted
data are not split into training and test data; instead, all the
data are considered test data, and the FL model (see Section
3.3) is used to predict the labels on complete test data.
For MK-SVM-based TL, the overall performance on both
CWP A and CWP C data is around 80%. This approach in-
volves using all the samples from CWP A and CWP C as
test data in order to classify health using the master model
from the FL framework. The performance dictates that the
MK-SVM parameters must be further optimized to improve
the prediction accuracy. Typically in TL, a small set of sam-
ple data is used to retrain the transferred model in order to
fine-tune the model parameters for the new environment (i.e.,
Plant Site 2). For example, only 10–20% of the total num-
ber of samples will be used to retrain the model and optimize
the parameters of the MK-SVM for the Plant Site 2 data. Af-
ter retraining with 20% of the data, CWP A’s performance
did not improve, whereas CWP C’s performance significantly
improved (to higher than 95% accuracy). The performance of
CWP A with TL indicates there were insufficient samples for
building the ML model.
For comparison with TL, individual models were also trained
on the Plant Site 2 data, with an 80:20 split between the
training and test data. Individual model performance—
particularly for CWP A—clearly shows the same overfitting
trend as seen in the FL case. More samples for training are re-
quired in order to generalize the model and avoid overfitting.
In comparison, the performance for NN is higher in MK-A-
SVM for both CWP A and CWP C. This is also due to the fact
that further enhancements to the optimization is necessary in
terms of optimizing weights associated with multiple kernels.

Individual
Learning

TL without
Retrain

TL with
RetrainModel CWP

Group Train Test Test Train Test

MK-A-SVM
CWP A 99.9 66.1 80.74 81.1 80.8
CWP C 99.32 93.1 79.92 97.9 95.8

NN
CWP A 95.6 95.1 79.8 95.8 95.5
CWP C 99.4 99.5 74.3 99.1 99.4

Table 3. TL performance (in %) on Plant Site 2 data, using
MK-A-SVM and NN models from FL
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4. Practical Considerations

The practical applicability of the proposed FTL using MK-A-
SVM can be considered for mainly three scenarios. Firstly,
for a distributed asset/entity scenarios in which the data shar-
ing is challenging due to privacy, communication bandwidth,
and economical competence issues. Secondly, to implement
data-driven decision-making on a new asset/entity by trans-
ferring previously trained model. Finally, to develop a model
which could capture all the patterns of an asset/equipment be-
havior.

5. Conclusion

A MK-A-SVM is developed to demonstrated FTL framework
by considering the application of predicting CWP health con-
ditions in NPP CWSs. The Plant Site 1 CWS fault signatures
were used to develop FL based on MK-SVM. The federated
models developed for Plant Site 1 were then used to estimate
the state of health of the Plant Site 2 CWS (a process referred
to as TL). The results obtained were comparable to predictive
models individually trained on Plant Site 2 data. This demon-
strated the significance of the FTL approach and the develop-
ment feasibility through MK-A-SVM. The performance re-
sults were also compared with NN algorithm.
As a path forward, we continue to update and improve the
MK-A-SVM framework to continuously optimize weight pa-
rameter associated with multiple kernels. In addition, future
work will also expand the approach to multi-class classifica-
tion.
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