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ABSTRACT

Prognostics and health management (PHM) on systems such
as vehicles and marine vessels are sometimes held back by
complexities relating to data ownership and intellectual prop-
erty rights. This is particularly true when multiple Origi-
nal Equipment Manufacturers (OEMs) deliver components or
sub-systems to a customer while having an interest in mon-
itoring and maintenance of said component or sub-system.
Further, the collection of PHM data from a fleet which may
be non-uniform and spread across the globe with varying de-
grees of connectivity can be challenging from a bandwidth
and cybersecurity point of view. Federated learning may
address some of these challenges and open up new oppor-
tunities for how to approach PHM on a global and non-
uniform fleet of components or systems. In this article we
present FedChain, an approach for federated learning enabled
by blockchain geared towards standardization for increased
adoption. We discuss how a Docker based infrastructure for
data collection, storage and analysis in combination with a
methodology for tamperproofing PHM data can be a powerful
substrate for bringing standardization, trust and transparency
to federated learning implementations of PHM algorithms.
We also demonstrate a basic blockchain enabled federated
learning experiment and discuss the feasibility of applying
FedChain from the perspectives of model performance, data
privacy and security, tamper proofing and verifiability, and
robustness.

1. INTRODUCTION

Prognostics and Health Management (PHM) of system com-
ponents is increasingly employed in several industries, most
notably in the aircraft industry (Xiongzi, Jinsong, Diyin, &
Yingxun, 2011), and applications are developing rapidly. As
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an integrated technology, it utilizes sensor data and system
information/knowledge to detect anomalies, diagnose occur-
ring failures and predict the future development of failures,
i.e. estimating the remaining useful life (RUL) of compo-
nents/systems to support maintenance actions. In some cases
such analysis is mandatory for safety reasons, such as Heli-
copter Usage and Monitoring Systems (HUMS) in the North
Sea (CAA, 2014), while it is also considered an essential
technology for improving maintenance efficiency and eco-
nomics of operations. However, due to privacy and compet-
itive considerations, sensor data are usually collected, stored
and analyzed in a centralized manner depending on how the
industry stakeholders are organized. In maritime, the prevail-
ing notion is that ship owners also are the owners of data col-
lected from systems on the vessels, while OEMs, who are
often best positioned to analyze data and information from
systems they have manufactured, usually have to seek per-
mission to use such data, and data will usually not be shared
between different OEMs. As such, the full body of data
which can be of value to the industry as a whole, and in some
cases outside a given industry, are fragmented between var-
ious ship owners as well as OEMs and often with severely
limited availability to other stakeholders. Federated Learn-
ing, where various stakeholders may contribute and reap ben-
efits without having to share all their data, which in some
cases may be business critical, is a possible approach to im-
prove models and advance PHM in maritime and in general.
However, if the diverse data sources all have a single owner,
such as in case of a fleet owned by a shipping company, then
federated learning may not be necessary, a centralized model
could be appropriate, and our approach would not apply.

Federated learning was introduced in 2017 by McMahan et al.
(McMahan, Moore, Ramage, Hampson, & y Arcas, 2017) as
a decentralized learning strategy to extract value from privacy
sensitive or large sized data generated by mobile devices.
Since then, there has been interest in applying this strategy
of learning from sensitive data or data siloes in a variety of
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different problem spaces such as health (Rieke et al., 2020),
autonomous vehicles (Pokhrel & Choi, 2020) and industrial
engineering (Hu, Gao, Liu, & Ma, 2018). Federated Learn-
ing enables utilization of data from multiple sources and data
owners while preserving the privacy and intellectual property
rights of each of these, to achieve powerful models so that
each contributor may draw larger benefits than they would
from only using their own data.

In this work, we propose FedChain, a federated learning ap-
proach enabled by blockchain, where the central server is par-
tially or fully replaced by a smart contract and as such enables
a transparent and distributed way of combining siloed data
without sharing any raw data. We compare FedChain with
centralised-based training approach and local-based training
approach in terms of model performance followed by a dis-
cussion of the feasibility of FedChain from the perspectives
of data privacy and security, tamper proofing and verifiability,
and robustness.

2. DOCKER BASED INFRASTRUCTURE AND TAMPER-
PROOFING METHODOLOGY

The federated learning approach described in section 3 is de-
signed for operating on a Docker (Docker, 2022) based in-
frastructure with the capability of sharing tamperproofed data
both locally on the vessel and to shore. The modelling exper-
iment described herein is done fully locally, but is designed to
be easily deployable to Telenor Maritime’s Docker based in-
frastructure called Unified Hosting Service (UHS) or to other
similar architectures. The UHS infrastructure supports run-
ning of 3rd party docker containers, which are updated by the
client.

A challenge arising when sharing data in the maritime
industry is the lack of standard protocols and formats.
Creating standardized exchange formats such as ISO19848
(ISO19848, 2018) and Maritime Context (Maritime Con-
text, 2022) compliant data and establishing appropriate APIs
would allow microservices bundled into Docker containers to
easily exchange data and thus use multiple data sources for
a particular application.These Docker containers do not have
authority over the user’s database, but only are able to ac-
cess the data provided by the API. Docker is an open-source
technology and a container file format for developing, ship-
ping, and running applications. Docker allows users to sepa-
rate applications in the infrastructure to form smaller particles
(microservices), thereby increasing the speed of software de-
livery. The running environment of Docker images are stan-
dardized and can be deployed across different platforms. In
order to manage the lifecycle complexity arising when many
Docker containers are running, there is also a need for Docker
Orchestration technology such as Kubernetes (Kubernetes,
2022), Docker Swarm(Swarm, 2022) as well as a GUI such
as Portainer (Portainer, 2022).

Figure 1 shows the schematic of the tamperproofing method-
ology. Here, the developed microservices that offer various
functionalities are shown in rectangles, while other commer-
cial softwares are shown on the periphery. The arrows show
the direction of data flow and the microservices are shown
the the order of progression from left to right. The timeseries
data is made available to the Data Collection microservice
through the Telenor Maritime’s API in batches. The microser-
vice publishes this data to the MQTT (MQTT, 2022) message
broker. The Hash microservice subscribes to the MQTT mes-
sage broker and creates hashes for the timeseries data batches
and publishes this hash to the blockchain, in our case VeChain
(VeChain, 2022) and gets the transaction ID of the published
hash. The hash and transaction ID are sent through Azure
service bus (Azure, 2022) to the Hash MetaData microser-
vice, which saves this data to Redis for future lookup. Fi-
nally, the Data Verification microservice creates a hash for
the data to be verified and and looks up the transactionID for
that hash in Redis (Redis, 2022). This transactionID is then
found on VeChain and the hash there is compared to the gen-
erated hash. The rationale for using VeChain is discussed in
section 5. The result of this comparison is returned along with
the VeChain address and the time difference or lag between
data generation as recorded in time series data and the time of
publishing its hash to VeChain. A confidence score can be as-
signed to the data batch which is inversely proportional to the
time lag. The older the data currently being hashed, the more
time a malicious party has to tamper with it. The confidence
score will be designed in order to reflect this uncertainty.

3. FEDCHAIN: FEDERATED LEARNING APPROACH EN-
ABLED BY BLOCKCHAIN

Figure 2 shows the high level flow of FedChain, our pro-
posed federated learning approach enabled by blockchain,
which progresses through four stages. First, a global model
is initialized. Second, a subset of nodes in the network are
randomly selected to provide their local model parameters.
Each of these nodes is given necessary access, to vote on the
global model. Voting in this context means providing local
model parameters that will be aggregated and thus influence
the global model. As each node votes in a given round, vot-
ing access is revoked in order to restrict voting to those nodes
who have been selected for each round and have not yet regis-
tered their vote. The global model is updated and is available
for the next round.

Generally, in a federated architecture, a centralized server ini-
tializes the global model, chooses the contributor nodes for a
round, accepts model updates, performs the aggregation and
updates the global model. This server is also responsible for
creating and administering the rounds and handling exchange
of model parameters between the global model and each lo-
cal model. However, such centralization can introduce con-
cerns such as single point of failure and lack of transparency.
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Figure 1. Conceptual illustration of tamperproofing methodology under development. By storing hashes of newly collected
raw data as well as code or SW used for analysis/aggregation and any new data sets created, it is possible backtrace all changes
to the data and to document the full data lineage. Any future consumers of raw or analyzed data can themselves verify that data
remains tamperfree.

In order to address this, some works (Lo et al., 2021) have
proposed using a blockchain for provenance tracing of global
models with a centralized server which then performs aggre-
gations and the exchange of local model parameters off chain.
Such an architecture may reduce some of the transparency
benefits introduced by using blockchain since the aggrega-
tion is still centralized. In effect, if the central server stops
working the entire process halts.

To address the above-mentioned challenge, FedChain re-
places a centralized server with a blockchain smart contract
that provides a publicly available implementation for calcu-
lating aggregation. The smart contract state variables hold
the global model parameters. Additionally, as identities on
the blockchain are tied to their addresses, we use these iden-
tities to provide and revoke access to individual members of
the federated network. As the blockchain smart contract is de-
centralized and replicated, there is no single point of failure
or obvious attack surface for hackers. Further, as the imple-
mentation to calculate the global model is public, it allows for
additional verification by federation members.

In a maritime federated learning scenario, we may have a
large population of members. However, the potential contrib-
utors for each round may not be known in advance. Loss of
connectivity, different update frequencies as well as possibil-
ity of dropouts are all considerations when selecting contrib-
utors. The consequence of this is that federated aggregations
are expressed in a manner agnostic to the actual set of par-
ticipants. Thus, the actual selection of participants, that may
vary between training rounds is thus abstracted away from the
computation and done by another component of the infras-

tructure. A distributed application (DApp) is an application
that uses a blockchain as the backend, as opposed to a tra-
ditional application that uses a database. Such a DApp and
smart contract based architecture can provide :

• a user friendly interface to access the blockchain func-
tionality.

• trust in aggregation due to the publicly available smart
contract code, with access to update the model restricted
to privileged users.

• random selection of contributions in each round done off
chain in order to reduce complexity and cost.

The address that deploys the smart contract becomes the fed-
eration chair. The roles, responsibilities and rights of the
federation chair are different from the centralized server in
a vanilla federation scenario. The federation chair can be the
DApp if it is linked to a valid wallet. Algorithm 1 shows a
high level view of the smart contract functionalities in Fed-
Chain. Each of these functions maps to a step of the process
shown in figure 2, except the selection of the contributors for
a given round, a task that would be taken over by the DApp.
While the current aggregate global model is available at any
time, periodically, an event, UpdateGlobalModel, is gener-
ated to inform the federation members that a cycle has ended
and a new global model is created and should be updated.

4. EVALUATION

The goal of our study is to evaluate the proposed federated
learning approach enabled by blockchain (FedChain) com-
pared with 1) local model training (LMT), i.e., each client
does not share any data or model updates and only train
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Figure 2. Overview of FedChain

Algorithm 1 FedChain
coordinator  msg.sender;
procedure GIVEVOTINGRIGHTS(voter)

Require: msg.sender == coordinator
edges[voter] = true;

end procedure
procedure REGISTERVOTE( local � parameters)

Require: edges[msg.sender] == true
global FedAvg(local � parameters);
edges[voter] = false;

end procedure
procedure UPDATEGLOBALMODEL

emit updateGlobalModel;
end procedure

models with their own data locally; and 2) centralised-based
model training (CMT), i.e., each client shares and updates all
their training data to a centralised server, which trains model
and distributes the updated model to each client for further
usage (e.g., prediction). We first conduct a case study with
the aim of comparing the model performance (measured by
model score defined in Section 4.2) among FedChain, LMT
and CMT. With such case study, we aim to address the fol-
lowing research questions:

RQ1: Does FedChain perform better than LMT?

RQ2: Does FedChain achieve equivalent performance com-
pared with CMT?

Furthermore, we discuss the feasibility of FedChain com-
pared with LMT and CMT from three perspectives in Sec-
tion 4.4, i.e., data privacy and security, tamper proofing and
verifiability, and robustness.

4.1. Data sets

In the maritime domain, batteries have been increasingly ap-
plied in both fully electric vessels and hybrid vessels in com-
bination with combustion engines. As a result, understand-
ing how battery capacity behaves over time (i.e., battery state
of health estimation) is increasingly sought after (Vanem,
Salucci, Bakdi, & Øystein Åsheim Alnes, 2021). This case
study focuses on battery capacity estimation and employs lab-
oratory battery cycle test data sets with the aim of evaluating
the performance of FedChain, LMT and CMT. With these
data sets, the objective is to train an optimal model (using
FedChain, LMT and CMT) and estimate battery cell capacity
with the model when a specific cycle number and tempera-
ture are given. More specifically, these data were collected
from 27 battery cells and thus in total 27 sets of data were
obtained. Each data set includes three columns, i.e., cycle
number, temperature (i.e., ranging from 10°C to 40°C) and
capacity measured with ampere hour (Ah). Figure 3 visual-
izes a data sample of the data set employed for cell No. 1,
which we can observe that the battery cell capacity decreases
when the number of cycle tests increases (e.g., the capacity
drops to 59.908 Ah after the battery cell has been cycled with
480 times). Note that each battery cell is treated as an inde-
pendent client when applying FedChain, LMT and CMT and
thus we have 27 clients in total. Also, the data set for each
cell is divided into two parts, i.e., 80% for the training data
set and 20% for the test data set.

4.2. Model setting and evaluation mechanisms

To address the above-defined research questions, this study
employs a linear regression model as the training model for
FedChain, CMT and LMT and the formula for such model
is shown as below. The goal is to obtain an optimal set of
parameters (i.e., ↵1, ↵2 and �) for the model based on the
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Figure 3. Data sample for cell No. 1 with the temperature 25°C

training data and estimate battery cell capacity with the model
when a new cycle number and temperature are provided. It
is worth mentioning that the various temperatures has been
configured for cycle tests of different battery cells, e.g., 25
°C is set for the cycle test of cell 1 while 40°C is set for cell
5.

Capacity = ↵1⇤CycleNum+↵2⇤Temperature+� (1)

To evaluate the performance of FedChain, CMT and LMT,
the metric model-score (MS) is employed (scikitLearn,
2019), i.e., MS returns the coefficient of determination of the
prediction. More specifically, MS can be calculated using the
following formula.

MS = 1� u

v
(2)

where u is the residual sum of squares
X

(capacitytrue � capacitypred)
2 (3)

while v is the total sum of squares
X

(capacitytrue �mean(capacitytrue))
2 (4)

Note that capacitytrue indicates actual capacity in the data
set given a specific cycle number and temperature while
capacitypred refers to the predicted/estimated capacity based
on the trained model when inputting a cycle number and tem-
perature. A higher value of MS demonstrates that the ap-
proach has a better performance to predict/estimate battery
capacity when a cycle number and temperature is given and
the best possible value for MS is 1, i.e., the approach can pre-

dict/estimate an accurate battery capacity for the entire train-
ing data set.

We have implemented FedChain, CMT and LMT based on
two commonly-applied frameworks Flower (flower, 2022)
and VeChain (VeChain, 2022) and a set of MS values (one
value for each battery cell and in total 27 values) will be ob-
tained for each approach. To compare the obtained results,
the statistical t-test (Mcdonald, 2009) is employed to deter-
mine if there is a significant difference of the results (i.e., MS
defined as above) between FedChain and CMT, and between
FedChain and LMT. The significance level is set as 0.05, i.e.,
there is a significant difference between two approaches if the
p-value calculated from t-test is 0.05 or lower.

4.3. Results

The figure 4 illustrates the achieved model-scores (MS) for
FedChain, LMT and CMT, where we can observe that some
of the local models performed worse than the other local mod-
els, e.g., linear regression model for battery cell no. 7 only
managed to achieve 0.01 of MS with its own data locally.
However, employing FedChain and CMT, the MS values for
this cell were improved to 0.43 and 0.49, respectively, which
indicates that the quality of the model was largely improved
with the assistance of FedChain (sharing model updates) and
CMT (sharing training data). From the figure, we also ob-
served that linear regression model performed quite badly for
at least five battery cells (i.e., cell no. 1, 7, 10, 17, 21) while
these models have been largely improved when employing
FedChain and CMT.

Furthermore, the average values of MS for LMT, FedChain
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Figure 4. Results of MS for LMT, CMT and FedChain

and CMT are 0.774, 0.793 and 0.835, respectively, which in-
dicates that CMT performed the best. We can also observe
that FedChain managed to obtain higher average value of MS
than LMT, showing that FedChain was able to improve the
quality of trained models in general compared with LMT, es-
pecially for the cells performing badly (e.g., cell 1, 7, 10, 17,
21). The p-values of t-test between LMT and FedChain, and
between FedChain and CMT are 0.79 and 0.39, respectively.
The results showed that there was no significant difference
of the MS results between LMT and FedChain, and between
FedChain and CMT.

Based on these results, we can answer the two research ques-
tions as follows:

RQ1: As compared with LMT, FedChain can help to improve
the model quality for certain number of cells while it can not
significantly improve the model when considering all the bat-
tery cells;

RQ2: CMT achieved the best performance in terms of MS
when compared with FedChain and LMT without significant
difference, which indicates that FedChain can manage to ob-
tain equivalent performance as CMT.

4.4. Discussions

In this section, we discuss the feasibility of FedChain com-
pared with LMT and CMT in terms of the following three
perspectives, i.e., data privacy and security, tamper proofing
and Verifiability, and robustness.

Data privacy and security is of paramount importance in re-

cent decades, where business/personal data should be well
preserved and protected. However, such essential points
have been neglected by traditional ML techniques (e.g.,
centralised-based ML approaches), where users’ data re-
quires being uploading to central servers for model training
(Mothukuri et al., 2021). Federated learning (FL) (Aledhari,
Razzak, Parizi, & Saeed, 2020) has been widely considered as
a new paradigm of AI techniques where models are trained on
client sides (rather than on central server side) so that users’
sensitive data can be decentralised to avoid being shared
among clients. Instead of directly sharing data, FL shares
local ML model updates/parameters from each client with a
global ML model that takes local models’ updates as input
for model tuning. When tuning is done, tuned updates will
be distributed to each client for further model training. How-
ever, when local models communicate model updates with
the global model, there is a chance that model updates can
be tampered by ’unknown’ organizations, which poses chal-
lenges for privacy and security for clients in terms of local
models and even data. FedChain is proposed to address such
challenges by integrating blockchain and FL, i.e., blockchain
is used to ensure that model updates from each client or tuned
updates from the global model can not be tampered any-
time. Therefore, as compared with LMT (local training) and
CMT (centralised-based training), FedChain offers a power-
ful means to preserve user privacy and enhance security by
decentralising users’ sensitive data and ensuring updates of
local models tamper-proof.

Tamper proofing and Verifiability In FedChain, the model
parameters are immutably stored in the blockchain, thus en-
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suring non-repudiation and tamperproofing. Contributions
are linked to the VeChain address, and aggregation code is
open, so a contributor can verify that their contribution has
changed the global model as expected. Similarly, due to
provenance tracing offered by the blockchain, it is possible
to verifiably trace the change in value. Spamming by par-
ticipants is not a major concern here, as the participants are
authenticated. Moreover, the right to contribute in a given
round is explicitly assigned to the chosen participants and is
revoked as the participant votes.

Robustness Learning collectively over diverse usage profiles
will make models more generalizable. The global models ,
over several learning iterations get exposed to a significantly
wider range of data that what is available to any one local
model. As the models are trained collaboratively using a large
amount of data, it also makes it more robust against single
anomalous data points. However, centralization of data as in
CMT is not only undesirable from a privacy point of view but
also can use up available connectivity, a scarce resource for
ship to shore communications. Moreover, as models are local,
it makes real time prediction possible as the time lag result-
ing from transmitting raw data to a server and getting results
back is eliminated. Local models continue to function even
through loss of connectivity. A hybrid version of CMT could
be considered where the centralized model is downloaded to
function locally, but this configuration would still have the
requirement of shipping all data over to the server, while not
benefiting from locally generated real time data until such a
time when the round trip of data and model parameters to and
from the server is completed, relying heavily on the respon-
siveness of the server.

5. BARRIERS AND MITIGATION

Digitalization has seen an uptick in areas that traditionally re-
lied on paper based documentation. The maritime sector has
similarly shown increased interest in employing edge com-
puting, data driven techniques and distributed ledger tech-
nologies for efficiency gains and cost savings in existing
businesses and for creating new services (Sanchez-Gonzalez,
Dı́az-Gutiérrez, Leo, & Núñez-Rivas, 2019). Regulatory sup-
port for such digitalization has also been promising, as seen
for instance in Singapore with the legal equivalence of elec-
tronic bills of lading (eBL) to traditional paper based ver-
sions (MPA, 2021a). Notably, TradeTrust (MPA, 2021b) is
a digital utility comprising a set of globally accepted stan-
dards and framework to enable trusted interoperability of
electronic documents, including eBL, through the integra-
tion of blockchain as an immutable ledger for record keep-
ing, traceability and validation of such electronic documents.
However, studies (Zhou, Soh, Loh, & Yuen, 2020) based on
interviews with stakeholders have identified cost, complexity,
lack of technical knowledge and unclear benefits as barriers
for widespread adoption of such services. Federated learning

relies on active collaboration between several participating
entities, making adoption vital to the success of implemen-
tation. Thus our approach for federated learning enabled by
blockchain will be discussed in the context of these barriers.

Consider a ship owner who would like to extract value from
the data generated by on-board batteries. Such monitoring
and analysis can can support planning of maintenance and re-
placement of batteries, performance modelling based on cur-
rent State of Health or for safety purposes. However, the
possibility of undetected tampering of the data, whether by
dishonest or malicious actors or by accident, can severely un-
dermine trust in the data and downstream services relying on
it. Moreover, if this data is used for mandatory reporting or
auditing to satisfy regulations, it must be possible for class so-
cieties to verify the provenance as well as veracity of the data.
Blockchain can be used in order to bring verifiable trust to the
data exchange value chain. However, there is technical com-
plexity attendant in setting up such a solution for immutable
tamper proof data for individual ships and their consumers.
The containerized infrastructure described in section 2 would
help develop a modular, extensible, standardized and replica-
ble solution, thus alleviating complexity for the ship owner.
Moreover, in order to implement a federated learning frame-
work, such standardization would be vital for interoperability
between multiple on board battery systems.

Cost was identified as a barrier, and potential for cost sav-
ings, a promoter for adoption of such a service. So, we now
discuss the costs associated with the smart contract use. On
public blockchain platforms, there are generally costs asso-
ciated with transaction processing. This allows the platform
to compensate the authority nodes for transaction processing
and acts as a deterrent to parties who would otherwise in-
undate the platform with transactions. These costs can vary
widely with factors external to the smart contract, such as
with the platform in question as well fluctuations in price of
tokens that must be spent to process transactions. Computa-
tion costs, storage costs as well as certain fixed costs depend-
ing on type of transaction may be incurred. High transac-
tion costs and unpredictability associated with such costs can
make it difficult to plan operating expenses and may be a deal
breaker.

There are many public blockchains in existence but Bit-
coin (Nakamoto, 2008), Ethereum (Buterin, 2014) and
VeChain(VeChain, 2022) are among the most famous. On
Bitcoin and Ethereum however, the token used to pay for
transaction processing is also a publicly traded asset. Thus,
the price of transaction processing in these platforms is highly
volatile. VeChain, however has a two token system, wherein
VET tokens are traded crypto assets and VTHO tokens are
used to pay for transaction processing, thus stabilizing the
transaction costs. VET holders generate VTHO, thus by
holding VET, they are able to use the network for free and
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sell excess VTHO for other users to purchase. Moreover,
the immutability of transactions is one of the most attractive
features of blockhain. However, the possibility of ledger
forks calls into question the finality, thus immutability of
posted transactions. Ledger forks are divergent ledgers that
occur when participants of the network have a different
view of finalized transactions. Both Ethereum and Bitcoin
have had ledger forks in the past, in part due to their prob-
abilistic consensus algorithms. Moreover, they rely on a
highly computationally intensive consensus algorithm called
Proof of Work, where nodes called miners race to solve a
cryptographic puzzle to win the right to add the next block,
expending tremendous amounts of electricity. For instance,
Bitcoin mining consumes around 91 terawatt-hours of elec-
tricity annually, which represents 0.5 % of all electricity used
globally (Jon Huang & Tabuchi, 2021).

VeChain, achieves consensus using a Proof of Authority
based algorithm called SURFACE, an acronym for Secure,
Use-case adaptive, and Relatively Fork-free Approach of
Chain Extension. The key feature of SURFACE, as suggested
by the name, is its focus on relatively fork free ledgers for en-
terprise scale networks. VeChain was also certified by the
Centre Testing International Group Co. Ltd. (VeChain, 2021)
as one of the greenest public blockchains in existance. Due
to these reasons FedChain uses VeChain as the blockchain
platform.

Transaction costs in VeChain are calculated in two stages.
Equation 5 shows the formula for calculation of intrinsic gas
cost gintrinsic. This is the gas consumed by the transaction
before any code runs. In simple terms, this is a constant trans-
action fee, plus a fee depending on transaction type, plus a fee
for the size of input data for the transaction.

gintrinsic = g0 + gtype + gdata (5)

gdata = 4 ⇤ nz + 68 ⇤ nnz (6)

Here, g0 is the constant transaction fee, currently set to 5,000
gas. gtype is 16,000 for a regular transaction, while it is
48,000 for contract creation. Finally, gdata is calculated as
shown in equation 6. Here nz is the number of bytes equal to
zero within the data in the clause and nnz the number of bytes
not equal to zero. Beyond, intrinsic transaction costs, for a
transaction to be run, a cost gvm is incurred for the VeChain
virtual machine that executes it. Moreover, as VeChain sup-
ports a multi clause transaction, equation 7 presents gtotal,
the total gas cost of a transaction execution, including multi
clause transactions, where i is the number of clauses. Note,
total cost also includes the intrinsic cost.

gtotal = g0 +
nX

i=1

gitype + gidata + givm (7)

Equation 8 translates the gas cost into gas price, where pbase

is set to 1 VTHO per Kgas and � is the value of field
GasPriceCoef which is the bounded interval between 0-255.
GasPriceCoef is used to adjust the priority of a transaction in
the transaction pool.

ptotal = pbase + pbase ⇤ �/255 (8)

At the time of writing, 1 VTHO costs 0.001862 USD (Yahoo-
Finance, 2022c), which is an order of magnitude lower
than costs for Ethereum (Yahoo-Finance, 2022b) or Bitcoin
(Yahoo-Finance, 2022a), thus making it a much more cost
effective choice.

Thus, in this work we propose an integrated infrastructure
for data management in order to ease implementation in real
life scenarios, thus addressing the identified barriers relating
to complexity, lack of technical knowledge and cost. Fur-
ther, we use this trusted data for federated learning with value
chain spanning tamper proofed architecture.

6. REMAINING CHALLENGES AND FUTURE WORK

From this work, several interesting research questions arise.
Federated learning is organized into rounds where clients are
chosen to contribute to a specific round. However, this can
be complicated when clients have different update frequen-
cies and granularity of data collection. Similarly, due to the
nature of connectivity in marine environments, some clients
may drop out temporarily. In these cases, the structuring and
enforcement of rounds is challenging.

Model quality metrics can be difficult to establish without di-
rect access to datasets. However, attribution techniques can
be investigated, which can give an understanding of which
contributions improve the global model. Based on this un-
derstanding, the federated averaging can be replaced by a
weighted average, giving higher weights for better models or
those trained on more instances. Incentivization and gamifi-
cation techniques can be then incorporated to engage and en-
courage contributors. Such weighting can also be considered
on the local model itself, to personalize the global model. An-
other possibility could be to cluster battery systems based on
usage profiles, whether calculated or self-reported and create
separate federations for each of these clusters. Finally, in or-
der to prevent leakage of information about the training data
set from the weights and parameters of the trained model, we
can incorporate secure multi party computation and differen-
tial privacy. However, such techniques often have a high com-
munication and computation cost, which may not be suitable
for a maritime environment having to contend with limited
data rates, low coverage or expensive setups.
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