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ABSTRACT 

Recently, companies all over the world have been focusing 
on the improvement of autonomous health management 
systems in order to enhance performance and reduce 
downtime costs. To achieve this, the remaining useful life 
predictions have been given remarkable attention. These 
predictions depend on the proper designing process and the 
quality of health indicators (HI) generated from structural 
health monitoring sensors based on prior established multiple 
prognostic evaluation criteria. Constructing such HIs from 
noisy sensory data demands powerful models that enable the 
automatic selection and fusion of features taken from those 
relevant measurements. Deep learning models are promising 
to autonomously extract features in scenarios with a huge 
volume of data without requiring considerable domain 
expertise. Nonetheless, the features established by artificial 
neural networks are complicated to comprehend and cannot 
be regarded as physical system characteristics. In this regard, 
the goal of this paper is to extend a new model; an 
interpretable artificial neural network that enables the 
automatic selection and fusion of features to construct the 
most appropriate HIs with remarkably fewer parameters. This 
model consists of additive and multiplicative layers that 
provide a feature fusion that beWWeU UeflecWV Whe V\VWem¶V 
physical properties. Additionally, the weights are discretized 
in two ways: a) using a ternary form with values {-1, 0, 1}, 
and b) relaxing the aforementioned ternary form by rounding 
the weights at the first decimal point in the range of [-1, 1]. 
Both discretization techniques have the ability to softly 
control the number of parameters that should be ignored. This 
trick guarantees interpretability for the neural network by 
extracting simple yet powerful equations representing the 
constructed HIs. Finall\, Whe model¶V SeUfoUmance iV 
evaluated and compared with other approaches using a 
practical case study. The results show that the proposed 

approach's designed HIs are both interpretable and of high 
quality according to the criteria of the HI's evaluation. 

1. INTRODUCTION 

The Health Indicator (HI) is an important index of a structure 
or engineering system that shows the state of the component's 
health so that suitable maintenance decisions could be taken. 
The sensory data collected by structural health monitoring 
(SHM) techniques can be used to extract the information 
needed to generate a HI. However, the raw nature of all the 
initial data produced by SHM methods makes it possible that 
it is not helpful. The design of HIs for diagnostic and 
prognostic purposes from often uninformative raw sensor 
data is indeed a challenging task, but a necessary feature 
(Galanopoulos, Milanoski, Broer, Zarouchas, & Loutas, 
2021). Despite the fact that HI has its own advantages, such 
as interpretability and a more direct relationship to the 
component's damage (health) state, it can be imported into a 
prognostic model to forecast the remaining useful life (RUL). 
It should be highlighted that higher qualified HI results in 
more accurate RUL predictions, which improves decision-
making strategies. 

The efficiency and reliability of HI throughout service life 
significantly influences the performance of diagnostic and 
prognostics approaches (Loutas et al., 2019). HIs that could 
be utilized for diagnostic and prognostic purposes should 
conform to the HI's evaluation criteria. Three main and well-
known prognostic criteria are Monotonicity (Mo), 
Prognosability (Pr), and Trendability (Tr). Mo reflects a 
general ascending or descending trend of the HI, while Pr 
quantifies the distribution of the HI failure values. On the 
other hand, Tr determines whether degradation trajectories of 
a specific system/structure/component possess the same 
underlying pattern (Nick Eleftheroglou, Zarouchas, Loutas, 
Alderliesten, & Benedictus, 2018). The high Mo, Pr, and Tr 
scores for a designed HI imply that it is a very suitable index 
for use in a prediction model. Even a simple prognostic 
model, such as linear regression, can accurately predict RUL 
given high criteria scores. Calculating Tr and Pr requires the 
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availability of two or more specimens/components, resulting 
in more than two HIs. If a function can produce HIs with high 
scores on the above-mentioned prognostic criteria for a 
collection of similar components, the function can be 
approved for the future in order to make decisions concerning 
maintenance tasks. 

There are two types of HIs that can be addressed: physical 
(pHIs) and virtual (vHIs) (Galanopoulos et al., 2021). The 
first are generated directly from physical measurements, such 
as static or dynamic strains, ultrasound, temperature, or a 
combination of these. In fact, the input signals gathered by 
SHM sensors or their simple combination can sometimes be 
directly considered as HIs based on the criteria scores, 
avoiding the need for an additional function or process to 
analyze and fuse the sensor signals and provide HI, which is 
relatively rare, especially for complex systems and structures. 
The latter are typically altered to produce desirable properties 
such as Mo, Tr, and Pr, which considerably improve 
prognostic efficiency (Hu, Youn, Wang, & Yoon, 2012; Wen, 
Zhao, Chen, & Li, 2021). However, another critical aspect of 
a HI that cannot be assessed by prognostic criteria is its 
interpretability. Several data-driven algorithms and models 
have been developed in recent years to provide a good 
candidate for HI. Yet, the resulting HI functions from data-
driven models are almost significantly more complicated 
than they can be comprehended. Also, the more 
interpretability of a function, the less overfitting. As a result, 
the main contribution of the current work is the development 
of a model to address this challenge. 

Common and conventional artificial neural networks (ANNs) 
use additive neurons, which means that the yields are added 
together after the inputs are multiplied by weights. As a 
result, the ability to multiply the inputs together is lost, 
especially in cases when multiple inputs are significant, such 
as SHM sensory signals. This mathematical operator may 
result in a simpler, more comprehensive, and more 
interpretable function rather than merely considering additive 
neurons. For the CMAPSS dataset, for example, the HI 
function proposed by Nguyen and Medjaher (2021) consists 
only of multiplication and division operators between the 
features, with no summing operator usage. To replace 
multiplication and division operators with only summing 
operators (if feasible), a greater number of weighted 
summation operators is most likely required, resulting in a 
more complex, uninterpretable, and incomprehensible HI 
function.  

In the present work, the multiplicative neurons and layers 
alongside the additive ones will be combined together to 
make a HI. In order to construct a straightforward yet 
effective equation for the HI and ensure interpretability for 
the ANN, the weights are discretized in two ways: first, using 
a ternary set, and second, softening the ternary set by 
rounding the weights at the first decimal number. The 
proposed approach is investigated using the turbofan engine 

degradation simulation dataset released by NASA Ames 
Prognostics Data Repository, which is extensively applied in 
the PHM area (Ramasso & Saxena, 2014). The results of 
PCA, KPCA, and genetic programming (GP) will be 
compared with the findings. The rest of the paper will be 
divided into three sections, including Workflow, Results and 
discussions, and Conclusions. 

2. WORKFLOW 

First, the overall steps of pre-processing, de-noising, and 
division of data into training, test, and validation are briefly 
discussed in the Data section. Then, the HI construction 
method is presented which includes the additive neuron, the 
multiplicative neuron, discretized weights, and building the 
interpretable ANN. Finally, Health indicator evaluation 
criteria will be presented. 

2.1. Data 

In the present work, the CMAPSS (Ramasso & Saxena, 2014) 
dataset (the subset FD001) is used to validate the proposed 
approach. This dataset was developed by the C-MAPSS tool, 
which models different deterioration conditions of the fleet 
of engines from a baseline condition to the final failure in the 
training data and a duration before the end of life (EoL) in the 
test data. Except for the first and second columns, which are 
the ID and deterioration time steps for each engine, and the 
following three columns, which identify the engine 
operational parameters, the remaining 21 columns refer to the 
signals of 21 sensors. 

Signals that are constant across all time steps can have a 
negative effect on data analysis. Thus, at first, data with the 
same upper and lower bounds is identified and eliminated. In 
this regard, 6 sensors (1st, 5th, 10th, 16th, 18th, and 19th out of 
21) are withdrawn, while 15 remain. The signals are then de-
noised to enhance the quality of the subsequent features and 
HI. In this regard, a regression by a polynomial function of 
degree four is employed (Nguyen & Medjaher, 2021). 
Following that, the smoothed signals (features) can be 
selected as HIs or extracted (feature extraction) and fused 
(feature fusion) to build a suitable HI. Finally, by importing 
the designed HIs into the prognostic models, RUL can be 
predicted. 

The subset FD001 in the CMAPSS includes 100 train and test 
trajectories each. To accurately investigate the prognostic 
criteria (Mo, Tr, and Pr), however, only the training dataset²
which includes data up to EoL²can be used. Therefore, 20% 
of the training dataset is also taken into consideration and 
discussed as a validation portion that is not involved during 
model training. 

2.2. HI construction method 

Before introducing the proposed methodology for designing 
an appropriate HI, three popular methods are briefly outlined, 
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and their resulting HIs will be compared with the current 
approach. 

For health and performance indicators, principal component 
analysis (PCA) can be used to discover lower-dimensional 
representations of data. Nevertheless, whenever confronted 
with inhomogeneity and time-varying patterns of 
system/component degradations, PCA, which is based on a 
linear transformation of the original data, reveals its 
shortcomings. As a result, various PCA variants, such as 
Kernel-PCA (KPCA), PCA-based K-nearest neighbors 
(KNN), and PCA-based Gaussian mixture models (Thieullen, 
Ouladsine, & Pinaton, 2012), have been proposed to cope 
with the challenge of nonlinear data. Yet, the principal 
components (PCs) generated by the aforementioned PCA-
based approaches are not explainable, which could be 
problematic in some situations. Furthermore, they are 
typically employed for diagnostic purposes (Ding et al., 
2010; Yu, 2011), and hardly ever for prognostics ones that 
demand further signal processing techniques (Benkedjouh, 
Medjaher, Zerhouni, & Rechak, 2013; Mosallam, Medjaher, 
& Zerhouni, 2016). ANN and deep learning (DL) models can 
be used to autonomously create HIs in scenarios with a huge 
volume of data without requiring considerable  domain 
expertise. Nonetheless, the  features established by DL are 
complicated to comprehend and cannot be regarded as 
physical system characteristics. In this regard, a two-stage 
automated-HI-construction framework based on genetic 
programming (GP) was proposed, claiming that it requires 
minimal human involvement and facilitates the generation of 
interpreted HI (Nguyen & Medjaher, 2021) . 

Making an ANN interpretable is not a straightforward task as 
it depends on the specific domain. Constructing HIs has been 
recently shown to be effective by just applying some 
mathematical operators (summation, multiplication) to the 
extracted features from sensory data (Nguyen & Medjaher, 
2021). In this section, we introduce the idea of constructing 
automatically such mathematical operators inside the ANN 
to produce simple, yet effective HIs without reducing the 
high accuracies that deep learning could offer. It should be 
noted that the ANN is not going to output the equation, but it 
is the equation itself. 

In the present work, multiplicative and additive neurons 
alongside together are presented with the goal of developing 
HI, and the results are compared with the outputs of genetic 
programming (GP) (Nguyen & Medjaher, 2021), PCA, and 
KPCA models. Semi-supervised learning is used in this study 
to generate HI by implicitly incorporating HI evaluation 
metrics (Moradi, Broer, Chiachío, Benedictus, & Zarouchas, 
2022). A hypothesized ideal HI function is defined using the 
prognostic criteria to generate (labels) targets for a supervised 
ANN to extract the HI function. The optimal function is a 
quadratic polynomial (HIt = t2), which is defined by usage 
time (t) (Moradi et al., 2022). The functions should be 

normalized using max-min normalization to adopt Pr as a 
recursive reconstruction method of HI. 

2.2.1. Looking Inside the ANN – Additive Neuron 

An ANN consists of a collection of connected units called 
artificial neurons that are grouped together into layers. 
Signals pass through each layer as inputs. The outputs of one 
layer become the inputs of the next one. Given some inputs 
𝑥௄  that come after the previous layer, it is possible to apply 
Whe ANN¶V fXndamenWal eTXaWion foU each neXUon VeSaUaWel\ 
is: 

 ሼ 𝑁௝ ൌ ∑ ൫𝑤௝௜
௟ 𝑥௜൯ ൅  𝑏௟௄

௜=1  ሽ (1) 

where 𝑤௝௜
௟  is the weight corresponding to the link between the 

(𝑙í1)th layer's ith neuron to the 𝑙th layer's 𝑗th neuron, and b௟  is 
the bias of the neuron that is added to shift the output of the 
neuron accordingly. The final output of the neuron is 
calculated by adding a nonlinearity via an activation function 
F(N) which has the only constraint to be differentiable to the 
points of interest. While the ANN is being trained, the 
weights and biases of each neuron, which represent the 
learnable parameters of the network, are trying to adjust their 
values by minimizing a loss function (or maximizing an 
objective function) through backpropagation (Buscema & 
misuse, 1998). Again, the loss function must be differentiable 
to the points of interest. This neuron is defined as additive 
since it uses the summation operator over the weighted 
inputs. 

Applicable ANNs for constructing HIs demand thousands or 
even millions of parameters that make them powerless in 
terms of interpretability. Indeed, they are called black-box 
models as it is impossible to interpret the equation that maps 
the inputs to the outputs. To extract a useful equation that 
could describe a HI, a small number of neurons and layers 
should be involved. We assume that more than two 8-neuron 
layers could again produce a large, physically unexplainable 
equation. At first glance, it appears impossible for an ANN to 
be trained with such a small number of parameters and 
produce accurate results. Indeed, even with small datasets, it 
will surely underfit the data. Nevertheless, adding physical 
properties to the ANN could solve that issue. For the HI 
construction, physical properties could be simple 
multiplications and summations among the extracted 
features, which are formed by the multiplicative and additive 
layers, respectively, as we will see in the next subsections. 

2.2.2. Looking Inside the ANN – Multiplicative Neuron 

Forcing the layers to produce such operators demands a 
modification of the fundamental equation of the neuron (Eq. 
(1)). Thus, as mentioned in (Durbin & Rumelhart, 1989), 
instead of having a typical additive neuron, we could have a 
multiplicative neuron by converting the summation step 
(∑ 𝑤௝௜𝑥௜

௄
௜=1 ) into a multiplication step (∏ 𝑥௜

௪ೕ೔௄
௜=1 ) with the 

weights as exponents in a product instead of weights in a sum. 
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This modification demands a logarithmic activation to the 
inputs before feeding them to Eq. (1) and an exponential 
activation afterwards. Following these moderations, the 
equation for converting an additive neuron into multiplicative 
is as follows: 

 

ሼ 𝑁௝ ൌ  𝑒∑ ௪ೕ೔
೗ ௟௡ ሺ௫೔ሻ಼

೔సభ +௕೗
 

ൌ  𝑒௕೗ ∙ 𝑒∑ ௟௡ ሺ௫೔ሻ
ೢೕ೔

೗
಼
೔సభ  

ൌ  𝑒௕೗ ∙ 𝑒
௟௡ቆ ∏ ௫೔

ೢೕ೔
೗

಼
೔సభ ቇ

 

ൌ  𝑒௕೗ ∏ 𝑥௜
௪ೕ೔

೗௄
௜=1  ሽ 

(2) 

In the literature, there is some ambiguity surrounding the 
WeUm ³mXlWiSlicaWiYe neXUon´ because it is also used for 
replacing the summation operator ∑ ൫𝑤௝௜𝑥௜൯௄

௜=1  with a 
multiplication operator ∏ ൫𝑤௝௜𝑥௜൯௄

௜=1 , which slows down the 
training due to the derivatives that are needed for 
backpropagation (Schmitt, 2002) and is substantially 
different from the definition in Eq. (2) that is of our interest. 
Figure 1 demonstrates the conversion process from additive 
to multiplicative neurons. Using only these two kinds of 
activation functions helps the ANN to avoid adding extra 
nonlinearities that could produce a complicated equation. An 
important remark here is that forcing these specific activation 
functions to the neurons limits their scalability as they have 
the constraint that the inputs should be positive to apply the 
logarithm. Nevertheless, this is not a pitfall in current work 
since the inputs could be easily rescaled to the desired range. 
Finally, since the proposed multiplicative neuron comes 
naturally from the additive one, the convergence laws of 
neural networks are satisfied provided that the logarithm 
exists. 

 
Figure 1. Additive and multiplicative neuron process. 

2.2.3. Discretized Weights 

Learning with continuous weights is very advantageous as 
the training is stable and the optimal solution can be found. 
However, this does not help in constructing compact 
equations for HIs as the ANN architecture is usually 
complicated with millions of weights. Even in extreme cases 
where only few weights are non-zero, having continuous 
values with many decimal digits guarantees a complicated 
model. Unfortunately, learning in a continuous space is 
unavoidable since training an ANN with discrete weights is 
impossible as the gradients do not exist for back-propagation. 
A simple solution to having a compact equation could be to 
UoXnd Whe ZeighWV¶ YalXeV Wo Whe decimal of inWeUeVW dXUing 
testing, but this will negatively alternate the outputs; in many 
cases, the ANN may become even ineffectual.  

Ideally, we wish our weights to be discrete to a specific 
decimal point or even integers without reducing the accuracy. 
To address this challenge, ternary weights have been recently 
introduced (Deng & Zhang, 2022). Rather than rounding the 
weights to specific decimal digits, the idea is to train an ANN 
by converging the weights to specific values, in this case to 
{-1, 0, 1` Zhich alVo e[SlainV WhiV ³WeUnaU\´ WeUm. CeUWainl\, 
there are cases where we need weights to be somewhere 
between those three integers. This method does not force all 
the weights to become integers but a percentage of them, 
which can be controlled.  

Because the full-precision weight space is too large to find an 
appropriate ternary solution, as mentioned in (Deng & Zhang, 
2022), the continuous weight space should be restricted via 
tanh(w): 

 ሼ 𝑤ᇱ ൌ 𝑡𝑎𝑛ℎሺ𝑤ሻ ሽ  (3) 
Now, the weights are restricted to the hyperbolic tangent 
space ranged in the desired [-1, 1]. This conversion works 
only by an additional term to the loss function: 

ሼ 𝐿 ൌ  𝐿஼ሺ𝑦, 𝑦ොሻ ൅ 𝜆𝐿ோሺ𝑤ᇱሻሽ (4) 

ሼ 𝐿ோሺ𝑤ᇱሻ ൌ  ෍ ෍ ቂቀ𝛼 െ 𝑡𝑎𝑛ℎ2൫𝑤௝௜
௟ ൯ቁ 𝑡𝑎𝑛ℎ2൫𝑤௝௜

௟ ൯ቃ
௪ೕ೔

𝐿

௟=1

 ሽ (5) 

ሼ 𝐿஼ሺ𝑦, 𝑦ොሻ ൌ  
1
𝑛

෍ሺ𝑦௝ െ 𝑦ො௝ሻ2
௡

௝=1

 ሽ (6) 

where 𝐿஼ሺ𝑦, 𝑦ොሻ is the Mean-Squared Loss (MSE) between 
true and predicted outputs 𝑦௝ 𝑎𝑛𝑑 𝑦ො௝ respectively over 𝑛 data 
points, 𝜆  is a regularization constant, 𝐿  is the number of 
layers, and 𝛼 is the shape controller of the loss function 𝐿ோሺሻ. 
Those 𝜆  and 𝛼  are additional hyperparameters that need 
tuning for training the ANN. By using the above 
transformations and loss functions, the gradients exist and are 
proved to be minimum at tanh(w) = -1, tanh(w) =  0 and 
tanh(w) = 1 when 0 < Į < 2 (the proof can be found in (Deng 
& Zhang, 2022)). Another important fact from Eq. (5) is that 
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the percentage of zeros in the trained ternary weights by 
minimizing 𝐿ோሺ𝑤′ሻ iV SoViWiYel\ UelaWed Wo Į and coXld be 
monitored to have more or fewer zeroed weights (sparsity 
control). This is really useful in cases where we have larger 
ANN architectures and we still wish to have compact 
equations for HIs by zeroing (increasing 𝛼) more weights. 
The advantage of this modification to the weights and the 
additional term to the loss function is that the ANN is capable 
of making accurate predictions by also keeping the weights 
to their ternary form, and controlling the percentage of them 
that should be equal to zero. 

2.2.4. Building the Interpretable ANN 

An ANN from its nature is a function approximator where a 
complex equation maps the input data to the desired output. 
Constructing appropriate HIs via an ANN demands millions 
of parameters, hence, retrieving the equation is impossible.  
To create an interpretable ANN that could be translated into 
an expressive and compact equation representing a HI, it is 
necessary to reduce the number of parameters by retaining its 
efficiency at high levels. This interpretability is satisfied by 
combining the discretization of the weights, the sparsity 
control of the weights, and the utilization of both 
multiplicative and additive neurons. The weight 
discretization as well as the sparsity control keep only the 
important parameters of the ANN which converge to the 
predefined discrete values during training. Simultaneously, 
the aforementioned combination of neurons considers the 
physical properties that silently exist behind the features that 
construct a HI. Consequently, these tools can now recover the 
equation behind the ANN that expresses accurately the 
feature selection and fusion processes, i.e., the HI. 

To clarify, many multiplicative/additive neurons within a 
layer form a multiplicative/additive layer, respectively. The 
general architecture of the ANN is shown in figure 2. At first, 
the inputs are fed into a multiplicative layer. Each neuron in 
the layer is a multiplication between the inputs with different 
weights and a bias according to Eq. (2). Having many 
neurons results in different ways of multiplying the inputs. 
Next, an additive layer with a single neuron sums the outputs 
of the multiplicative layer to produce the final output. Adding 
more neurons to the additive layer just makes the ANN more 
complex and it is very possible to unnecessarily overuse some 
of the inputs. When a HI's equation is retrieved, terms that 
refer to a single input are frequently visible rather than a 
combination of them. For instance, if x1, x2, and x3 are the 
inputs, we may have an equation x1x2x3 + x1. Using only the 
outputs of the multiplicative layer to be fed into the additive, 
it is impossible to produce such an equation. Therefore, the 
most general architecture is to use the inputs in both additive 
and multiplicative layers. As such, the outputs of the 
multiplicative layer are concatenated with the inputs and then 
are fed into the additive layer. 

 
Figure 2. The ANN architecture. The inputs are fed into a 

multiplicative layer and each neuron applies a multiplication 
operator. Then, the outputs are concatenated with the inputs 
and are driven into the additive layer which consists of one 

neuron and the output is received. 

The inputs of the ANN could be either a sequence of raw 
sensor data, a de-noised format, or some extracted features. 
The outputs are a sequence of points that form a HI and the 
trained ANN is the equation for constructing it. Because of 
varying sequence lengths for each sensor, a preprocessing 
step is needed before feeding them to the ANN. This step 
guarantees that the length of the time-series samples will be 
equal. There are two approaches to achieving this. The 
simpler one is upsampling by interpolation via adding more 
data points until every sequence is equal to the largest one. 
The estimation of those data points depends on the chosen 
interpolation technique. The second approach is to add 
pseudo-data points at the end of each sequence until it reaches 
its maximum length. This could be done via padding with a 
purposeless value. Then the preprocessed inputs could be fed 
into the ANN, and the output would be available. The 
sensitive part of this approach comes during the loss 
calculation. The padded lengths should be carefully removed 
to avoid biasing the backpropagation by these pseudo-values. 
Then, after the parameters are updated, the lengths should be 
padded again to proceed to the next forward pass. By using 
this technique, the second approach does not have any 
approximation step like the first one. However, the training 
time increases dramatically. In the current case, it was 
observed that both approaches generate similar results, of 
which the first one was selected since it is straightforward. 

Until now, the equation for constructing the HI was not 
completely expressive since the weights could have any real 
value. Using Eqs. (3)-(6) during training, the majority, if not 
all, of the weights become ternary by moving towards the 
integers -1, 0, or 1. In practice, values can converge to the 
desired ones, but they do not always match. In such cases, the 
values can be safely rounded during test time without 
reducing the accuracy. As can be seen in the results section, 
all of the weights become ternary using a de-noised version 
of the sensor data, but this is not happening when using their 
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raw version. In this last case, a few weights could be 
anywhere between [-1, 1], which could be simply rounded to 
the first decimal digit with a negligible reduction in accuracy 
as long as most of them are in their ternary version. The cause 
of having some non-ternary weights after training is the 
messy raw signals. Thus, there is a trade-off between 
converting the weights to their ternary version and 
minimizing the 𝐿஼  loss that depends on the regularization 
hyperparameter 𝜆. Having a high 𝜆 means that we prefer to 
have more ternary weights (better minimization of 𝐿ோ) and, 
consequently, a more compact equation than having optimal 
model predictions (not an optimal minimization of 𝐿஼ ). 
Luckily, we aim to build a HI that provides high criteria 
scores (Mo, Tr, and Pr) rather than merely exact target values, 
thus focusing more on creating compact equations. 

2.3. Health indicator evaluation criteria 

A HI must fulfil a set of requirements in order to be accepted 
a predictive parameter. Mo, Pr, and Tr (Coble & Hines, 
2009), the three major criteria for evaluating a HI utilized in 
this work, are defined as follows: 

 

ሼ 𝑀𝑜 ൌ
1
𝑀

෍
𝑀

௝=1
 

ቮ
∑ ∑ ሺ𝑡௞ െ 𝑡௜ሻ. 𝑠𝑔𝑛൫𝑥ሺ𝑡௞ሻ െ 𝑥ሺ𝑡௜ሻ൯

𝑁ೕ
௞=1,௞வ௜ 

𝑁ೕ
௜=1

ሺ𝑁௝ െ 1ሻ ∑ ∑ ሺ𝑡௞ െ 𝑡௜ሻ
𝑁ೕ
௞=1,௞வ௜ 

𝑁ೕ
௜=1

ቮ ሽ 
(7) 

 ሼ 𝑇𝑟 ൌ 𝑚𝑖𝑛
௝,௞

ห𝜌൫𝑥௝, 𝑥௞൯ห ,   𝑗,  𝑘 ൌ 1,  2,  … , 𝑀 ሽ (8) 

 ሼ 𝑃𝑟 ൌ 𝑒𝑥𝑝 ቌെ
ቀ𝑠𝑡𝑑௝𝑥௝൫𝑁௝൯ቁ

𝑚𝑒𝑎𝑛௝൫ห𝑥௝ሺ1ሻ െ 𝑥௝൫𝑁௝൯ห൯
ቍ ሽ (9) 

where 𝑥௝  represents the vector of HI on the jth sample, M 
represents the number of samples monitored, and Nj denotes 
the number of observations on the jth sample. sgn and ȡ are 
the sign and Pearson's correlation functions, respectively. 
The range of the three HI criteria is [0, 1], with 0 representing 
the lowest and 1 representing the best HI quality. The 
measurement times for 𝑥ሺ௧ೖሻ and 𝑥ሺ௧೔ሻ are denoted by 𝑡௞ and 
𝑡௜, accordingly. The covariance is denoted by cov, while the 
standard deviations of 𝑥௝  and 𝑥௞  are denoted by 𝜎ሺ௫ೕሻ  and 
𝜎ሺ௫ೖሻ , respectively. To account for all of the following 
prognostic criteria at once, an objective function called 
"Fitness" (N Eleftheroglou, 2020) is used: 

ሼ 𝐹𝑖𝑡𝑛𝑒𝑠𝑠 ൌ 𝑀𝑜𝐻𝐼 ൅ 𝑃𝑟𝐻𝐼 ൅ 𝑇𝑟𝐻𝐼 ሽ (10) 
where the fitness score ranges across [0, 3], with 0 being the 
worst HI quality and 3 reflecting the optimum. 

It should be noted that these criteria can only be regarded 
when all degradation histories up to EoL are available 
(training dataset). Otherwise, Tr and Pr cannot be measured 
appropriately (e.g. test dataset). 

3. RESULTS AND DISCUSSIONS  

In this section, after comparing the raw and de-noised sensor 
signals in accordance with HI evaluation criteria, HIs 
produced using the proposed model alongside PCA, KPCA, 
and GP approaches are evaluated. To assist the ANN in 
converting its continuous weights into their ternary form, the 
weights were uniformly initialized in the range [-1, 1]. As it 
will be discussed later, achieving appropriate results utilizing 
the raw sensor signals demands the relaxation of the ternary 
discretization to a softer version, where float discrete values 
with one decimal point bound into the same range could be 
used. 

3.1. Raw and de-noised data 

Figures 3 and 4 show the raw and de-noised data for the 
signals of 15 sensors for the train and test datasets, 
respectively. The results revealed that the de-noising process 
adopting 4th-degree polynomial regression was effective. 
The HI evaluation criteria, consisting of Mo, Pr, and Tr, were 
also calculated for 15 sensors and reported in Table 1, 
demonstrating that the de-noising process improves the 
criteria scores. The test dataset has lower scores, which is 
reasonable considering that degradation trajectories up to 
EoL are not accessible. As a result, the scores for 20% of the 
training dataset as a validation portion, which is not 
incorporated during model training, are reported in Table 2. 

 
(a) 

 
(b) 

Figure 3. (a) Raw and (b) De-noised sensor data for training 
dataset. 



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2016 

7 

 
(a) 

 
(b) 

Figure 4. (a) Raw and (b) De-noised sensor data for test 
dataset. 

3.2. Health indicators (HIs) 

The first principal components of the PCA and KPCA 
methods can be considered as HI (see figure 5). These results 
obtained by training the algorithms on the entire training 
dataset. As can be noticed, standardizing data before to 
applying the PCA and KPCA algorithms is quite effective for 
both raw and de-noised data. The de-noising process also 
leads to an improvement in the fitness scores, but not as much 
as the standardization process. According to Table 1, the best 
fitness score for raw inputs is 2.58 (sensor 8), and this score 
has been enhanced using the PCA algorithm after 
standardization up to 2.85 (10.47%). This score for de-noised 
inputs from 2.91 (sensor 8) has been boosted up to 2.94 (1%). 
However, the KPCA method was unable to enhance the 
quality of HI with respect to both raw and de-noised inputs, 
implying that the CMAPSS data has a linear rather than a 
nonlinear relationship. Thus, for this dataset, a relatively 
suitable HI can be generated using PCA, and the findings 
argue that there is no need to develop complicated models for 
CMAPSS such as deep neural networks (which is what was 
and is happening nowadays, resulting in tremendous 
publications). This is also valid for RUL prognosis, as higher 
HI yields more accurate RUL prediction. This argument 
could be attributed to the fact that the data is the outcome of 
a simulation process rather than reality, and several known 
equations were most likely employed in the simulation 
process (plus noise). 

One of the limitations of the PCA and KPCA algorithms from 
the standpoint of HI, as previously stated, is the non-
interpretability of the generated principal components. As a 
result, alternative, appropriate approaches to this challenge, 
such as two-stage GP (Nguyen & Medjaher, 2021), should be 
developed. The results of the proposed approach are 
described in the following paragraphs. 

The proposed model, which employed the de-noised sensor 
values from the 4th-degree polynomial regression and was 
trained on 80% of the training dataset, yielded the following 
equation: 

ሼ 𝐻𝐼 ൌ െ0.14𝐹5𝐹15 ൅ 𝐹8 െ 𝐹9 െ 𝐹10  െ  𝐹14 െ 0.2 ሽ (11) 

where 𝐹௜ is the corresponding de-noised sensor i. The sensors 
that did not contribute to this equation have zeroed weights, 
whilst the rest have {-1, +1}. Having only one multiplication 
between the de-noised sensors means that only one 
multiplicative neuron contributes to the additive layer with a 
bias 𝑒௕ ൌ 0.14. The additive neuron has a bias of 𝑏 ൌ െ0.2. 
Figure 6b (right) shows the constructed HIs for each sample 
of the validation set, resulting in high scores for the three 
criteria (monotonicity, trendability, and prognosability). 
Indeed, as shown in Table 5, the total criteria score is 2.9461, 
indicating that the ANN was able to efficiently combine the 



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2016 

8 

de-noised sensors to generate a higher criteria score than 
utilizing only the best sensor. Table 3 contains the ANN 
hyperparameters. 

The following is the equation generated by directly applying 
the proposed model to raw sensor data: 

ሼ 𝐻𝐼 ൌ 0.04 ௑భ
బ.ర௑మ

బ.య௑ల
బ.మ௑ళ

బ.భ௑భమ
బ.భ

௑ఱ
బ.మ௑భర

బ.య௑భఱ
బ.మ െ 𝑋5 ൅ 𝑋8 െ 𝑋9 ൅

𝑋11 ൅  0.11 ሽ 
(12) 

where 𝑋௜  is the corresponding data of sensor i. The HI 
equation includes more terms when utilizing raw data than 
using de-noised data, as expected, and it is also difficult to 
obtain efficient results when solely using the ternary format 
of the weights. Indeed, some weights of the multiplication 
layer needed to be float numbers that were rounded to their 
nearest first decimal digit to produce Eq. (12). The 
constructed HIs for each sample of the validation set are 

shown in figure 6a (right). The raw sensor data criterion 
scores are lower than the de-noised version, as shown in 
Table 5, with a fitness criteria score of 2.7407. Again, the 
ANN was able to efficiently fuse the raw sensor data to 
produce a superior criteria score than if only the best sensor 
was used. The ANN hyperparameters are stored in Table 4. 
Because dealing with raw data requires searching within a 
larger space of weights, we doubled the number of neurons 
in the multiplicative layer. This adds complexity during 
training, but thanks to the control of sparsity, we could 
remove the unwanted weights to produce again a compact 
equation. Therefore, by doubling the neurons, we had to also 
incUeaVe Whe h\SeUSaUameWeUV Į and Ȝ foU incUeaVing Whe 
zeroed weights and emphasizing more on this process, 
respectively. In addition to the suggested approach's results, 
the results of the state-of-the-art work (two-stage GP model 
(Nguyen & Medjaher, 2021)) are demonstrated in figure 6 
(left) for comparison. It should be noted that the equation 

Table 1. HI evaluation criteria of raw and de-noised sensor data for both training and test datasets. 
 

   S 1 S 2 S 3 S 4 S 5 S 6 S 7 S 8 S 9 S 10 S 11 S 12 S 13 S 14 S 15 
M

on
ot

on
ic

ity
 

Raw 
Train 0.94 0.94 0.96 0.07 0.96 0.94 0.60 0.97 0.97 0.95 0.56 0.95 0.94 0.95 0.95 

Test 0.80 0.79 0.85 0.06 0.86 0.81 0.38 0.89 0.85 0.78 0.46 0.84 0.74 0.84 0.83 

Den 
Train 1.00 0.99 1.00 0.66 1.00 0.99 0.65 1.00 1.00 0.99 0.59 1.00 1.00 1.00 1.00 

Test 0.96 0.93 0.97 0.69 0.97 0.96 0.52 0.98 0.97 0.95 0.50 0.97 0.95 0.97 0.97 

T
re

nd
ab

ili
ty

 

Raw 
Train 3 0.38 0.71 0.00 0.63 0.18 0.01 0.74 0.66 0.17 0.01 0.58 0.43 0.53 0.56 

Test 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Den 
Train 0.93 0.88 0.95 0.00 0.96 0.62 0.29 0.97 0.96 0.50 0.02 0.96 0.91 0.97 0.95 

Test 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 

Pr
og

no
sa

bi
lit

y 

Raw 
Train 0.80 0.76 0.87 1.00 0.84 0.65 0.32 0.87 0.85 0.66 0.31 0.84 0.79 0.83 0.81 

Test 0.44 0.38 0.44 0.04 0.39 0.39 0.20 0.40 0.41 0.39 0.17 0.46 0.44 0.47 0.46 

Den 
Train 0.92 0.88 0.95 0.73 0.89 0.73 0.33 0.94 0.88 0.73 0.30 0.94 0.90 0.93 0.93 

Test 0.40 0.42 0.41 0.43 0.40 0.36 0.17 0.42 0.42 0.37 0.14 0.45 0.44 0.43 0.45 

Fi
tn

es
s Raw Train 2.22 2.08 2.54 1.07 2.43 1.77 0.93 2.58 2.48 1.78 0.88 2.37 2.17 2.32 2.32 

Test 1.24 1.17 1.29 0.09 1.25 1.20 0.58 1.28 1.27 1.17 0.63 1.31 1.19 1.32 1.29 

Den Train 2.85 2.76 2.90 1.39 2.85 2.33 1.27 2.91 2.84 2.22 0.91 2.90 2.81 2.89 2.88 
Test 1.36 1.36 1.38 1.12 1.37 1.32 0.69 1.40 1.39 1.32 0.65 1.42 1.41 1.40 1.42 

* ³GUeen coloU ĺ Red coloU´ eTXali]eV ³BeVW UeVXlW ĺ WoUVW UeVXlW´  midpoint  
 

Table 2. HI evaluation criteria of raw and de-noised sensor data for validation (20% of training) datasets. 
 

  S 1 S 2 S 3 S 4 S 5 S 6 S 7 S 8 S 9 S 10 S 11 S 12 S 13 S 14 S 15 

Mo 
Raw 0.93 0.93 0.96 0.04 0.96 0.93 0.68 0.96 0.96 0.94 0.63 0.94 0.93 0.94 0.94 
Den 0.99 1.00 1.00 0.53 1.00 0.99 0.75 1.00 1.00 0.98 0.66 1.00 1.00 1.00 1.00 

Tr 
Raw 0.46 0.42 0.70 0.00 0.65 0.14 0.01 0.78 0.71 0.21 0.01 0.60 0.51 0.59 0.58 
Den 0.96 0.95 0.95 0.01 0.99 0.73 0.03 0.96 0.97 0.64 0.09 0.96 0.96 0.96 0.96 

Pr 
Raw 0.79 0.81 0.88 1.00 0.88 0.72 0.28 0.87 0.89 0.75 0.27 0.80 0.82 0.79 0.83 
Den 0.93 0.91 0.97 0.76 0.89 0.77 0.28 0.95 0.89 0.75 0.26 0.96 0.89 0.93 0.94 

Fitness 
Raw 2.18 2.16 2.53 1.04 2.49 1.79 0.96 2.61 2.56 1.90 0.92 2.34 2.26 2.33 2.36 
Den 2.88 2.85 2.92 1.29 2.88 2.48 1.06 2.91 2.86 2.37 1.02 2.92 2.85 2.89 2.90 
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derived from the two-stage GP model is based solely on de-
noised data, but we also applied it to raw data for comparison. 
The HI evaluation criteria for the validation and entire 
training set, respectively, are shown in Tables 5 and 6. 

PCA KPCA 

  
(a) Raw sensor data (without standardization) 

  

(b) Raw sensor data (with standardization) 

  
(c) De-noised sensor data (without standardization) 

  

(d) De-noised sensor data (with standardization) 
Figure 5. The first principal component of the PCA (left 

column) and KPCA (right column), with and without 
standardization using zero-mean normalization, for both raw 

and de-noised training dataset. 

The proposed model employing the de-noised data has the 
highest fitness score (2.95) of all. Despite the fact that PCA's 
HI has a high close score (2.94), the resulting HI equation is 
complex to interpret. The GP model also generates a high 
score (2.93), but the authors did not consider all of the inputs 

in the second stage (which is responsible for feature fusion 
task) and instead chose the highest-quality inputs according 
to the feature extraction in the first stage. It should be noted 
that increasing the number of neurons and layers in the ANN 
could have resulted in even higher fitness scores, but with 
more complicated functions and less interpretability. As a 
result, the findings demonstrate that the proposed approach is 
superior based on the highest score as well as interpretability. 

GP Proposed model 

 

 

 
(a) Raw sensor data 

  
(b) De-noised sensor data 

Figure 6. HIs constructed by (right column) the proposed 
and (left column) two-stage GP models, with (a) raw and (b) 

de-noised data using a validation (of 20% of training) set. 

Table 3. ANN's hyperparameters for the de-noised dataset. 
 

Alpha (Į) Lambda (Ȝ) Batches Epochs Multiplicative 
Neurons 

Additive 
Neurons Learning Rate 

1.6 10-5 4 300 8 1 0.01 
 

Table 4. ANN's hyperparameters for the raw dataset. 
 

Alpha (Į) Lambda (Ȝ) Batches Epochs Multiplicative 
Neurons 

Additive 
Neurons Learning Rate 

1.8 10-3 4 300 16 1 0.01 
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4. CONCLUSIONS 

Designing a qualified HI, which matches the evaluation 
criteria including monotonicity, trendability, and 
prognosability, and in the meantime being interpretable for 
an engineering system/structure in PHM is a challenge. ANN 
can be employed to fuse the SHM data in order to construct 
the desired HI. Making an ANN interpretable, on the other 
hand, is a difficult task that varies depending on the domain. 
In addition, most ANNs use additive neurons, which means 
that after the inputs are multiplied by weights, the yields are 
added together. As a result, the ability to multiply the inputs 
together is lost, perhaps leading to a more basic network and 
function. If only summing operators are used instead of 
multiplication and division (if feasible), a larger number of 
weighted summation operators will be required, resulting in 
a more complicated HI product. As a result, in the current 
study, both multiplicative and additive neurons were 
employed to generate HI. The HI function has also been 
simplified by using discretized (ternary) weights with 
sparsity control. Based on the highest score as well as 
interpretability, the findings show that the proposed approach 
is superior. 
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