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ABSTRACT

A general classification setting requires prior knowledge (i.e.
labeled samples) to cover all classes. However, in many in-
dustrial problems, prior knowledge usually does not describe
all the classes, and the generation of a complete training set
that covers all classes often is a time-consuming, expensive
and difficult (if not impossible) task. Assuming the dataset
contains a small amount of labeled time series that only cover
some (treated as known classes) but not all the classes, and
a large amount of unlabeled time series from either known
or unknown classes, we aim to assign class labels to any of
those unlabeled time series. Specifically, our model not only
detects the novel time series, but also distinguishes them into
different unknown classes. We develop an advanced deep
neural networks, Partially Supervised Time Series Classifi-
cation (PSTC), to handle such situation for industrial system.
The model consists of one general encoder, and k+u parallel
decoders that correspond to k known and u unknown classes,
where the labeled time series are used to update the known
classes’ networks and the unlabeled time series are used to
update the networks that give the smallest residual. At the
end, each unlabeled time series is assigned to the class that
gives the minimum residual. We test our algorithm on two
industrial time series classification problems and experiments
show that our approach outperforms popular deep learning
baselines.

1. INTRODUCTION

The science of AI, especially deep-learning based classifica-
tion models, have already achieved many significant success
and are used in many fields in different industries (Zhang et
al., 2019; Rezaeianjouybari & Shang, 2020; Fink et al., 2020;
Yucesan, Dourado, & Viana, 2021). However, most of their
success, if not all, are based on the assumption that the pre-
defined classification system is closed and complete. In other
words, they assume that training set are from a fixed set of
classes, and there are no unknown or novel classes in the un-
seen data. Nevertheless, this assumption may be too strict

for the real world. For some problems, we often cannot have
knowledge of the entire set of possible classes. For instance,
in a fault classification problem on wind turbines, due to the
dynamic conditions there are always unseen faults that not
yet revealed in the previous knowledge. Therefore, a more
realistic scenario is usually open and non-stationary such as
fault detection and alarm management approaches in complex
industrial processes etc., where unseen classes can emerge
unexpectedly that drastically weakens the robustness of the
existing classification approaches.

In a classification model that recognizes time series samples
collected from industrial system, the ability to handle samples
from unseen classes is crucial (Dhamija, Günther, & Boult,
2018). There are several works that try to avoid false positives
by rejecting the samples from unseen classes, that sometimes
is also called out-of-distribution (OOD) detection (Kaur et al.,
2022). Specifically, their target is to assign a negative label to
any sample from the new classes (Dhamija et al., 2018; Per-
era & Patel, 2019), which can be understood as classifiers that
can detect outliers outside of training set distribution. But a
more sophisticated solution is to further classify the sam-
ples from unseen classes. To tackle this issue, we propose
a multitask deep learning approach that simultaneously con-
ducts classification on samples from known classes and dis-
tinguishes unknown samples into different classes.

In particular, we propose an end-to-end deep-learning based
approach in which we investigate how the labeled and un-
labeled time series can be used to improve the performance
on classifying samples from known classes as well as group-
ing samples from unknown classes. We name our model
as Partially Supervised Time Series Classification (PSTC).
Our solution differs from the standard deep classification net-
works on the following accounts:

1. To the best of our knowledge, this is the first end-to-end
deep learning solution for industrial time series data that
targets both known and unknown pattern classification
simultaneously. Especially, our model can distinguish
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different unknown classes, instead of treating all of them
as general outliers.

2. We formulate the problem as a multi-paths autoregres-
sion problem, and design a learning framework that con-
sists of one general encoder and multiple decoders by
minimizing the regression residual across different paths.

3. We introduce a new loss function which takes both
known and unknown patterns into account, by encour-
aging the samples with previously-seen patterns labeled
to the corresponding known classes and the samples with
unseen patterns labeled to the new classes.

4. We show empirically, that the proposed approach outper-
forms popular deep learning based time series classifica-
tion baselines on both synthetic and real world datasets.

2. RELATED WORK

With the rapid development and expansion of sensors, time
series data are widely available in many industrial systems,
such as wind turbines, aircrafts and power plants. Due to
the complex design of those systems, the collected time se-
ries data are usually non-stationary, nonlinear, and with noisy
nature. This presents an opportunity to bring deep neural net-
works to bear on the industrial time series learning problems,
because of its ability to extract features from the raw signals
without the need to perform feature engineering or specify
the distance measurement as in typical learning approaches.

There are three major types of deep neural networks that have
been widely used in time series classification: recurrent neu-
ral networks (RNN), temporal convolution networks (TCN),
and attention-based networks (Transformer).

Recurrent neural networks (RNN) are neural networks with
recurrent connections, which are capable of modelling se-
quential data for time series recognition and prediction
(Bengio, Simard, & Frasconi, 1994; Salehinejad, Sankar,
Barfett, Colak, & Valaee, 2017). RNNs are made of high di-
mensional hidden states with non-linear dynamics. The struc-
ture of hidden states work as the memory of the network, and
state of the hidden layer at a time is conditioned on its previ-
ous state (Salehinejad et al., 2017). This structure enables the
RNNs to store, remember, and process past complex signals
for long time periods. Therefore, RNNs can map an input se-
quence at a time to the output for prediction and recognition.
Long Short Term Memory (LSTM) (Hochreiter & Schmidhu-
ber, 1997) is one of the most popularly used RNN models.

Temporal Convolutional Networks (TCN) (Lea, Vidal, Re-
iter, & Hager, 2016; Koh, Lim, Rahimi, Woo, & Gao, 2021;
Yan, Mu, Wang, Ranjan, & Zomaya, 2020) are a family of
feed-forward models with causal dilated convolutions that en-
code spatiotemporal information locally. The structure usu-
ally consists of multi-level convolutions, where the input of
current level are from the output of the previous level. The

cells in the current level capture longer time window con-
texts than those from the previous level. The output of the
final level captures high-level temporal relationships across
the whole input sequence, which is usually fed into a classifi-
cation layer to recognize time series classes.

Transformer (Vaswani et al., 2017) adopts the mechanism
of self-attention, differentially weighting the significance of
each part of the input sequence. Specifically, it collects a
sequence of short-term information over a certain period of
time, then applies a temporal self-attentive module to enhance
some parts of the sequence while diminishing other parts, in
order to learn the final nonlinear information to recognize the
whole time series. It was originally designed to handle Natu-
ral language processing (NLP) problems but now widely used
in time series prediction and classification (Li et al., 2019;
Cai, Janowicz, Mai, Yan, & Zhu, 2020; Oh, Wang, & Wiens,
2018; Rußwurm & Körner, 2020; Zerveas, Jayaraman, Patel,
Bhamidipaty, & Eickhoff, 2021).

Under a common closed set assumption: the training and test-
ing data are drawn from the same label and feature spaces,
deep neural networks have already achieved significant suc-
cess in a variety of time series classification tasks in many in-
dustrial domains (Zerveas et al., 2021; Geng, Huang, & Chen,
2020). In the real world, however, data distributions shift
over time in a complex, dynamic manner. Even worse, new
concepts (e.g. new categories of objects) can be presented
to the model at any time. Such distribution shift and un-
seen concepts both may lead to catastrophic failures since the
model still attempts to make predictions based on its closed-
world assumption (Hsu, Shen, Jin, & Kira, 2020). In ad-
dressing general classification problem, besides recognizing
samples from known classes, labeling something new, novel
or unknown should always be a valid outcome (Bendale &
Boult, 2015). This leads to what is sometimes called “open
set” recognition, in comparison to systems that make closed
world assumptions or use “closed set” evaluation (Scheirer,
de Rezende Rocha, Sapkota, & Boult, 2012).

Although recent researches start to focus on open set recog-
nition (Kaur et al., 2022; Yoshihashi et al., 2019; Geng et
al., 2020; Sun, Yang, Zhang, Ling, & Peng, 2020; Joseph,
Khan, Khan, & Balasubramanian, 2021; Fang, Lu, Liu, Liu,
& Zhang, 2021; Frittoli, Carrera, Rossi, Fragneto, & Borac-
chi, 2022; Chambers & Gaber, 2022), they have the following
disadvantages:

1. They can only detect samples that possibly come from
unknown classes, but are incapable of further distin-
guishing different unknown classes. Specifically, given
k known classes, open set recognition approaches output
probability vectors in Rk+1 space where the additional
entry describes the possibility of samples drawn from
outside of known classes.
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2. They are designed for either image or text data, but not
for time series classification in industrial domains.

In this work, we propose an end-to-end deep-learning based
approach for industrial time series learning applications,
which can classify time series from known classes and dis-
tinguish time series among different new classes.

3. PROBLEM SETTING AND MODEL ARCHITECTURE

3.1. Notation and Problem Setting

In modern industrial systems, time series are collected by sen-
sors with high frequency (e.g. 100Hz sampling rate on wind
turbines). A time series with m variables and n timestamps
1 is noted as X ∈ Rm×n. Given a set of k known classes
{C1, C2, ..., Ck}, a labeled training time series is noted as
⟨X,Y ⟩, where Y ∈ {1, 2, ..., k}. We assume that there are u
unknown classes {Ck+1, ..., Ck+u}, where u is predefined or
estimated by domain experts.

In this work, we consider the following problem set-
ting: given input data that consists of nu unlabeled
time series {X1, ..., Xnu

} and nk labeled time se-
ries {⟨X1, Y1⟩ , ⟨X2, Y2⟩ , ..., ⟨Xnk

, Ynk
⟩} where Yi ∈

{1, 2, ..., k}, our model aims to assign each unlabeled time
series to any of the k + u classes.

3.2. Model Architecture

When the classification model encounters samples from novel
(unknown) classes, each novel class should be incorporated
into the learning process respectively, in order to not only
distinguish unknowns from knowns but also distinguish dif-
ferent patterns within unknowns. In this work, we train net-
works with multi-paths autoregression of input time series.
Similar to typical autoencoder setting, our model also tries
to reconstruct the input time series. But it is a special type
of autoencoder in that our model consists of one general en-
coder, and k + u decoders that correspond to k known and u
unknown classes, as shown in Figure 1. The general encoder
learns representation of input time series so as to preserve
information useful for separating different classes. Each de-
coder learns the reconstruction way for one class, either from
knowns or unknowns. Once the training is complete, each un-
labeled time series is labeled by the smallest residual among
the k + u reconstructions.

3.2.1. Encoder

The first part of our model is a general encoder to acquire the
nonlinearly transformed features from the input time series.
The encoder is designed as a temporal convolutional network
(TCN).

1For notational convenience, we assume all time series are with the same
length. However, this model can deal with time series of different lengths
by using padding techniques.

TCN is originally proposed in (Oord et al., 2016) and popu-
larly applied in various sequence modeling tasks e.g. (Bai,
Kolter, & Koltun, 2018; Franceschi, Dieuleveut, & Jaggi,
2019). Different from recurrent neural network, it is not a re-
cursive structure therefore suffer less from gradient vanishing
issues (Bai et al., 2018). To be adaptable to length-varying
inputs and capable to learn more nonlinearity, TCN usually
consists of multiple levels. As shown in Figure 1, here we
apply multi-level TCN on the input time series X . In this
design, the input of one level are from the output of the previ-
ous level. At the end, the output of the last TCN level captures
high-level temporal relationships across the whole input time
series.

On each TCN level we design five steps: a temporal (1D)
convolution filter, a Batch Normalization, a scaled exponen-
tial linear unit (SELU), a dropout function, and an average
pooling operator.

3.2.2. Decoders

As shown in Figure 1, the second part of our model is de-
coder part to reconstruct the input time series from encoder
output. It consists of k + u decoders that correspond to k
known and u unknown classes respectively. Similar to en-
coder part, each decoders is designed as a multi-level TCN
but in a deconvolved way.

We apply five steps on each level: a temporal (1D) deconvolu-
tion filter (or transposed convolution operator), a Batch Nor-
malization, a scaled exponential linear unit (SELU), a dropout
function, and an upsampling operator. However, it is worth
to mention that the last level of each decoder only contains
a temporal (1D) deconvolution filter without the other four
steps. Given input time series as X , the output of the j-th
decoder is noted as X̂(j), where j ∈ {1, 2, ..., k + n}.

3.2.3. Loss function and Real Time Decision

The final residual is obtained by:

loss =
1

nu

nu∑
i=1

min
j∈{1,..,k+u}

∥Xi − X̂i
(j)

∥22

+
1

nk

nk∑
i=1

∥Xi − X̂i
(j)

∥22
Yi=Cj and j∈{1,...,k}

.

(1)

Equation (1) consists of two parts: the first part accounts the
unlabeled time series where the residuals come from the min-
imum reconstruction error among all k + u decoders’ out-
put; while the second part considers the labeled time series of
which residuals come from the j-th decoder if that time series
belong to Cj (j ∈ {1, ..., k}).

At real time, each (unlabeled) time series is assign to the class
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Figure 1. Our PSTC model framework. It consists of one general encoder and k + u decoders that correspond to k known and
u unknown classes respectively.

that provides the minimum residual j:

Ŷi = argminj∈{1,..,k+u}∥Xi − X̂i
(j)

∥22. (2)

This design enhances the learned representation so as to pre-
serve information for not only separating unknowns from
knowns, but also discriminating classes in both knowns and
unknowns. Our novel partially supervised learning utilizes
latent representations learned from general encoder for recon-
struction and enables robust unknown detection and grouping
without harming the known-class classification accuracy.

4. EXPERIMENT SETUP

4.1. Baselines

In the experiment, we compare our Partially Supervised Time
Series Classification (PSTC) with three popular time series
classification approaches using deep neural networks:

• LSTM-FCN: In their work (Karim, Majumdar, Darabi, &
Harford, 2019) Karim et.al. proposed Long Short Term
Memory Fully Convolutional Network, which is the first
work on multivariate time series classification by com-
bining LSTM with fully convolutional network. The au-
thors extended the squeeze-and-excite block to the case
of 1D sequence models that augments LSTM to enhance
classification accuracy.

• TCN: Temporal convolutional networks (Fawaz,
Forestier, Weber, Idoumghar, & Muller, 2019) consist
of three parts: firstly, the networks compute low-level

features from input signals using convolutional filters
that encode spatial-temporal information; secondly, the
model feed these low-level features into higher con-
volutional levels to extract more nonlinear features;
and a softmax operator is applied in the last layer for
classification.

• TST: Time Series Transformer was proposed (Zerveas
et al., 2021) for the first time for multivariate time se-
ries representation for classification. The framework in-
cludes a pre-training scheme, which the authors show
that it can offer substantial performance benefits over
fully supervised learning, even without leveraging addi-
tional unlabeled data.

In our experiments, we apply grid-search for hyperparameter
selections to each baselines on a separate validation set of
labeled data. The final selections are based on the minimum
loss.

To have a fair comparison, we also combine out-of-
distribution (OOD) with TCN. That is, any OOD time
series that detected by (Kaur et al., 2022) will be assigned as
new class (with class index k+1), while all the in-distribution
(iD) will be assigned class labels by TCN.

4.2. Evaluation Metrics

Since the classification targets include both known and un-
known classes, we use two metrics to evaluate the learning
result: accuracy and NMI (normalized mutual information).

Accuracy is a statistical measure of how well a classifica-
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tion test correctly identifies or excludes a condition. In other
words, it is the proportion of correct predictions. When com-
puting accuracy in multiclass classification, it is simply the
fraction of correct classifications:

accuracy =
1

nk + nu

nk+nu∑
i=1

1(Yi = Ŷi), (3)

where 1(∗) is the indicator function. Accuracy is presented
on a range from 0 to 1 where a score of 1 is reserved for
the perfect predictions. Since accuracy measurement requires
alignment between the true and predicted classes, we apply a
permutation function to the predicted labels: each predicted
class is assign to the most common truth labels among data
points within that predicted class.

NMI is a variant of a common measure in information the-
ory called Mutual Information. Mutual Information accounts
to the “amount of information” one can extract from a dis-
tribution regarding a second one. NMI is a normalization of
the Mutual Information score that normalized by generalized
mean of entropy of ground truth and predicted labels: :

NMI =
2× I(Y ; Ŷ )

H(Y ) +H(Ŷ )
, (4)

where Y are ground truth and Ŷ are predicted labels, H(∗)
measures entropy and I(∗, ∗) measures mutual information.
NMI is between 0 (no mutual information) and 1 (perfect cor-
relation), and it is independent of the label permutations of
the clusters therefore it is popularly used in clustering evalu-
ation.

5. EXPERIMENTS

5.1. Experiments on Wind Turbine Failure Dataset (WF)

To conduct a systematic comparison between our PSTC and
the baselines on partially supervised setting, we perform ex-
periments on a confidentially labeled data set collected from
wind turbines. This data set includes 137 time series collected
from different offshore wind turbines. Each time series is as-
sociated with one of four failure classes. The size of these
four classes are: 18, 28, 35, and 56.

All time series have 100Hz sampling rate and six input vari-
ables that record properties of the wind turbines such as the
generator speed and degree of rotor position, etc. The lengths
of these time series are all 8000 (timestamps).

In our experiments, we assume two scenarios: 1) we have
labeled time series from two classes, and the other two are
unknown without any labeled sample; 2) three classes are
known and have labeled time series, and the left one is un-
known.

More formally, for the first scenario, we test thorough com-

bination of two known classes (a two-combination from the
four classes). In each selection, we randomly choose 10%,
20%, 30% and 40% time series from the selected two known
classes as labeled samples, while the rest of known and all the
samples from unknown are unlabeled. The performance are
evaluated on all unlabeled samples.

The experiment result are shown in Figure 2a and 2b. Ob-
viously, all of the three popular classification baselines have
poor performance (< 30% in NMI and < 45% in accuracy
of our PSTC) due to their incapacity of perceiving unknown
classes. In other words, they can only return false positives
when they see samples from unknown classes. To have bet-
ter understanding, we also include two additional baselines:
a fully supervised TCN of which labeled data cover all of the
four classes, and an OOD+TCN that detects OOD time se-
ries and classify those iD time series. We can see that even
though our PSTC only know information from half of classes,
it achieves similar performance (> 90%) with fully super-
vised TCN. On the other hand, the classification quality from
OOD+TCN is worse because it cannot further distinguish dif-
ferent new classes.

For the second scenario, we also test different combination of
three known classes. The results are shown in Figure 2c and
2d. Although there is only one unknown class, our PSTC still
outperforms three baselines with +45% NMI (+30% accu-
racy) on average. Again, our performance is very close to that
from fully supervised TCN. It is worth noting that OOD+TCN
has similar performance with our PSTC because there is only
one unknown class in this scenario.

In this experiment, the structure of our PSTC is detailed as
follows:

• The encoder has four levels: the convolution operator of
first level has 6 input channel and 32 output channels; the
convolution operator of the second level projects channel
space from 32 to 64; the third projects to 128 and the
fourth projects to 256 channels. All levels have the same
kernel size as 3, average pooling size as 2, and stride and
dilation sizes are all 1.

• The decoders have four levels: the deconvolution op-
erator of first level projects input channel 256 to out-
put channel 128; the second level projects channel space
from 128 to 64; the third projects to 64 and the last level
projects to original input space 6.

5.2. Experiments on Tennessee Eastman Process (TEP)

Tennessee Eastman Process (TEP) is essentially a realistic
simulation of a chemical process that has been widely used
in process control studies. It was modeled computationally
in 1993 by Downs and Vogel (Downs & Vogel, 1993). The
dataset is consistently used for comparing and benchmark-
ing algorithms in industrial time series learning (Yin, Ding,
Haghani, Hao, & Zhang, 2012). The entire process contains
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(a) NMI with 2 known and 2 unknown classes on WF. (b) Accuracy with 2 known and 2 unknown classes on WF.

(c) NMI with 3 known and 1 unknown classes on WF. (d) Accuracy with 3 known and 1 unknown classes on WF.

Figure 2. Classification performance comparison on Wind Turbine Failure (WF) dataset

52 different variables that record properties of the system
such as the flowrates, pressures, temperatures, levels, mole
fractions and compressor power outputs. The data are sam-
pled every 3 minutes for 25 hours. The TEP dataset used here
includes five failure class, each class has 100 time series and
each time series has 500 timestamps.

Here we also assume two scenarios: 1) we have labeled time
series from three classes, and the other two are unknown
without any label; 2) two classes are known with labeled time
series, and the other three are unknown.

The experiment result are shown in Figure 3. We can see
that when the number of unknown classes increase, the per-
formance of baselines become worse. In contrast, our PSTC
maintains reasonable performance due to its capability to
discover and distinguish both known and unknown classes.
Moreover, it has comparable result with fully supervised
baseline TCN.

In this experiment, the structure of our PSTC is detailed as
follows:

• The encoder has three levels: the convolution operator
of first level has 52 input and 200 output channels; the
convolution operator of the second level projects chan-
nel space from 200 to 300 channels; the third projects to
500 channels. All levels have the same kernel size as 3,

average pooling size as 2, and stride and dilation sizes
are all 1.

• The decoders have three levels: the deconvolution op-
erator of first level projects 500 input to 300 channels;
the second level projects channel space from 300 to 200
channels; the third projects to original input space 52.

6. CONCLUSION

In industrial applications, classification problems usually
evolve over time, which require classifiers that can incorpo-
rate novel classes of data. When the classification system en-
counters a novel class, that class should be incorporated into
the learning process. However, existing deep learning based
classifiers rely on neural networks that trained in a fully su-
pervised manner; this causes specialization of learned repre-
sentations to known classes only and makes it hard to dis-
tinguish different unknown classes. In order to classify sam-
ples from both known and unknown classes, we design a deep
neural networks with multi-paths autoregression of input time
series data. This enhances the learned representation so as to
preserve information for separating unknowns from knowns,
as well as discriminating classes within either knowns or un-
knowns. Our novel partially supervised learning utilizes la-
tent representations learned from general encoder and enables
robust unknown detection and grouping by multiple decoders
without harming the classification accuracy on knowns. Ex-
tensive experiments reveal that the proposed approach outper-
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(a) NMI with 3 known and 2 unknown classes on TEP. (b) Accuracy with 3 known and 2 unknown classes on TEP.

(c) NMI with 2 known and 3 unknown classes on TEP. (d) Accuracy with 2 known and 3 unknown classes on TEP.

Figure 3. Classification performance comparison on TEP dataset

forms existing deep learning based classifiers in synthetic and
real world time series datasets. One drawback of this work is
that it requires the number of unknown classes is known in
advance (or from “best guess” by domain experts). In the fu-
ture work, we aim to automatically determine this number in
a data-driven way.
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