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ABSTRACT 

There have been few practical integrated vehicle health 

monitoring systems for ground vehicles. One of the challenges 

of this application is the high dynamics of the 

engine/transmission, the non-fixed ratio of the transmission, 

and the drivetrain in general. Further, because of the drivetrain 

differential, there is no fixed ratio from the input of the 

differential to the drive wheels. The paper covers the 

development of a vibration-based vehicle health monitoring 

system for a truck and some results of a 1000-mile test run on 

the system. The demonstration system integrates a decision 

analysis process to determine when to acquire data and tach-

from-vibration (TFV) processing to reconstruct zero crossing 

data when the ratio from a tachometer to a shaft under analysis 

is unknown. 

1. THE OPERATIONAL NECESSITY FOR IVHMS ON A TRUCK 

Initially, the move for an integrated vehicle health management 

system (IVHMS) in the automotive industry (Holland, 2007) 

was focused on improved customer experience. Holland 

additionally emphasizes that the IVHMS will need to deliver 

value at an affordable price. Benedettini et. al (2009) highlight 

the benefits, drivers, and barriers to the adoption of IVHMS. 

However, neither paper reports on an implemented system. This 

demonstration highlights the feasibility/performance of a 

system on a mission-critical vehicle.   

For some high asset value vehicles or vehicles that perform 

critical missions, condition monitoring using IVHMS provides 

data to ensure availability. Expanding on that functionality 

allows both monitoring of the vehicle and how the vehicle is 

being operated. Providing comprehensive vehicle health 

monitoring can: 

• Record how the vehicle is driven. This, in turn, gives 

maintenance and operations personnel data on potential 

exceedances, such as RPM, temperature, speeds, or angle 

of pitch/bank, which may require maintenance.  

• Evaluate how the vehicle is operated and give feedback on 

the driver's performance. This feedback is an essential 

contribution to safety management systems and reduces the 

rate of mishaps. 

• Measure the performance and mechanical performance of 

the engine, starter, and cooling system. 

• Provide drivetrain diagnostics of transmission, transfer 

case, differentials, portal hubs, brakes, and wheel 

alignment. This removes unscheduled maintenance event 

to improve availability.  

In the short term, IVHMS data allows for a move from 

reactive/unscheduled maintenance events to scheduled or on 

condition maintenance. Knowledge of the vehicle state, in turn, 

allows for improved operational readiness and availability, 

ultimately allowing for: more revenue opportunities or a smaller 

fleet. After a controlled introduction to service, there is the 

potential to move from scheduled to on condition maintenance 

practices. This can reduce maintenance costs while maintaining 

or improving vehicle reliability.  

Practically speaking, this demonstration considered the 

environment in which the vehicle runs. The test vehicle, an 

HMMWV (High Mobility Multipurpose Wheeled Vehicle), 

was driven on a test course designed for life testing. While 

realistic, the course represents the operations constraints of 

driving off-road, typically at lower speeds, making acquisitions 

and the resulting analysis difficult.  

The HMMWV platform itself is an all-wheel-drive truck. The 

power plant is a 6.2L turbocharged diesel engine using an 

automatic transmission with an overdrive. Transmission power 

goes through a two-speed transfer case through forward and rear 

differentials, which drive the wheels through portal hubs. Portal 

hubs are a drive technology where the axel tube is above the 

wheel hub. This gives increased ground clearance and allows 
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the half shafts to drive the same power to the wheels at reduced 

torque.  

The goal of the demonstration was to enable comprehensive 

vehicle monitoring, including the engine/cooling 

system/starter, transmission/transfer case, differential/portal 

hub/wheel bearing, and brakes. Additionally, the system was 

designed to automatically: download data, process the data, 

report exceedances/component health in an operational 

users/maintainer, and calculate the remaining useful life of a 

component. 

2. SYSTEM ARCHITECTURE FOR THE IVHMS 

The HMMWV has no electronics/OBD2 capability. 

Additionally, even if present, many OBD2 sensors do not have 

the bandwidth necessary to detect mechanical faults. Unlike the 

system architecture presented in Shafi (2018), this system 

provided the integration of vibration, temperature, speed, GPS, 

etc., and analog sensors needed to support IVHMS 

functionality.  

Given the operational requirements of the HMMWV, the 

installed system needed to survive the harsh environment of 

being attached to the truck's drivetrain. This included high 

temperature, water immersion, shock, vibration, and a high 

EMI/EMC environment. Additionally, the system needed to be 

mounted near monitored components and not interfere with the 

existing functionality or lower the components' reliability.  

This system implemented an edge processing bused sensor 

system architecture (Figure 1). The system has three buses. Bus 

1, which covers the drive train, has sensors on the portal hubs, 

differentials, transmission, transfer case, and a transmission 

tachometer. Bus 2 was the engine bus, which monitored the 

alternator, engine, geared fan (for cooling), and the starter and 

engine tachometer interface. Bus 3 was the truck's analog 

interface, used to gather data on the engine, transmission and 

transfer case RPM, and outside air temperature. Provisions for 

exhaust gas temperature, turbocharger pressure, and oxygen 

temperature were designed but not implemented (usually, this 

type of data would be available on CAN or the OBD2). The 

power and management of the system came from the Onboard 

Control Unit (OBCU). The OBCU has an inertial measurement 

unit (IMU) to calculate positional attitude and rates and GPS for 

ground speed/positional information.  

 

Figure 1 Bused System of IVHMS on a Truck 

The data buses are attached to each sensor as a daisy chain. Each 

sensor was an edge processing design allowing for data sharing. 

For example, when the OBCU determines that it can perform 

an analysis, the sensors (typically accelerometers) receive 

configuration and are commanded to acquire data. The 

tachometer sensor calculates zero-cross data published on the 

data bus. Accelerometer sensors then use their vibration data, 

configuration, and tachometer zero-cross data and calculate the 

components' condition indicators (CIs). Vecr (2005) gives 

insight into the data processing flow and CI generation.  

The configuration for a sensor consists of metadata, such as:  

• The sample rate and length of the acquisition for the sensor.  

• The ratio from the tachometer to the shaft under analysis.  

• The gears associated with that shaft, the number of teeth on 

a given gear. 

• The bearings associated with the shaft, the bearing fault 

features, and processing specifics for the bearing envelope 

analysis. 

An accelerometer sensor can generate CIs for many 

components in near proximity. Each sensor can process up to 

10 shafts. Each shaft may have 0 to 10 gears associated with 

that shaft. Additionally, each shaft can have 10 bearings 

associated with it. Each bearing can have multiple envelope 

analyses. For a further discussion on bearing analysis, see 

Randal and Antonni, 2011.  

Typically, a sensor acquires 4 to 10 seconds of data between 

2500 to 100000 samples per second and processes that data in 

5 to 10 seconds. Because of the distributed processing nature of 

the bused system, this allows the OBCU to command and 

acquire data when in an opportunity regime. The OBCU 

determines when to acquire data and which data to acquire 

through a Regime Recognition process.  

2.1. The Purpose of Regime Recognition in IVHMS 

Ground vehicles do not operate at constant speeds. 

Additionally, because of the variable ratios of the transmission, 

not all component analyses can be done simultaneously. For 

example, there is no shaft rate when the truck is idle. At low 

speed (say 13 mph), the transmission is in first gear (the input 

shaft rate is around 30 Hz): the overdrive is off, and there is no 

drive torque going through the second and third gears. The 

engine is turning at approximately 53% of its maximum RPM. 

For the portal hub and wheel bearings, the shaft rate is 

approximately 2 Hz. The differential is perhaps at a 6 Hz input 

shaft rate. While appropriate to analyze the first gear, there is 

not enough shaft rate to analyze most of the drivetrain or those 

gears that are not engaged. Therefore, we need a way to 

command and acquire data only for those components where it 

is appropriate to do analysis.  

Similarly, at say, 35 MPH, the transmission could be in third 

gear, but the overdrive may or may not be engaged. However, 

the wheel shaft rate would be closer to 6 Hz, and the differential 

at 17 Hz would be appropriate to analyze these shafts. Clearly, 

analysis of the brakes can only be performed when the OBCU 
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senses the vehicle is braking. This type of problem requires a 

decision process to determine when data should be acquired and 

what analysis is performed on that data.   

Regime recognition controls these decisions as to which sensor 

is to acquire data, for how long, and which components to 

analyze. Regime recognition defines the likely state of the 

vehicle. This is done by analyzing analog interface, IMU, and 

GPS data. The input to the regime algorithm was Yaw Rate (to 

determine if the vehicle was turning), Engine RPM, 

Transmission RPM, vehicle speed, rate of change in speed (for 

determining acceleration and braking), and the calculated gear 

ratio (ratio of the transmission input and transfer case output). 

There were 47 regimes, which were calculated eight times per 

second.  

Examples of some regimes are:  

• Regime 5, 18 MPH Straight, 3rd Gear, Transfer Case Low   

• Regime 8, 24 MPH, Straight, 2nd Gear, Transfer Case High 

• Regime 22, 42 MPH, Straight, 3rd Gear, Overdrive, 

Transfer Case High 

• Regime 23, 42 MPH, Left Hand Turn 

• Regime 39, 47 MPH, Braking 

Associated with each regime is a binary flag, which controls 

which operations/commands can be executed, such as:  

• If Engine Run time (ERT) is accrued, 

• If drive time (DT) is accrued, 

• If a mechanical diagnostics acquisition can be performed, 

• If a Break Analysis acquisition can be performed in that 

regime,  

• If a Wheel Alignment acquisition can be performed in that 

regime, 

• If the wireless communications (XMIT) can be on for 

downloading the operations (indicating that the flight 

operation had terminated) 

The flag masks, and their integer representation where:  

Table 1 Bit Mask 

BIT MASK INTEGER 

BIT 0 => XMIT ON 01 

BIT 1 => ENGINE IDLE 02 

BIT 2 => ACCRUE DRIVE TIME 04 

BIT 3 => TCASE, LOW 08 

BIT 4 => GEAR 1, TCASE HIGH 16 

BIT 5 => GEAR 2, TCASE HIGH 32 

BIT 6 => GEAR D, TCASE HIGH 64 

BIT 7 => GEAR OD, TCASE HIGH 128 

BIT 8 => COLLECT RAW DATA 256 

BIT 9 => DIFF/WHEEL HUB 512 

BIT 10 => WHEEL ALIGNMENT 1024 

BIT 11 => ENGINE PERFORMANCE 2048 

BIT 12 => BRAKE PAD ANALYSIS 4096 

For example, consider that the regime algorithm returned an 

index of 5, which represents the vehicle state of: 

• 18 MPH Straight, 3rd Gear, Transfer Case Low.  

The associated flag is 14: the engine is on, the vehicle is driving 

and we can do an analysis of the Transfer Case (low gear ratio). 

That is, the bit mask flag is 2 + 4 + 8 = 14.  

Alternatively, consider being in Regime 22.  

• 42 MPH, Straight, 3rd Gear, Overdrive, Transfer Case High 

The flag would be: Engine is on, Driving, Gear OD, TCASE 

High, Diff/Wheel Hub, and wheel alignment analysis. The bit 

mask is then: 2 + 4 + 128 + 512 + 1024, or a flag of 1670. If the 

regime returned with index 23, the flag would be 6 - accruing 

run time and drive time. Because the vehicle is turning, no 

vibration analysis is performed. 

Why was no analysis was done when the vehicle was turning? 

Because of the differential, the outboard wheel ratio relative to 

the input shaft will be a bit higher than anticipated, while the 

inboard wheel ratio will be lower. The time synchronous 

average (TSA) is susceptible to errors in ratio. Errors in the TSA 

effectively filter the signal associated with the wheel and portal 

hub.  

To control for TSA errors associated with the differential, a 

novel signal processing technique, tach-from-vibe (TFV), was 

used (see Bechhoefer and Spence, 2018). The need for TFV 

analysis is needed as even differences in vehicle loading can 

affect the wheel diameter and ratio/shaft rate between wheels. 

As one needs a reasonable estimate of the shaft under analysis 

(under 1%), analysis was only performed when the vehicle was 

not turning (sensed by vehicle yaw).  

A cellular modem was used to update configuration/executables 

remotely and download files after a mission. The modem (Bit 

0, XMIT) was only allowed to be on in Regime 0: Power on, 

engine not turning. Hence regime also controls when data 

download occurs by determining the end of an operation.  

The Regime flag controls the configuration and “scripts” on the 

OBCU. A script defines which sensors are to acquire data for 

an acquisition length, while the configuration defines the 

shaft(s), gear(s), and bearing(s) that the sensor would perform 

analysis on. Consider the configuration for sensor 9, the transfer 

case: 

  <cam id="9" type="hs-accel" desc="Transfer Case" channel="1"> 
    <acqcfg  fg="8"><s>1.0</s><sh>S19,S20,S21</sh></acqcfg> 
    <asmcnfg fg="8"> 
      <s i="S19" r="2.7169811320"> 
        <g i="G16" t="91" b="23" /> 
      </s> 
      <s i="S20" r="1.0000000000" > 
        <g i="G17" t="34" b="9" /> 
      </s> 
      <s i="S21" r="1.7169811320"  > 
        <g i="G18" t="53" b="14" /> 
      </s> 
    </asmcnfg> 
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    <acqcfg  
fg="128"><s>1.0</s><sh>S22</sh><w>W7</w></acqcfg> 
    <asmcnfg fg="128"> 
      <s i="S22" r="1.0000000000" > 
        <g i="G19" t="34" b="9" /> 
      </s> 
      <w i="W7" l="4500" h="6500" pl="4096" ol="2048"> 
        <b i="U" s="S22" cg="0.44" bl="8.55" in="10.55" ou="8.45" /> 
        <b i="V" s="S22" cg="0.43" bl="7.11" in="6.83" ou="5.17" /> 
      </w> 
    </asmcnfg> 
  </cam> 

In this example, if Regime 5 is identified, it returns a flag of 14, 

which includes the mask value “8” (flag 14 is 2+4+8). This 

configuration defines an analysis of Shaft S19, S20, and S21. 

Note that S19 has G16 associated with it, while S20 had gear 

G17 and S21, G18. The ratio from the drivetrain tach to the 

shaft is labeled "r" for ratio.  

However, if Regime 22 is identified (TCASE high), the bit 

mask contains flag 128: sensor 9 would then perform analysis 

on S22, gear G19, and the two bearings "U" and "V" fault rates. 

The window, W7, defines the low and high frequencies and 

spectral length (pl) and overlap (ol).   

The script gives the setup for the command to collect data. For 

example, Script 11 defines that when a regime with a mask of 

128 is found (f="128), and the period since the last acquisition 

is greater than 1 minute (period="1M"), perform a four-second 

acquisition with sensor 8 (Transmission), sensor 9 (TCASE) 

and the drivetrain tachometer (ID is 50). 

<script index="11" period="1M" channel="1" init="0" f="128" 
desc="Perform Acquisition" actcode="ACQ"> 
    <cam id="8" sampcode="23438" secs="4" />  
    <cam id="9" sampcode="23438" secs="4" />  
    <cam id="50" sampcode="" secs="4" /> 
  </script> 

For this application, there were 24 different scripts. Note that in 

this way, regime processing allows sensors to perform analysis 

on different shafts, gears, and bearings when appropriate, based 

on what gear the transmission is in and what speed the vehicle 

is traveling at. 

2.2. Decision Making with Uncertainty: Regime Algorithm 

Several potential algorithms can be used to determine vehicle 

state or regime. For this demonstration, a Bayes Classifier was 

implemented. As a simple example, consider the case with just 

two classes. Let us define P(Hi|z) as the probability that Hi was 

the actual regime given a measured observation, z, where z is 

the vector of parameters as noted: yaw rate (to determine if the 

vehicle was turning), engine RPM, transmission RPM, vehicle 

speed, rate of change in speed, and the calculate gear ratio 

above. The correct hypothesis corresponds to the largest 

probability of the possible regimes. The decision rule will be to 

choose Ho if: 

P(Ho|z) > P(H1|z), P(H2|z),… P(Hm|z)       (1) 

else choose the most likely probability: P(Hi|z). The null 

hypothesis P(Ho|z) will represent the vehicle engine running or 

some other default case. 

For illustration, consider the binary case, where the rule 

becomes: 

𝑃(𝐻1| 𝒛)
𝑃(𝐻0| 𝒛)⁄

𝐻1

>
<
𝐻0

1          (2) 

This is the maximum a posteriori probability criterion, wherein 

the chosen hypothesis corresponds to the maximum of two 

posterior probabilities. Using Bayes’ rules to write the criterion 

gives: 

𝑃(𝐻𝑖|𝒛) = 𝑃( 𝒛|𝐻𝑖)𝑃(𝐻𝑖)
𝑃(𝒛)⁄ , 𝑖 = 0, 1         (3) 

where P(Hi) is the probability of Hi in the observation space, 

such that: 

𝑃(𝐻1| 𝒛)
𝑃(𝐻0| 𝒛)⁄ = 𝑃( 𝒛|𝐻1)𝑃(𝐻1)

𝑃( 𝒛|𝐻0)𝑃(𝐻0)⁄   (4) 

This allows the test to become: 

𝑃(𝒛|𝐻1)
𝑃(𝒛|𝐻0)⁄

𝐻1

>
<
𝐻0

𝑃(𝐻0)
𝑃(𝐻1)⁄    (5) 

Let us further define the log ratio l(z) = p(z|H1)/p(z|H0) as the 

likelihood ratio. Because the likelihood ratio is well behaved 

and everywhere continuous and differentiable, the natural 

logarithm of both sides can be taken. The logarithm is a 

monotonically increasing function so the inequality holds. Then 

the log-likelihood ratio becomes: 

ln 𝑙(𝒛)

𝐻1

>
<
𝐻0

ln 𝑃(𝐻0)
𝑃(𝐻1)⁄           (6) 

We want to take the log of the likelihood ratio because the 

probability function P(Hi) is usually some exponential function, 

such as Rayleigh, Gaussian, etc. Taking the log linearizes the 

function, simplifying the problem. 

In making a decision in a binary hypothesis-testing problem 

(e.g., Regime 0 vs. Regime 1), there are four possible outcomes:  

Say Ho, and it is true that the AC is in regime 0;  

Say H1, and it is true that the AC is in regime 1; 

Say H1, but the AC is in regime 0; and  

Say Ho, but the AC is in regime 1. 

An error occurs when either the third or fourth conditions are 

chosen. The third condition is a type I error, and the fourth 

condition is a type II error. The goal of the regime algorithm is 

to minimize both type I and type II errors. The Bayes classifier 

can be shown to do this (Fukinaga, 1990) 

We assumed that the measured parameters, z, have a Gaussian 

distribution. The default case is the hypothesis H0, defined as 
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the mean of the parameter vector space, m0, representing the 

parameters for regime 0. The probability distribution function 

of the parameter vector, z, given H0, is then: 

𝑃(𝒛|𝐻0) = 1

√2𝜋𝑛 |Σ0|
𝑒𝑥𝑝[−1

2
(𝑧−𝑚0)𝑇Σ0

−1(𝑧−𝑚0)]        (7) 

While the alternative hypothesis is: 

𝑃(𝒛|𝐻1) = 1

√2𝜋𝑛 |Σ1|
𝑒𝑥𝑝[−1

2
(𝑧−𝑚1)𝑇Σ1

−1(𝑧−𝑚1)]         (8) 

Where Σi is the covariance of the regime parameters. The 

normalized distance squared between the measured parameters 

z and any m: 

𝑑2 = (𝒛 − 𝒎)𝑇Σ−1(𝒛 − 𝒎)             (9) 

Substituting the distance function into the log-likelihood ratio 

test gives: 

1
2
(𝑑0

2 − 𝑑1
2) + 1

2
ln 𝑙(|Σ0| |Σ1|⁄ )

𝐻1

>
<
𝐻0

ln (𝑃0
𝑃1

⁄ )         (10) 

Where |Σ| is the determinant of the covariance. This states that 

if the normalized distance squared between z and m0 (plus a 

threshold offset represents the log ratio of the test’s 

probabilities. It is assumed that P0 is equally likely with P1, such 

that the offset is ln(1) = 0). Hence, if the normalized distance 

between z and m1 is greater, then accept the alternate 

hypothesis, H1.   

In this demonstration, where there are 46 regimes, we conduct 

45 tests against the null hypothesis. If after completing the 45 

tests, where each test is negative, one cannot reject the null 

hypothesis (e.g., the vehicle is in regime 0). If there are positive 

test values, we select the maximum test value: accepts the 

alternative hypothesis representing the maximum likely regime 

the vehicle is in. For a more detailed analysis, see Fukinaga, 

1990. 

3. SIGNAL PROCESSING TECHNIQUES FOR THE IVHMS 

A tach from vibration processing was implemented because the 

exact ratio for many components was unknown due to the 

drivetrain differentials. A tachometer signal is reconstructed 

from the vibration data itself at the sensor to solve this problem. 

That is because the vibration signals from rotating equipment 

are sinusoidal, and they are, by definition, synchronous with 

signals associated with the shaft rotation. However, the 

measured vibration is the superposition (i.e., addition) of many 

signals in the time domain. For example, consider a portal hub 

with an input shaft, an output shaft, and a gear pair. The input 

shaft turns at 30 Hz and has a 12-tooth gear, and the output shaft 

has a 23-tooth gear with a rotational speed of 15.65 Hz. The 

gear mesh frequency is 360 Hz (30 * 12). The gear mesh 

frequency will have sidebands because any shaft imbalance is 

modulated onto the gear mesh. This can be shown using the 

trigonometric identity: 

cos(𝑎) × 𝑐𝑜𝑠(𝑏) = 1
2⁄ [cos(𝑎 + 𝑏) + 𝑐𝑜𝑠(𝑎 − 𝑏)]   (11) 

In this example, cos(a) is 360 Hz, and cos(b) is 30 Hz and 15.65 

Hz shaft. Additionally, if the shaft is bent or bowed, there will 

be a 2x shaft vibration component. Other manufacturing 

defects, such as the gear not being mounted perpendicular to the 

shaft or not centering the shaft on the gear (e.g., eccentricity), 

will result in different frequency tones. 

We used an ideal bandpass filter to recover only those signals 

associated with the desired component and create an analytic 

signal in one functional procedure. This is followed by using a 

jitter reduction model to remove noise (jitter) from the 

reconstructed tachometer signal not associated with changes in 

the machine rate. 

Recovering rotational information from vibration data involves 

estimating the rotation rate of a component under analysis based 

on the transmission tachometer. A known gear mesh frequency 

for the input shaft can be estimated from this information. A 

range of frequency encompassing the estimated gear mesh 

frequency is found based on the variance in the measured shaft 

rate. The actual gear mesh frequency is extracted from the 

overall vibration data by filtering around this range even though 

its magnitude may be significantly smaller than the average 

overall vibration spectrum. Once the gear mesh frequency 

signal is determined, the actual shaft rate of the component of 

interest can be found. This may be accomplished using the 

following pseudo-code: 

• Define the Sample Rate = sr. The number of data points, n, 

of vibration data equals sr x acquisition length in seconds, 

then: 

• Calculate the next larger radix-2 length for the FFT: nRadix 

= 2ceil(log2(n)). 

From the tachometer measurement and the gearbox 

configuration (i.e., the shaft ratio from the shaft measured by 

the tachometer to the shaft under analysis), calculate meta 

statistics such as the approximate rotation rate of the shaft under 

analysis (i.e., the first moment), the variation (i.e., the second 

moment) in the approximate rotation rate, and the estimated 

known gear mesh frequency (based on the number of teeth of 

gear on the shaft under analysis). 

• From the estimated known gear mesh frequency and the 

variance in the estimated shaft rotation rate, calculate the 

low bandwidth index and the high bandwidth index (below, 

bwhigh), encompassing the gear mesh frequency of 

interest. 

• Take the zero-padded FFT of the vibration data. 

• Zero the FFT from zero to below, and from bwhigh to 

nRadix. 

• Take the inverse FFT to generate the analytic signal. 

• Calculate the unwrapped argument of the generated 

analytical signal from to 1 to n time series. (The argument 

is the arctangent of the imaginary part of the analytic signal 

to the real part. Note that the value can only go from 0 to  

and - to 0. One is interested in the cumulative rotation of 

the analytic signal in time. Hence as the signal exceeds - 

to some small positive number, 2 is added. That is, if at 
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index i the value is -0.03, and the next value calculated at 

index i + 1 is 0.03, the saved (unwrapped) value is 2.03.) 

• Normalize the time series of radians by the number of teeth 

of the gear (assuming first-order harmonics). 

• Interpolate the number of indexes for every 2π radians. The 

value 2π radians is one zero-cross. Hence, the interpolation 

gives the exact index of the zero-cross of the shaft.   

• Normalize to "tachometer" zero-crossing index by the 

Sample Rate (sr), which provides the zero cross time and 

from which the rotation rate for the component under 

analysis is calculated. 

A process may be used in which developing the analytic signal 

using an ideal bandpass filter is completed in a single functional 

process. The analytic signal is defined for the real-valued signal 

x(t), as determined: 

𝑋(𝑓) = 𝐹{𝑥(𝑡)}                  (12) 

where F is the Fast Fourier Transform, and where: 

𝑋𝑎(𝑓) = 𝑋(𝑓),   𝑓 = 0        (13) 

𝑋𝑎(𝑓) = 2𝑋(𝑓),   𝑓 > 0          (14) 

𝑋𝑎(𝑓) = 0,   𝑓 < 0                (15) 

𝑥𝑎(𝑡) = 𝐹−1(𝑋𝑎(𝑓))       (16) 

X(f) is the Fourier transform of x(t), and f is measured signal 

frequency (Bechhoefer, Spence, 2018) 

3.1. Analysis Algorithms 

Vibration-based diagnostics provide condition indicators (CIs) 

representative of a component's health. This health, in turn, was 

used to estimate the remaining useful life (RUL) of the 

component. The flow of the analysis follows the example 

configurations above. The OBCU commands a tachometer and 

accelerometers to acquire data when the regime flags are 

appropriate (as noted, the tach signal could come from the 

vibration signal itself). This data is used to generate a Time 

Synchronous Average (TSA). The TSA is then used for shaft 

and gear analysis. The TSA removes variation in the shaft rate 

and acts as a filter for signals that are non-synchronous to the 

shaft under analysis. The resulting time-domain signal is 

operated on the generate condition indicates (CIs) for that shaft. 

There are 12 CIs for each shaft, such as shaft order 1 (magnitude 

of the first shaft harmonics, e.g., SO1), phase, higher harmonic 

order, TSA RMS, TSA peak to peak, and other statistics (Figure 

2). 

If there is a gear(s) associated with the shaft, further analysis is 

performed on the TSA itself and the spectrum of the TSA. Some 

analyses are classified as gear specific, which used the number 

of teeth on the gear under analysis (FM0, the AM/FM analysis, 

for example). Other non-gear-specific analyses are also 

performed, such as the residual or the energy operator (a 

time/frequency analysis). It should be noted that there are many 

implementations of gear analysis (Vecer, Bechhoefer et al 

2020). There is no single analysis that works for every gear fault 

type. In this implementation, the system generated 18 CIs for 

each gear (Figure 3).  

 

Figure 2 Shaft Analysis Processing 

Bearing analysis is a separate processing flow. Bearings, as they 

are designed to be greased, have non-Hertzian contact. 

Typically, we observe a 1% slip in the calculated motion of the 

bearing components. Some bearings, when under thrust, will 

have changed their contact angle and pitch diameter, resulting 

in an increased fault rate by a 2 to 3%. (Hamrock, Dowson, 

1981). The point being is that the analysis is asynchronous. 

 

Figure 3 Gear Analysis Processing 

Additionally, the analysis must consider the non-stationarity of 

the shaft. The vibration data is resampled instead of being 
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synchronously averaged (Bechhoefer, Van Hecke 2013). 

Bearing analysis uses this speed-corrected signal for envelope 

analysis, which takes the spectrum of the demodulated and 

envelopes (absolute value of the Hilbert transform) and the 

vibration data (Figure 4). 

The bearing analysis process returns eight CIs for each bearing, 

including the cage, ball, inner and outer race energies, the 1/rev 

spectral energy, the whip/whorl energy (for journal bearing 

analysis), the kurtosis of the spectrum and temperature.  

 

 
Figure 4 Bearing Processing 

4. ALERTING AND RUL ESTIMATION 

RUL, or Remaining Useful Life, is a prognostic based on a 

fracture mechanics model. RUL calculation requires four inputs 

to calculate an RUL.  

• An estimate of the current component health. 

• An estimate of when it is appropriate to do maintenance, 

e.g., the threshold. 

• An estimate of the future component load. 

• A component degradation process model takes the current 

component health and the estimated future load and 

calculates the time/cycles to when it is appropriate to do 

maintenance. 

The estimate of the current component health is based on 

hypothesis testing. In the context of a hypothesis test, it is 

observed that all condition indicators (CIs) have a PDF. Any 

operation on the CI to define a health index (HI) is then a 

function of distributions. The HI function in this application is 

the weighted norm of n CIs (e.g., the normalized energy of n 

CIs), where the weights are determined by the Jacobian (the 

inverse covariance): 

                       𝐻𝐼 =  0.35
𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙⁄ √𝒀𝑇𝒀   (17) 

where Y is the whitened, normalized (by the Cholesky 

decomposition of the Jacobian) array of CIs, and critical, is the 

critical value of the test. The critical value is calculated from 

the inverse cumulative distribution function (ICDF) for a given 

probability of false alarm in a hypothesis test. For Eq. (17), the 

ICDF is the Nakagami where  is the number of CIs in the array 

and = n, and  = /(2-/2)*2. See Bechhoefer, E., Xiao L., 

Zhang 2021 for details and proof. A normalized HI > 0.35 for a 

component indicates that the Null Hypothesis is rejected. That 

is, the component is no longer nominal. Maintenance is not 

recommended until the HI > 1. These threshold values have 

been tested by numerous helicopters, wind turbines, and seeded 

fault testing on 60+ gearboxes. The level of damage for an HI 

of 1.00 is typically moderate visible damage. 

For this demonstration, the design reliability is typical "six-

nines," e.g., the probability of failure of the part under design 

loads is less than 10−6  per hour. For the damaged part, the 

reliability may be reduced to three-nines or a probability of 

failure of 10−3 . Thus, the appropriateness of repairing the 

faulty component can be seen as an action to restore the 

designed reliability of the system. From a maintainer 

perspective, then: 

• HI reflect the current components damage, where the 

probability of exceeding an HI of 0.35 is the PFA. 

• A warning (yellow) alert is generated when the HI is 

greater than or equal to 0.75. Therefore, maintenance 

should be planned by estimating the RUL until the HI is 

1.0. 

• An alarm (red) alert is generated when the HI is greater 

than or equal to 1.0. Continued operations could cause 

collateral damage. 

• This threshold setting model ensures that the probability of 

a false alarm is exceedingly small when the HI reaches 1. 

From numerous installations and seeded fault tests in 

practice, a bearing at HI 1 has easily seen physical damage.  

The HI value does not define a probability of failure for the 

component nor that the component fails when the HI is 1.0. 

Instead, defining maintenance at an HI of 1 initiates a proactive 

policy to change operator behavior. The desire is to reduce the 

cost and time associated with component failure by performing 

maintenance prior to the generations of collateral or cascading 

faults. For example, by performing maintenance on a bearing 

before the bearing sheds extensive material, costly gearbox 

replacement can be avoided, and the reliability of the gearbox 

can be restored to its design requirements. 

The RUL is defined as the time from the current HI until the HI 

is greater than or equal to 1. The RUL model was based on a 

high cycle fatigue, assuming Mode 1 fracture mechanics:  

𝑑𝑎

𝑑𝑁
 =  𝐷(Δ𝐾)𝑚             (18) 

where  

• da/dN is the rate of change in the half crack length per cycle 

• D is a material constant 

• m is the crack growth exponent for steel is 4. 
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Substituting in K:  
𝑑𝑎

𝑑𝑁
 =  𝐷 (2𝜎(𝜋)

1
2⁄ 𝛼)

𝑚
𝑎

𝑚
2⁄              (19) 

Inverting and integrating to get N, the number of cycles gives: 

𝑁 = ∫ 𝑎
−𝑚

2⁄

𝐷 (2𝜎(𝜋)
1

2⁄ 𝛼)
𝑚⁄ 𝑑𝑎

𝑎𝑡

𝑎0
       (20) 

By taking a as ao to get the crack growth rate, the constants 

cancel out, leaving: 

𝑁 = −𝑑𝑁
𝑑𝑎⁄

𝑎0 − 𝑎𝑓(𝑎0 𝑎𝑓⁄ )
𝑚

2⁄

𝑚
2⁄ − 1

⁄          (21) 

Setting m to be 4, this gives: 

𝑁 =  −𝑑𝑁
𝑑𝑎⁄ × 𝑎0 × 𝑙𝑛(1

𝑎0
⁄ )                 (22) 

We substitute the measured component health (the HI) for a0, 

which is proportional to damage. The guidance is to perform 

maintenance when the HI is 1, Eq. (21), then define the RUL 

estimate. 

5. RESULTS 

The system was designed to monitor 40 Shafts, 37 Gears, 36 

Bearings, the brakes, and the starter.  

Component modifications (seeded faults) took place after the 

system installation on the vehicle. These modifications were 

intended to change the "known good" state of the vehicle to a 

compromised state of condition to validate the system 

performance. These modifications included: 

• Rotor warpage by generating high heat during hot braking 

events and degraded brake pads 

• Right rear and left front brake pads ground to minimal 

coverage  

• Degreasing of the rear prop shaft u-joint axle yoke caps to 

simulate a bad rear differential  

• Replacement of a known good starter motor with a known 

worn starter motor 

• Misalignment condition for all four tires at toe-in 0.25” 

• Installation of a faulty front differential 

 

Figure 5 Example of Monitored Components. 

5.1. Detection of Damaged Rotors  

The brake rotors were monitored to detect warping. The rotors 

under usage get hot and deform, resulting in an upward trend on 

the HI. The damage feature resulted from an increasing 1/Rev 

modulation of the rotor. Figure 6 below shows the rotor trend 

before any modification of components, during the damage 

propagation phase, and post-repair.  

The rotor damage propagated due to wear and was replaced 

when the HI was greater than 1 (intermediate maintenance event 

in Figure 6). The effects of the brake pad replacement with 

known good brake pads are seen as a drop in the HI. The Time 

Synchronous Average (TSA) and TSA Peak to Peak condition 

indicators were used for the HI.  

 

Figure 6 Example Propagating Front Rotor Fault 

5.2. Brake Pads Wear 

In conjunction with the rotors viewed as a 1/Rev issue due to 

warping, the brakes were evaluated using the envelope analysis 

to quantify energy associated with high-frequency noise from 

metal-on-metal contact. The envelope window selected was 2.5 

to 6.5 kHz.  

Beyond viewing the condition indicators on the user interface, 

the raw data was analyzed. Before any brake pad changes, a raw 

spectrum can be seen below is relatively low. After the left front 

brake pad material was removed to simulate pad damage, the 

raw data confirms the wear with much greater broadband 

energy (Figure 7). 

It is evident from the spectrum that the brake pad wear does 

increase the measured energy. This analysis can be refined with 

more data, and the sensitivity can be improved. For example, 

the envelope window that was initially selected was likely too 

low to capture "chatter" from the brake pad wear. Additional 

analysis of raw data would result in a better CI, resulting in an 

improved display on the user interface.  

For example, it was seen that both Cage Energy and Whirl 

condition indicators for the front brake pads both show a 

significant change in energy at the time the brake pads were 

replaced on the vehicle. Note that Cage and Whirl have similar, 

fractional 1/Rev rates. Whirl is usually associated with 

mechanical looseness and wear. 
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Figure 7 Effect of Data on Spectrum of Brake Pad 

5.3. Rear Differential Damage 

The rear differential was replaced with a used differential where 

the worn output bearing and race were sanded/damaged. The 

worn rear differential was left installed on the vehicle longer 

than anticipated due to data analysis issues with the rear 

differential sensor. After the 1,000-mile durability testing was 

complete, the field service representatives (FSRs) operated the 

HMMWV on the outer paved portion of the test route, so 

regimes associated with the differential acquisitions could be 

achieved. The prior differential acquisition had occurred on the 

highlighted data point shown in Figure 8, preceding the start of 

durability testing.   

Differential acquisitions occurred while the vehicle was 

traversing on a paved surface in a straight line at sufficient 

speeds. Effects of the damaged rear differential were seen in the 

data. The rear differential pinion, rear differential pinion 

bearing, rear differential drive bearing, rear differential ring 

gear, rear axle bearing, and the rear shaft output bearing jumped 

to the 'alarm' state. These components being in the 'alarm' state 

show the effects of the worn rear differential installed on the 

vehicle.  

 
Figure 8 Example Damaged Rear Differential Pinion 

There were numerous acquisitions with the worn rear 

differential installed. Where the data points drop back down to 

a healthy level signifies the worn rear differential was replaced. 

The filtered health indicator is included in the health indicator 

view. The filtered health indicator value is calculated from the 

last acquisition and reassessed whether the component is in the 

alarm, warning, or healthy state. It is used for RUL calculation. 

The rear shaft output bearing filtered health indicator is still in 

the alarm state, which drives the component icon red.  

Similarly, the Rear Differential Half Shafts damage was also 

detected. In general, seeded faults, such as the replacement of 

the nominal differential with a known damage gearset, allow for 

rapid validation of the condition monitoring techniques. 

Unfortunately, this does not allow for a fault progression and 

testing of remaining useful life (RUL, see Figure 9).  

 
Figure 9 Half Shaft Damage, Output Bearing Example 

5.4. Starter Motor Wear 

The starter was monitored with a 100% duty cycle sensor that 

recorded CIs over an "epoch," or analysis time of 5 minutes. 

The challenge with this analysis is that the truck was started 

seldom. In general, the truck ran for eight hours a day. Hence, 

successful analysis required the system to report the “start” 

event and not the energy associated with idle or driving. As 

noted, reporting is driven by the script, which depends on the 

current regime. We have not yet developed a good start regime. 

The results showed both the start event and some idle events.  

 
Figure 10 Starter Damage Progression 

 

It was found that the X-Magnitude and X-Axis RMS condition 

indicators were good indicators (Figure 10). The first 

maintenance event showed when the worn starter was installed. 
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This worn starter resulted in an upward trend that continued 

until the worn starter motor was replaced. This was a complex 

problem as one needed to record data associated with the engine 

start and not other conditions of operations. Research is 

continuing on how best to design an appropriate regime to 

capture the start event. 

5.4.1. Wheel Alignment/Misalignment 

The HMMWV BF Goodrich 37x12.5R16.5L tire has 34 lugs on 

the tread; therefore, the signal of interest is in the 34th and 68th 

harmonics, or 1st and 2nd harmonics of the tire tread lug count. 

We performed tach from vibration processing on the date 

through post-test analysis of the raw data to determine an 

analysis approach. The ratio of the 2nd harmonic to the 1st 

harmonic, the Energy Operator Kurtosis, the FM0 (Figure of 

Merit 0), and the Sideband Level Factor analysis showed 

favorable results. Much of the data acquired during durability 

testing was taken at slower speeds. It is expected that the results 

would be more remarkable when the data is gathered at higher 

speeds or data acquired on paved roads.  

The following are alignment study results obtained when 

comparing the misaligned condition acquisitions against the 

aligned condition acquisition. Note that data is not available for 

comparison on the right rear tire.  

Table 2 Left Front Tire CIs 

Analysis Misaligned Aligned 

G2 0.87402      0.26031 

Energy Operator 8.2874       5.3553 

Figure of Merit 0 52.0857       51.9092 

Sideband Level Factor 10.33004       7.4753 

 

Table 3 Right Front Tire 

Analysis Misaligned Aligned 

G2 0.97675       0.4239 

Energy Operator 8.9424         7.5664 

Figure of Merit 0 100.09       28.73282 

Sideband Level Factor 24.514 13.1556 

 

Table 4 Left Rear Tire 

Analysis Misaligned Aligned 

G2 1.1134      0.24531 

Energy Operator 6.3999       5.3472 

Figure of Merit 0 94.5        15.7416 

Sideband Level Factor 8.593       4.3605 

The aligned results for all four of these analyses are lower than 

those seen from the misaligned calculations. This will require 

additional research to optimize CIs specific for this fault 

feature. Continued research into a dedicated alignment analysis 

will continue.  

6. CONCLUSION 

The study demonstrated an IVHMS system with both seeded 

and natural faults. The system, through regime recognition, was 

able to automate data collection, analysis, and fault reporting. 

In addition to drivetrain diagnostics, the system was able to 

generate automated exceedance events which could support a 

safety management system. The drive data monitoring allowed 

for mission replay, facilitating asset protection, training, and 

mission awareness.  

In general, this system development would not have been 

successful without the ability to update configuration via the 

cellular modem remotely. While initial testing was conducted 

on typical urban roads and highways, real-world operations 

conducted on unimproved roads and trails occur at much lower 

vehicle speeds: it was challenging to get into a regime to collect 

data on the test track. Over time, regimes were shifted to lower 

speed to acquire data more often. The changes to configurations 

were made quite often as we learned how the vehicle was 

operated. Again, these updates were made remotely using the 

system's cellular modem.  

The integrated vehicle health monitoring system (Foresight 

MX) was initially developed for helicopters. In aviation, there 

is always a cool-down period for that asset after the flight, 

which allows time for IVHMS to download data. For a ground 

vehicle, the end of an operation is when the vehicle is shut 

down. Hence, for ground vehicle application, a system will need 

to hold up voltage or use its battery to support data download. 

Adding a hold battery is a future improvement that we are 

currently working on.   

Another observation was that TFV processing requires 

processing a large FFT on an embedded system. Where typical 

sensor processing was 6 to 15 seconds, TFV processing time 

was closer to a minute. The large FFT needed for TFV requires 

double precision math, which is slow on most embedded 

processors. Future systems will incorporate a more powerful 

double-precision processor to reduce the time required for 

processing.  

The success of the application resulted in a follow-on study for 

a higher asset value ground vehicle. In this next study, the 

functions of the IVHMS will be expanded to look at compressor 

and engine performance health.  
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