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ABSTRACT

Linear actuators, implemented as closed hydraulic systems,
without external piping, are a state of the art drive concept,
see (Gannon, 2017). Collecting data, used to train a condi-
tion monitoring (CM) for such drives, running 24/7, is cum-
bersome or even not possible. To gain training data, contain-
ing valid and invalid system states, we developed a simula-
tion model, consisting of the most relevant physical effects.
The simulated data are evaluated by a one-step feature ap-
proach and additionally with a two-step approach using two
less complex fault state separation methods. In the end, the
two-step method showed to be slightly better. The condition
monitoring is not only used to recognize, but also to distin-
guish between accumulator and pump faults.

1. INTRODUCTION

Nowadays product cycles are changing fast, and so do motion
and production cycles of actuators. On the one hand, mal-
function of the system has to be avoided to keep up with the
increased production frequencies which, on the other hand,
cause more failures when an actor is driven at its limit. Pre-
cautionary service, like changing wear parts in fixed equal
intervals, leads to additional costs and production time losses
which again lead to additional costs. To minimize these ex-
penses, it is important to identify system critical components
which have to be serviced.
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Usually it is not possible to obtain enough data just from mea-
surements on the running machine to judge the reliability of
single components or even the entire system. Furthermore,
the training of a CM for such a system, using measurements
at the real machine is time consuming and advised failures are
not eligible or even impossible to provoke. Therefore a sim-
ulation model, just accurate enough to get the relevant effects
but not too complex to take too much preterm computational
power, was used to generate a set of test cases large enough
to train the used classifiers. With the furthermore generated
test cases, the accuracy of the CM was tested in absence of
a prototype in a first step. The CM system complexity was
intentionally kept low to be computable in real-time, on a
conventional industry control system, to generate up-to-date
system health information in a later step.

Condition monitoring for linear actuators has been addressed
by the scientific community in previous publications. In
(Hindman, Burton, & Schoenau, 2006), artificial neural net-
works are used to monitor the condition of a valve controlled
linear actuator circuit. As inputs to the neural network, the
time to achieve maximum change in rod-side pressure, the
maximum change in rod-side pressure, and the maximum
change in head-side pressure are used. A method for condi-
tion based monitoring for hydraulic actuators is also proposed
in (Adams et al., 2016). The authors use different machine
learning algorithms like k-nearest-neighbor, decision trees,
and random forests to classify the condition of the actuators.
The classifiers are used to distinguish between 6 states of the
actuator, 1 baseline and 5 different fault states. In (Helwig &
Schütze, 2016), features are extracted from raw sensor data
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of a fluid power system. After dimensionality reduction, the
features are mapped to discriminant functions that allow the
detection and quantification of fault conditions. A fault de-
tection and diagnosis method for electrical linear actuators is
proposed in (Ruiz-Carcel & Starr, 2018). It extracts features
from electric current and position measurements. The fea-
tures are selected to characterize the system dynamics dur-
ing transient and steady-state operation and then combined
to produce a condition indicator. In (Pedersen, Schlanbusch,
Meyer, Caspers, & Shanbhag, 2021), acoustic emission (AE)
sensors are used to identify the early stages of external leak-
age initiation in hydraulic cylinders. The impact of sensor lo-
cation and rod speeds on the AE signal were investigated us-
ing both time- and frequency-based features. The root mean
square feature was observed to be a potent condition indicator
(CI) to understand the leakage initiation.

Since we develop a digital twin to train the condition mon-
itoring model, approaches using signals like AEs or vibra-
tions are not feasible, because they cannot be simulated pre-
cisely enough. There are some studies on the simulation of
vibrations or AEs, for instance (Abramkina, Zhilenkova, &
Borisenko, 2021; Filippov, Nikonov, Rubtsov, Dmitriev, &
Tarasov, 2017; Sause & Horn, 2010), but only for very clearly
defined cases. An easy-to-use generalization, as it would be
necessary for a flexibly usable digital twin, is not known to
us. However, some of the previously proposed approaches
are similar to our approach in the way that they extract fea-
tures from measured signals and apply a classifier in feature
space. What differentiates our approach is that we extract
features only from signals that can be well and precisely sim-
ulated and are affordable to measure on real systems. That en-
ables using the digital twin of the system under investigation
to generate training data for the model. Thus less test runs
for data acquisition are required than in the previously pro-
posed approaches, reducing required resources significantly.
Moreover, the digital twin can be easily adapted or scaled if
the system changes. In contrast, classical approaches require
extensive collection of training data for every change of the
system and for different fault cases. Therefore, the combina-
tion of a digital twin and a feature based CM system to one
cyber-physical system is very advantageous.

The paper is structured as follows: Section 2 states the prob-
lem. In Section 3 the digital twin together with the acquired
data is introduced, and in Section 4 the proposed data driven
CM approach is explained. In Section 5, the experimental re-
sults are provided. Finally, Section 6 draws the conclusions
of the work.

2. PROBLEM STATEMENT

The CM system is designed for a prototype of a closed cir-
cuit hydraulic linear actuator, see Fig. 1 and Fig. 2. The term
’closed circuit’, in combination with hydraulics, states, that

the fluid circuit does not consist of a tank or a reservoir con-
nected to surrounding air. In the simplest case of such cir-
cuits, the fluid is directly shifted to and from between the
pump and a suitable actuator. These systems are some times
also called ’air tight’ systems.

The system under study basically consists of an electric mo-
tor, a pump, a differential area cylinder, an accumulator and
some valves, see Fig. 1. The use of a differential area cylinder
requires some kind of fluid volume compensation to account
for the different amount of displacement volume between the
piston chamber A and the rod-side chamber B. This volume
balancing is done by a by-pass, realized by two load-lowering
valves and an accumulator, see the inner flow path in Fig. 1.
Additionally, this by-pass accounts for fluid volume compen-
sation due to temperature changes, e.g. the fluid volume in-
creases with increasing temperature (Haas, 2013) p. 6.

Qualitatively, the movement of this hydraulic actuator can be
divided into the cylinder’s rod extension and retraction. For
extension, fluid is pumped into A side, increasing the pres-
sure. The check valve of the A sided load-lowering valve
closes and the rod moves out of the cylinder. Concurrently,
on the B side, the pump takes more fluid volume than the
ring side of the cylinder displaces. This results in a B sided
pressure drop, opening the check valve of the according load-
lowering valve. The fluid difference is compensated by fluid
from the accumulator. For piston retraction, fluid is pumped
from cylinder chamber A to B. The difference in the displace-
ment volumes of the cylinder increases the pressure on the
A side. If this chamber pressure reaches a certain level, the
corresponding load lowering valve opens to the center point
which limits the maximum pressure. Beside this internal de-
tails, the hydraulic drive follows the rotation of the motor-
pump unit.

From a practical perspective, there exist two common system
failure origins. One is a accumulator, the other is a pump
failure. Due to the fact that the accumulator under study is
a gas loaded piston accumulator, it is more likely that there
occurs a pressure reduction on the gas side than in case of a
hydraulic bladder accumulator. This leads to a change of it’s
operating point which in turn causes a change of the dynam-
ics of the entire system. The other relevant effect is pump
wear. An increasing operation duration, or improper treat-
ment of the pump lead to more friction and increased leakage
losses. The tricky about this thing is, that both effects can oc-
cur at the same time, hence interacting with each other. For
simple, hand crafted, failure detection algorithms it can hap-
pen, that both effects compensate each other and so virtually
lead to a convenient system but in fact a system failure gets
even more likely, see for instance (Haas & Pichler, 2022).
However, this phenomenon did not occur significantly in the
present test data. But it must be taken into account for further
developments.
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Figure 1. Closed hydraulic system with two load lowering
valves to balance the pressure.

In this work we propose an approach which is capable of
detecting all possible failure states, caused by the previously
discussed system component effects. The example system
’PiK’, on which the approach is evaluated/tested, is a self-
contained servo hydraulic axis of Bosch Rexroth (Fig. 2)
(Guender & Schwacke, PatentNr: DE102014215080A,
2014).
Special consideration was given on easy applicability of the
approach by using only system states respectively conditions,
which could be measured out of the box or with a minimum
of effort. The additional benefit of fault detection should
mainly be a matter of software to be integrated at most sold
axis at the end not of additional hardware. With the gained
operating experience of several axis, the quality would raise
on the other hand side.

3. DIGITAL TWIN

A simulation model of the entire system, further called ’digi-
tal twin’ (DT), was built in order to acquire training data for
the condition monitoring algorithm. More information about
DT’s can be found in (Boschert & Rosen, 2016), (Wikipedia,
2022) and (Haas & Pichler, 2022). Further it is planned
to update the simulation model and extend this data set by
prototypal and life time measurement data in order to sharpen
the failure recognition.
The hydraulic circuit was modeled using Matlab® with
Simulink® (Mathworks, 2019) and in turn ’hydroLib3’
(Manhartsgruber & Haas, 2016), which is a package for
hydraulic component simulation. Elements of this library
are implemented as blocks, which can be arranged using
’physical ports’. The entire simulation model is depicted
in Fig. 3. The DT consists of the pump connected to the

(a) prototype (b) CAD

Figure 2. Cross sections of Bosch Rexroth ’PiK’.
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Figure 3. Matlab Simulink setup of simplified hydraulic circuit.

differential cylinder with pipes. Pipe losses are modeled
using Hagen-Poiseuille friction. The fluid needed for com-
pensating the different flow rates due to the different cylinder
areas is provided by load-lowering valves connected to the
piston-type accumulator, which is modeled as a gas filled
equal area cylinder. The load-lowering valves are modeled
as pressure controlled variable orifices. The accumulator is
connected to the valves at the ’central point’ (CP) which is
also one of the points where the actual pressure value can be
detected. Furthermore, the pressure at the pump ports A and
B is known. Three other signals are recorded for the analysis:
The rotational speed of the motor which matches the rota-
tional speed of the pump and the target and actual cylinder
position, which is in the end the state the user claims.

These data are subsequently analyzed to extract meaningful
features for distinguishing the fault states and training a su-
pervised classifier. We define two isolated failures, namely a
pump leakage and an accumulator failure. Since the two fail-
ures can also occur at the same time, we have 4 failure states
in the training data that are for simplicity reasons numbered
from 0 to 3:

• state 0: no failure
• state 1: pump leakage
• state 2: accumulator failure
• state 3: pump leakage and accumulator failure

With the digital twin, any of the process variables can be
simulated and therefore be acquired for the training data set.
However, since the trained classifier should be also applied
in real world, we restricted the measured signals to those that
are also available at the real system. Hence, the following 6
signals x1, . . . , x6 are available for failure detection:

• x1: pressure pump port A

• x2: pressure pump port B

• x3: pressure of central point next to the accumulator

• x4: target rotational speed omega of the pump required
from the position controller

• x5: actual cylinder position

• x6: target cylinder position

The six measured signals of the system under study for one
exemplary case of each failure state are depicted in Fig. 4.
Overall, 493 observations were measured, 108 of state 0, 75
of state 1, 180 of state 2, and 130 of state 3. The observa-
tions within each state have different severity of failure, so
that most cases are covered by the training data.

The acquired data are used to extract features and subse-
quently learn a classifier in the feature space that is capable
to distinguish the 4 failure states.

4. DATA-DRIVEN CM APPROACH

In this section, the way from a pure visual analysis to a data-
driven classification model is outlined. Moreover, the finally
selected feature for the model is presented.

Based on a purely visual analysis of the signals in Fig. 4, it
should be rather simple to detect a pump leakage. The failure
state leakage (state 1 and state 3) differs significantly from
the no-leakage case (state 0 and state 2), for instance in signal
x1 between 10 s and 20 s. But also in many more parts of the
signals, the failure pump leakage can be easily distinguished
from the the no-leakage case, even when all measured obser-
vations are considered However, the detection of accumulator
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Figure 4. Exemplary plots for each state and each measured signal.

failure (state 2 and state 3) is not trivial. Even for the four
exemplary cases shown in Fig. 4, it is very difficult to distin-
guish it clearly from the case of no accumulator failure (state
0 and state 1). When considering all measured observations it
turned out to be even impossible to identify the accumulator
failure just by visual analysis of the signals. Hence, we tried
to identify features to distinguish the states from each other
in a data-driven approach.

For that purpose, we did not only compare the signals am-
plitudes at certain time stamps, but we extracted also a big
number of features from the raw signals. To do so, a slid-
ing window is moving over all signals, and in each sliding
window of each signal many features are extracted. The fea-
tures include typical statistical features like mean, standard
deviation and kurtosis as well well as more advanced fea-
tures in time-, frequency-, and time-frequency-domain pro-
posed in literature before. Moreover, the whole feature ex-
traction procedure was done with different sliding window
lengths between 0.5 s and 2.5 s. As stepsize, half of the win-
dow length was chosen. This extensive feature extraction step
delivered overall 109800 features for each of the 493 obser-
vations. For further details about the feature extraction proce-
dure see (Pichler, Ooijevaar, Hesch, Kastl, & Hammer, 2020).

Due to the curse of dimensionality and computing and stor-
age capacity, it is of course impossible to continue with this
enormous number of features. Therefore, we have selected

only the features that are necessary to distinguish between the
different states. For this purpose we used feature selection
algorithms (Guyon & Elisseeff, 2003). More precisely, we
applied forward feature selection with Dy-Brodley measure
(Dy & Brodley, 2004) or Mahalanobis distance (McLachlan,
1999) as selection criterion. However, both criteria resulted
in the same feature sets. Of course, we cannot present here all
features computed in the feature extraction step, it would go
beyond the scope of this paper. Therefore, we present below
only the features that were selected by the feature selection
algorithm as significant for distinguishing the state.

Furthermore, we tested two different supervised scenarios
for feature selection and classification, (i) a four-state sce-
nario, where each of the four states is classified at the same
time, and (ii) a two-times-two-state scenario, where first no-
leakage and leakage and no-accu-failure and accu-failure are
distinguished from each other and subsequently combined to
the four-state case, i.e.

• no-leakage and no-accu-failure→ state 0

• leakage and no-accu-failure→ state 1

• no-leakage and accu-failure→ state 2

• leakage and accu-failure→ state 3

Since scenario (ii) performed much better in our tests, we
present only the selected features for that scenario. In both
cases (no-leakage vs. leakage as well as no-accu-failure vs.
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accu-failure), a two-dimensional feature space was selected
by the feature selection method.

The first feature for leakage classification, denoted by fl,1, is
the so-called short-time average zero-crossing rate of signal
x4 at time stamp 19.5 s in a window of 1.5 s length. The short-
time average zero-crossing rate of a discretely sampled signal
y1, . . . , yn is defined as

fl,1 =
fs
2n

n−1∑
i=1

|sgn yi − sgn yi+1|, (1)

where fs denotes the sampling frequency and n the number
of samples. The second feature for leakage classification, de-
noted by fl,2, is the median value of signal x4 at time stamp
18.0 s in a window of 2.0 s length. Again, for a discretely
sampled signal as above that means

fl,2 = Mdn (y1, . . . , yn) (2)

where Mdn denotes the median function.

For accumulator-failure classification, the first selected fea-
ture, denoted by fa,1, is the average magnitude difference of
signal x1 at time stamp 0.25 s in a window of 0.5 s length.
The average magnitude difference is defined as

fa,1 =
1

n− 2

n−1∑
i=1

|yi − yi+1|. (3)

The second feature, fa,2, is the range of signal x1 at time
stamp 0 s in a window of 0.5 s length, where the range is sim-
ply defined as

fa,2 = max yi −min yi. (4)

In these two feature spaces (fl,1 × fl,2 for pump leakage,
fa,2 × fa,2 for accumulator failure), a supervised classifier
is trained. Since the states of no-leakage (states 0 and 2)
vs. leakage (states 1 and 3) are quite easy to distinguish
from each other, we use a simple logistic regression classi-
fier (Webb, 2002) for that case. The states no-accumulator-
failure (states 0 and 1) vs. accumulator-failure (states 2 and
3) are more difficult to be distinguished. Hence, we use more
advanced classifiers based on kernel density estimation or
Gaussian mixture models. It is able to handle even strong
non-linearities in feature space. For more details about the
classifier see for instance (de Ridder et al., 2017).

Extracting the selected features from the training data and an-
notating the data into No-leakage vs. Leakage respectively
No-accumulator-failure vs. Accumulator failure classifica-
tion problems, the according feature spaces of the training

f
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f l,
2
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1

1.5

No Leakage vs. Leakage

No Leakage

Leakage

Figure 5. Training data for pump leakage detection in feature
space.
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Figure 6. Training data for accumulator failure detection in
feature space.

data are shown in Fig. 5 and Fig. 6. Also in the feature spaces
it is obvious that leakage detection is an easier task than ac-
cumulator failure detection, since the classes are linearly sep-
arable.

5. EXPERIMENTAL RESULTS

In this section, the data for validation of the proposed ap-
proach are briefly described. Furthermore, scatter plots, con-
fusion matrices and accuracy values of the validation scenario
are provided.

5.1. Validation Data

For validating the proposed approach, 98 test measurements
with randomly distributed parameters were generated. As-
signing the true states to these randomly distributed measure-
ments, the distribution of the states of the validation measure-
ment is as follows:
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Figure 7. Validation data for pump leakage detection in fea-
ture space.

Table 1. Confusion matrix for pump leakage detection.

Estimated state
No leak Leak

True state No leak 50 0
Leak 0 48

• 11 measurements of state 0
• 19 measurements of state 1
• 39 measurements of state 2
• 29 measurements of state 3

By comparing this ground truth to the estimated states of the
classifier, an assessment of the detection accuracy of the pro-
posed method is possible.

5.2. Results

In a first step, we evaluate separate classifiers for no-leakage
(states 0 and 2) vs. leakage (states 1 and 3) classification
and no-accumulator-failure (states 0 and 1) vs. accumulator-
failure (states 2 and 3) classification. In a second step, the
results of those two classifiers are combined to a final classi-
fication of the failure state as described already in Section 4.

In the case of leakage detection, we have 11 + 39 = 50 mea-
surements without leakage and 19 + 29 = 48 measurements
with leakage. A logistic regression classifier is trained in the
feature space fl,1 × fl,2 using the training data described in
Section 2. The features space of the validation data is shown
in Fig. 7, and the confusion matrix in Table 1. The accuracy
of the leakage classification is therefore 100 %.

For accumulator failure detection, the number of measure-
ments is 11 + 19 = 30 without accumulator failure and
39 + 29 = 68 with accumulator failure. This time, a mix-
ture of Gaussians classifier is trained in the feature space

f
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Figure 8. Validation data for accumulator failure detection in
feature space.

Table 2. Confusion matrix for accumulator failure detection.

Estimated state
Accu OK Accu fail.

True state Accu OK 30 0
Accu fail. 4 64

fa,1 × fa,2 using the training data described in Section 2.
Again, the features space of the validation data is shown in
Fig. 8, and the confusion matrix in Table 2. The accuracy of
accumulator failure classification is therefore 95.92 %.

The results of the two single classifiers are subsequently com-
bined to the four fault states, the resulting confusion matrix is
shown in Table 3. This confusion matrix results in a classifi-
cation accuracy of 95.92 %. Since the leakage detection has
perfect accuracy of 100 %, the overall accuracy is of course
the same accuracy as the accuracy of accumulator failure de-
tection.

The results show that the digital twin allows discrimination
of the four failure states with high accuracy. However, it
increases accuracy to split the classification task into two
simpler tasks as done here: we first distinguish between no-
leakage and leakage respectively no-accumulator failure and
accumulator failure and combine then the results to a final
failure state estimation. If we combine all features in a four-

Table 3. Confusion matrix of failure state classification.

Estimated state
0 1 2 3

True state
0 11 0 0 0
1 0 19 0 0
2 3 0 36 0
3 0 1 0 28
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Table 4. Confusion matrix of failure state classification in the
four-dimensional feature space.

Estimated state
0 1 2 3

True state
0 11 0 0 0
1 0 19 0 0
2 2 0 37 0
3 0 2 2 25

dimensional feature space (fl,1 × fl,2 × fa,1 × fa,2), the ac-
curacy decreases to 93.88 % with the confusion matrix as
shown in Table 4. We tried different types of classifiers in that
four-dimensional feature space, the one that worked best was
the kernel density estimation based classifier that was also
used for accumulator failure classification. The reason for
the decreased accuracy is probably the usage of a too com-
plex classifier together with a relatively small data set for the
rather simple problem of leakage detection. Also the curse
of dimensionality might affect the result, since the two two-
dimensional feature spaces are populated more densely the
four-dimensional feature space.

6. CONCLUSIONS

An approach was found to identify system errors and separate
the possible system faults in the 4 classes with a high accu-
racy of 95.92 % using a split method with 2 steps. Separating
the 4 fault possibilities in one step was more time-consuming
and additionally more uncertain. We are therefore confident
to get a computable solution in a next step which can be im-
plemented on a commercial industry controller system and be
tested at a real actuator.
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