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ABSTRACT 

Industry 4.0 (I4.0) is the fourth industrial revolution where 
operations are linked through data generated by machines. 
I4.0 involves production ecosystems where operations are 
monitored, recorded, and analyzed for use in widely 
interconnected and automated activities. This can be 
performed at Edge or Cloud1 levels. In the industrial big data 
era, with ever maturing sensor technologies, data capture, 
communication, and storage technologies, utilizing machine 
data for operational insights provides companies with 
competitive advantage. These can increase cost savings for 
operation and maintenance, reduce or even eliminate 
unscheduled downtime and / or ensure on-time delivery of 
products. In this work, we will cover a methodology for 
condition-based maintenance (CBM) at aerospace 
manufacturing facilities. The methodology includes sensor 
selection, data collection, transmission, storage, return on 
investment for CBM, and building CBM models for 
detection. We will delve into challenges of implementing this 
methodology in industrial settings by covering planning, 
technology insertion, logistics, and decision-making. 

1. INTRODUCTION 

With the advent of Industry 4.0 (I4.0) and advancement in 
digital transformation, manufacturing facilities are 
embarking on the journey of transforming operations with big 
data. Initial efforts started with measuring operational 
efficiencies with standard metrics like overall equipment 
effectiveness (OEE). The operational drive behind 
improvement of OEE is to reduce machine breakdowns and 
malfunctions. 

Condition-based maintenance (CBM) has proven its value in 
addressing root causes on the machine level to improve 
operational metrics like OEE. To implement a CBM 
program, the common practice is to start with a pilot project 

 
1 Cloud computing refers to using computation power in remote 
servers and usually involves the services provided one of the 

as a proof of concept. Success of the pilot project drives the 
decision in rolling out the technology in a larger scale. 

In this work, we discuss the milestones of implementing a 
CBM program at one of our aerospace manufacturing 
facilities. We will go over the methodology developed for 
identifying CBM candidates, building CBM models, 
deploying and scaling a CBM programs, and evaluating 
return on investment. 

2. APPROACH 

Bringing a facility up to I4.0 standards requires continuous 
operational data collection from machines. Once the data is 
available, it can be used for various applications such as 
descriptive, diagnostic, and predictive analytics. In order to 
empower applications such as predictive maintenance, 
several steps must be taken. Figure 1 shows different phases 
of a methodology that will result in improved predictive 
maintenance capabilities in a facility. It is important to point 
out that the outcome of some of the tasks outlined in Figure 
1 contribute to other aspects of I4.0 efforts as well and not 
only the predictive maintenance.  

In Phase 1, we identify critical parts and machines; select 
sensors and a data collection strategy; and build data 
collection infrastructure. These three steps allow for the 
generalization of data production practices applicable to a 
variety of applications. The data can later be used for CBM, 
simple visualizations, status monitoring, etc. 

Phase 2 involves utilization of the data. It starts with selecting 
visualization and business intelligence tools that help the 
operation excellence goals. Predictive maintenance model 
building, selection, and evaluation fall under this phase. 
Successful outcomes are tied to a proof-of-concept to get 
buy-in from stakeholders and senior leadership within an 
organization. Once CBM feasibility is proven, the proof-of-

commercial vendors in this space. Edge computing refers to 
localized computing power on site usually using hardware 
exclusively designed to perform such computations.  
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concept is evaluated for its applicability to scale to the entire 
facility (and other similar facilities). 

Phase 3 covers the model deployment and consumption. In 
this phase CBM models are scaled and rolled out to the entire 
facility. Model consumption decisions are made at this stage. 
For example, how users consume the model (on-demand vs. 
on schedule), what sort of alerts the system generates, how 
users interact with alerts and take actions on them.  

We will go over these steps in more details in the following 
sections.  

 

 
Figure 1- CBM implementation approach (BI: business 

intelligence) 

3. BUILDING UP DATA INFRASTRUCTURE  

This stage of work focuses on building up the data collection 
infrastructure for predictive maintenance.  

3.1. Identifying Critical Parts 

A wide variety of equipment are involved during different 
stages of a product’s manufacturing process; however, it is 
not practical to monitor every type of equipment. Each 
equipment type tends to have different performance baselines 
based on its utilization and nature of the machine operations. 
Taking aerospace manufacturing as an example, machine 
tools, grinders, measurement equipment, etc. work 
concurrently to produce and examine parts. It is widely 
acknowledged that machine tools are the most critical assets 
among others given the variety of tasks they perform and 
their high utilization rates. Certain machine tools run 24/7 
with limited backup capacity. Therefore, it is necessary to 
focus on the critical assets to determine CBM feasibility.  

Some equipment (such as machine tools) have a low failure 
rate, but the consequences of failure are expensive; for 
example, long downtimes, expensive scrap costs and 
sometimes collateral damage. On the other hand, some 
equipment have a high failure rate, but the failure 
consequences are not as severe. Cooling pumps are a good 
example of such equipment. 

3.1.1. Sources of Information 

It is critical for manufacturing facilities to keep detailed 
maintenance records; these present opportunities for 
practitioners to understand factory performances, drill into 
details for downtime and make data-driven improvement 
decisions. (Fleischer et al., 2009) conducted a study to reveal 
the top four major assembly components in machine tools. 
The paper concluded that drive axes malfunction caused 38% 
of machine tool breakdown and spindle and tool changer 
issues constituted 26%. While the statistics may differ across 
industries, studies like this serve as good reference for CBM 
practitioners to conduct similar studies reflecting the ground 
truth for root causes behind machine downtime. 

Technical insights from existing maintenance programs and 
subject matter experts are another source of information. 
CBM is a fundamental step to move from corrective and 
preventive maintenance to the predictive maintenance space. 
Technical insights are already built into existing maintenance 
programs. For example, for failures associated with high cost 
and severe consequences, preventive maintenance programs 
are normally in place to check specific components at fixed 
intervals. This helps the maintenance team to stay informed 
of the machine conditions at fixed time intervals and allows 
them to arrange maintenance prior to breakdowns. 
Components associated with these failures are great CBM 
candidates. Corrective maintenance generally addresses 
failures with lower consequences. However, depending on 
failure frequency and resulted downtime, failures that are 
currently addressed through corrective maintenance can also 
be potential CBM candidates. 

3.2. Sensor Selection 

In industrial applications, it is critical that due diligence, 
research, and even experiments are done to select the right 
sensors. At the end of the day, the model is as good as the 
data that feeds into it.  

Different sensor types including vibration, temperature, 
acoustic emission, electric current, etc. have been used for 
monitoring component performances. (Yu, 2012) used 
acoustic emission, vibration, and motor current sensors with 
250 Hz sampling rate and 9000 points per sampling for an 
experimental setup to evaluate cutting tool conditions. 
(Schmidt & Wang, 2018) used measurement data from 
Renishaw QC20-W measuring device which performs the 
well-established double ball-bar measurements on linear 
axes. This test was designed to run offline for multiple 
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purposes including estimation of machine part accuracy, 
source of deviation as well as predictive maintenance.  

Past literature and similar case studies serve as references for 
specific monitoring decisions. The fundamental questions 
are: 

1. How will the CBM candidate manifest its failure 
and degradation signatures?	

2. Are the sensors under consideration able to capture 
the above signature?	

Take bearing faults on the machine tools for an example: if 
there is a damage on the inner race of a rolling element 
bearing, its impact will show up every time there is a physical 
contact between the roller and the damaged area (Rastegari et 
al., 2017). Therefore, given a reasonably high sampling rate 
that is at least twice the maximum frequency in the vibration 
signal, the frequency spectrum will display increased 
vibration around Ball Pass Frequency Inner Race (BPFI), 
which is in general not the harmonics of the shaft turning 
speed. This provides guidance for sensor selection and 
choosing vibration sensors that can collect data at desired 
resolutions. However, if the end goal is not detecting failures 
at the bearing level but rather detecting general issues with 
the machine tools, more generic vibration techniques can be 
applied. This changes the requirements on sensor resolution. 
For example, in the work of (Rastegari et al., 2017), 
broadband vibration is measured to monitor spindle unit 
vibration level over time by following Swedish standard for 
machine tool spindle vibrations using sensors installed on 
spindle housing. 

Machine tools come with internal sensors that can be 
leveraged. One of the challenges with such sensors is their 
default location. Usually, they are not installed on locations 
where fault develops and subsequently are indirect 
measurements of machine conditions. In many cases, they are 
not collecting data relevant to specific CBM needs.  

As an example, in one of our facilities, some of the newer 
CNC machines come with temperature and electric current 
sensors. Data from these sensors as well as other information 
such as rotational speed of tools and tables, axis location, 
motor temperature, etc. could provide a baseline for 
predictive models. However, to monitor the degradation of 
critical parts in these machines, we need vibration data, which 
is not available. 

Installing additional sensors at desired locations provide the 
option of selecting sensors according to monitoring targets 
and generating more accurate measurements. However, this 
requires additional cost and domain expertise with increased 
technical complexity. So extra sensors must be justified to the 
stakeholders.  

To install 3rd party sensors, they must be able to meet several 
requirements:  

• Output parameters: whether it is only vibration, or 
other signals as well. Is the output the amplitude of 
the signals or they are derived parameters? 

• Sampling frequencies: what is the highest sampling 
frequency that the sensor can provide? 

• Signal processing functionalities: does the sensor 
have denoising filters in various frequencies? 

• Environmental conditions: some of these sensors 
are installed in harsh environments with high 
temperature or high humidity or both.  

• Cyber security: the sensor must be able to meet the 
cyber security requirements of the company.  

Process data and product measurement data are another 
source of information for CBM purposes. This is because of 
the product requirements and the correlation between 
machine degradation and the product parameters that are 
measured. For example, (Tong et al., 2017) used product 
quality measurements to detect anomalies in a multistage 
manufacturing environment.  

3.3. Hardware installation and infrastructure  

Once the correct sensors are selected, they need to be 
installed. The placement of the sensors is a crucial decision. 
For example, for vibration sensors, they must be in a place 
where they sense the vibration of the component of interest 
and to some extent be isolated from other components. 
Vibration is measured in three directions (X, Y, Z or 
horizontal, vertical, and axial). Some sensors can measure all 
three and some can measure only one or two. It is important 
to pay attention to the direction while setting up the sensor.  

Sensors are controlled by programmable logic controller 
(PLC). Usually, sensor vendors sell a package that includes a 
certain number of sensors and their PLC. The sensor 
installation and PLC installation require electrical wiring that 
may need to meet some standards that are implemented in the 
facility.  

Machines with built in sensors have various types of 
controllers. 3rd party sensors have their own connection 
protocols as well. The challenge is to collect data from all 
these different devices that use all different languages and 
protocols. This can be done with commercially available 
industrial software or communication platform that can 
standardize the connectivity between all the machines in a 
manufacturing facility. This platform then connects to a 
database and feeds the sensor data into the data storage. These 
platforms are highly customizable in terms of data collection 
frequencies, which parameters to collect, etc. They can be set 
to continuously collect data or be triggered by some sort of 
an event or a program on a machine.  

There are various options for data storage. Some may use an 
on-premises server. The advantage of having such data 
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storage is the cost, which is mostly a one-time payment with 
negligible maintenance costs. However, such storage options 
have limited capacity and can become a bottleneck for scaling 
the data collection efforts. A solution is to use cloud data 
warehouses where the set-up cost is low, and scalability is 
easy. However, the total cost of operations could easily add 
up as the storage costs do not move linearly with storage used 
(and in some cases the cloud vendor’s accounting practices 
are vague).  

3.4. Data Collection Frequency 

Data sampling frequency is a critical aspect of modeling and 
affects the model choices substantially. Ideally, engineers 
require signal data with high frequency sampling rate where 
the rate is twice as much as the highest frequency in the 
machine (referred to as Nyquist rate). Data collected with 
such frequency allows the engineers to use various signal 
processing techniques and analyze the frequencies where 
degradation manifest itself. However, this is easier said than 
done.  

In a large facility with hundreds of connected machines, 
multiple sensors on each machines collecting data 24/7, 
sampling frequencies in the range of 10s of kHz create vast 
amounts of data. This will substantially affect the data 
warehousing costs of a facility as well as data processing and 
computation needs.  

As discussed earlier, predictive maintenance is not the sole 
goal of connected factory. It falls under the broader goal of 
operation excellence and effectiveness. To achieve this goal 
the data needs to be consumable to non-experts mostly in 
form of business intelligence tools. Signal data with high 
frequency sampling rates are covered with noise and are not 
readable without any additional post processing. So there 
exists a balance for all the different users’ needs. On one hand 
engineers want high frequency signal data while on the other 
hand the shop floor and industrial engineers want data that 
needs the least amounts of post processing. 

There are ways to address these issues. One is to lower 
sampling frequency to once every few minutes and collect 
data that are more like parameters of the signal (e.g., rms, 
crest, kurtosis) rather than the actual waveform with lots of 
noise. A lot of sensors offer such parameters. This way the 
data is useable in BI (Business Intelligence) tools with 
minimal post processing effort. The storage costs will be 
manageable as well. However, this will make the job of 
predictive maintenance engineers challenging. The modeling 
options will be completely different than the ones with high 
frequency waveform signals. 

A challenge with low sampling frequency data is the machine 
tool programs. Think of a program as something that builds a 
specific piece of a part. To build a whole part, the machine 
tool must go through several programs. These programs can 
be as short as few seconds but can go on for several minutes. 

A low sampling frequency collects data in the middle of a 
short program and in many scenarios, it is not clear if the data 
is showing an anomalous behavior or just catching normal 
fluctuations due to program changes.  

Knowing all perks and downsides of various data collection 
strategies, a middle ground can be achieved. For some 
equipment such as pumps with minimal program changes, 
low frequency sampling data collection is desirable. 
Especially since there are many of such equipment in a 
facility and they run pretty much nonstop.  

For machine tools with various programs, the sampling 
frequency must be high. However, it does not have to be a 
continuous 24/7 data collection. The data collection could be 
done during a specific program that is common among all the 
machines. The warmup program is a good example of such 
programs. Every machine tool must go through a warm-up 
program, and it usually lasts a few minutes. The warm-up 
program can provide a unified condition for all the machines 
in the facility. An option is to collect data only during warm 
up with very high frequency. This should provide enough 
good data for a CBM analysis while keeping the data storage 
capacity in check. Table 1 summarizes the benefits and 
downsides of each data collection strategy.  

Table 1- Characteristics of each data collection approach 
 High Frequency Data 

Collection 
Low Frequency Data 
Collection  

Collected data Waveform Parameters (rms, etc.) 

Sampling rate On a scale of kHz On a scale of min 

Collection period Few minutes a day 24/7 

Data noise High  Low  

Storage needs High (if collection 
period is long) 

Low 

Best application CBM BI 

Machine operation 
programs 

Many Few 

Best for equipment Machine tools Pumps, blowers, etc. 

4. MODEL DEVELOPMENT 

CBM model development involves various steps such as 
defining requirements for model outputs, evaluating data 
resources, selecting or developing models based on 
requirements and data resources, validating model 
performance, and incorporating plans for field-enabled 
model improvements. Figure 2 summarizes the flowchart of 
this process.  

Several options could constitute as outputs for CBM models: 
estimation of remaining useful life, probability of component 
failure, indication of specific failure mode, feature 
contributions to estimation metrics etc.  
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Evaluating data resources and the available sensor data, in 
conjunction with other sources of information such as process 
data, failure records, and other meta data affect the model 
development options. This information combined with the 
required model outputs dictate the CBM model development 
and selection.  

Depending on the availability of failure data and preferred 
alerting methods, CBM models can be supervised or 
unsupervised. Lacking historical failure records puts a 
restriction on using supervised models. However, if domain 
knowledge or similar case studies have provided insights on 
potential failure signatures in data, supervised model can still 
be applied through failure data simulation. Models that 
indicate specific failure mode require either failure data of 
interest or built-in physical insights from domain knowledge. 
For example, increased vibration at the frequencies of interest 
indicates specific failure mode of a component. 

 
Figure 2- CBM Model Development Process 

Data resource evaluation process includes gathering past 
failure records, confirming availability of corresponding 
sensor data before and after failure for event validation, as 
well as collecting healthy data for training and evaluation of 
false alarms.  

As an example of previous studies in this domain, (Schmidt 
& Wang, 2018) studied 4 years of data from 29 multipurpose 
machine tools with 32 instances of ball-screw failures under 
real manufacturing settings. They explored preprocessing 
methods such as Principal Component Analysis, Statistical 
Feature Selection, Independent Component Analysis and 
Correlation-based Feature Selection prior to feeding data into 
classification models. Then, they used methods discussed by 
(Kiang, 2003) such as K-nearest neighbors, Back-
propagation Feed-forward Neural Network, Decision Trees,  
Naïve Bayesian, Random Forest, and Support Vector 
Machine. The combination of processing and classification 
method yielding the highest accuracy was chosen to assess 
economic benefit of predictive maintenance. (Rastegari et al., 
2017) experimented evaluating the trend of spindle vibration 
data under different operating conditions. It proved to be 

effective in capturing bearing failures given specific machine 
operating regimes. This method is commonly used in 
industry by utilizing well-established failure thresholds. 
(Chen et al., 2020) applied Stacked Autoencoders for 
anomaly detection of semiconductor manufacturing process 
which is another option for unsupervised learning. (Saci et 
al., 2021) designed a low-complexity anomaly detection 
algorithm by modeling distributions of the healthy processes 
and detecting anomalies based on thresholds for probability 
density function. The method is tested using a practical 
dataset from industrial steelmaking furnaces operation and it 
outperforms support vector machine and random forest 
algorithms in most performance metrics with improved 
computational efficiency. 

Scarce failure data is a common challenge in aerospace 
manufacturing settings. This is due to various reasons, 
failures for critical equipment are mostly prevented through 
frequent scheduled maintenances, equipment may not have 
been connected in the past, or there is no established process 
to capture and label historical failure data. For large 
enterprises seeking to roll out CBM capabilities across 
multiple sites, unsupervised model is beneficial. These 
models can be directly applied to newly connected equipment 
where there is only normal operation data. It also helps in 
scenarios where data for historical failures are not available.  

Existing models can be selected, or new models can be built 
if existing ones do not satisfy requirements on model output 
or performance expectations. Aspects to consider include 
model performance, computation requirements, 
interpretability, and alignment with performance 
expectations.  

Failure signature analysis using historical data or domain 
expert analysis on potential failure symptoms, are great ways 
to enable insights for model selection and building. 
Visualizing the failure data and extracting features to reveal 
potential failure signatures is important. Identifying failure 
signature in the data (whether raw data or feature engineered 
data) can help with validating that CBM models are effective 
and are capturing failure or degradation signatures.  

Some CBM models are effective in capturing abnormal 
values, but some can capture gradually developing trends as 
well. Ideally, one or a suite of models that can capture 
different types of failure signatures is desired. 

Model validation can be achieved with historical failure data 
or simulated failure data if the former is not available at the 
development phase. Validation metrics can include standard 
machine learning evaluation metrics like confusion matrix or 
modified metrics that satisfy specific project requirements. 
Modeling results should be reviewed with both stakeholders 
and model consumers to make sure the outputs are practical. 
This means that there is enough lead time for factories to plan 
maintenance ahead of time, catch critical failures, order spare 
parts and reduce false alarms. Successful execution of this 
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process will contribute to improved user trust in the 
technology and the transition of technology ownership from 
the model development team to the technology user team. 

Lastly, once CBM models are validated and ready for 
deployment, consider extending the model development into 
field deployment. It is worth planning for model 
enhancement enabled by both user feedbacks and more 
available data resources down the road. Once a 
manufacturing site is CBM enabled, more failure data 
becomes available over the years after model deployment. 
Existing models can be enhanced or even replaced with 
insights from new data and additional analysis.  

5. MODEL DEPLOYMENT 

Model deployment requirements is a joint effort between the 
development team and the stakeholders. Specifics about the 
output requirements, model running cadence (on-demand vs. 
scheduled), computational resources, deployment 
environments and other aspects of deployment solution 
should be discussed in this phase.  

Models could be consumed by various types of users with 
different goals in mind. For example, factory floor 
supervisors may prefer to have model outputs on a dashboard 
where it’s easier to digest and act on the information. Digital 
leads on the factory floor want high-level metrics in report 
format delivered through email on a regular cadence or 
alternatively accessible via an online platform that may or 
may not be a part of the deployment platform. A technical 
workshop with the users is a great way to discuss and gather 
deployment requirements.  

The deployment solution should be flexible and efficient in 
the following aspects: incorporating user inputs, retraining 
deployed models, monitoring data drift (if not built in the 
CBM model itself), and integrating capabilities with other 
processes within the organization.  

User input can include but not limited to feedbacks related to 
model accuracies (upon failure occurrences), pre-defined 
user modifications (for example, threshold adjustment based 
on post-deployment experiences, disabling alerting 
functionalities due to unexpected false alarms) and potential 
functionality expansions in the future once the process 
matures with more desired user inputs that are not initially 
defined. 

Models should be retrained upon events that may cause major 
shift in data input. These events can range from performed 
maintenance, sensor adjustment, to equipment upgrade etc. If 
data drift capability is available, model retrain can also be 
enabled automatically once drift is detected and training data 
becomes available. 

With a wide variety of tools offered by today’s marketplace, 
model deployment can be performed on an end-to-end 
platform, or a platform dedicated for deployment.  In the 

latter case, integration capability with other platforms that are 
currently used or being planned on the organization’s digital 
roadmaps should be considered. This is especially critical for 
large organizations where the application of CBM 
technology occurs across a high number of facilities and 
business units and the cost and complexity of platform switch 
is high. 

6. RETURN ON INVESTMENT 

Performing a return on investment (ROI) analysis prior to 
CBM implementation is a good practice to put dollar numbers 
on the value of the CBM implementation.  

ROI calculation require inputs from the previous sections 
discussed here, however, some inputs are clearer than the 
others. For example, historical failure can provide an estimate 
of parts’ reliability. It is also possible to get reliability 
estimation of some common components from the literature. 
This becomes more ambiguous for parameters related to 
model accuracy. If the models are being built from the 
grounds up, their performance is unknown. Even for reusing 
the same models in new facilities, depending on the data and 
unique problems facing the facility, the model performance 
could vary. To capture such uncertainties, we use probability 
distributions for various. For example, Figure 3 shows a 
triangular distribution that models the number of false 
positives a predictive model can generate in a year per 
equipment. Here, it’s assumed that a facility with 100 
machines, there are on average 3 false positives per year (the 
mode of the distribution).  

All in all, this requires the ROI analysis to account for the 
uncertainty that comes with the input parameters given to a 
model. Stochastic discrete event simulation is a good 
methodology that provides the tools needed to account for 
such uncertainties. Events are failures and maintenance that 
change the state of the system. These events occur in discrete 
segments of time, and they have uncertainty associated with 
their occurrence. Each event has a cost associated with it, 
which again has uncertainties. The details of how to do such 
analysis can be found in the works of (Bakhshi & Sandborn, 
2017). 

 
Figure 3- Number of false positives per year per equipment.  
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We performed such analysis for one of our aerospace 
manufacturing facilities. In this facility the main cost drivers 
that justify CBM are costs of scraping the parts that were 
being built when a machine failed as well as costs of delaying 
a delivery of the parts. Other costs factors were value of 
downtime (both maintenance and lack of spare part 
availability) and the cost of maintenance personnel who 
perform the corrective maintenance action. These are cost 
avoidances that highlight the benefits of having a CBM 
solution in place.  

In terms of CBM costs, there are costs of sensor hardware and 
their installation as well as recurring costs of data warehouse 
and model deployment infrastructure. However, the main 
cost driver is the model development costs, which requires a 
dedicated data science team. The model development cost is 
a one-time cost.  

Using Monte Carlo analysis, we were able to generate 
distributions for expected ROI values of implementing CBM 
in this facility. Figure 4Figure 4 shows the ROI distribution 
for the fifth year after implementation of CBM.  

It can be seen that after 5 years, the expected average return 
is about 7 times the investment made over time (mode of the 
distribution).  

 
Figure 4 - ROI distribution for year 5 of implementing CBM 
 

7. CHALLENGES 

There are several challenges in developing, implementation 
and maintaining CBM solutions in industrial settings. Here, 
we briefly discuss some of those. 

7.1. Maintenance Records 

Earlier in section 3.1.1 we referred to maintenance logs as a 
source for identifying machine breakdowns. ERP systems are 
widely available at manufacturing facilities for a variety of 
applications including but not limited to maintenance logs. 
Historical maintenance data with all their detailed 
information exist in the ERP system.  The information is 
human text typed into the system, with all the common issues 
that come with human entered text (typos, etc.). To develop 
CBM models, we look for historical failures in the facility 

and once we identify them, we can bridge the records with 
the data. To identify historical failures, we look them up in 
the ERP system. However, many ERP systems have limited 
search capacity due to the nature of those systems. The 
current practice is to just look up keywords and narrow down 
the results using some filters. This is not only a cumbersome 
manual task, but also susceptible to all the issues that come 
with text data such as typos. To enable automated processing 
of those free-text logs, the information can be exported from 
the ERP system to an external database where technical 
language processing methods (Brundage et al., 2021) can be 
utilized to extract information from maintenance data. This is 
a crucial but not so easy step in accelerating the development 
of CBM capabilities. 

7.2. Dedicated CBM Personnel 

Hardware installation discussed in section 3.3 requires 
dedicated staff. These are either personnel who work at the 
facility or a team that works for the broader organization and 
responsible for rolling out the capability throughout the 
facilities. In case it is the on-site personnel, they require 
training on how to implement and maintain the hardware and 
systems used in CBM. More than one person should be 
trained for each task in case a backup is needed. There are 
scenarios where a piece of hardware requires a reset or some 
trivial adjustment however the absence of the dedicated 
individual causes a delay or loss of data.  

In case there is a central team that provides these services to 
a facility, then there needs to be clear instruction on how the 
on-site team can reach out to them when issues arise and how 
issues can be assigned and escalated in order to mitigate any 
interruption to CBM operations.  

7.3. Model Maintenance 

Predictive models developed and deployed for a facility must 
be maintained over time. There are various examples of 
model maintenance. Data drift is a simple example, where the 
data changes over time and model accuracy changes with it 
as well. Models need to be retrained or modified to address 
this issue. Another example is availability of more data (and 
failure events), which provide new modeling options or 
modifications of existing models. Overall, it is not correct to 
assume that once a model is developed and deployed, the job 
is done once and for all. It is best practice to revisit the 
capability every few years and update with the latest 
technology; for example predictive model improvements.  

In developing CBM capabilities for I4.0 settings, 
stakeholders must account for model maintenance over time 
and the costs associated with it.  

8. CONCLUSION 

In this paper, we discussed the life cycle of developing 
condition-based maintenance capabilities for manufacturing 
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facilities based on our experience of implementing such 
methodology at one of our company’s aerospace factories. 
These steps include:  

• Identifying critical parts as CBM candidates 

• Selecting sensors and data collection frequency 

• Building up the hardware infrastructure for data 
collection 

• Develop, validate, and optimize predictive models 

• Deploy, scale, and consume the predictive models 

The technology readiness for CBM requires coordination 
from various stakeholders. These range from executives in 
the company to technical leads in manufacturing, on-site 
staff, data scientists, software and data engineers and digital 
technology organizations.  

Model and software development aspects of CBM are only 
one piece of the puzzle. Building up the hardware 
infrastructure, prioritizing the machines and failure modes, 
deploying and maintaining the models over time are all 
critical tasks for raising the technology readiness level of 
manufacturing sites in regard to I4.0. 
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