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ABSTRACT 

This study presents a framework to assess the effectiveness 

of various health indicators (HIs) used to monitor the state of 

health (SOH) of a brake rotor health monitoring system. The 

following criteria were used to rank various health indicators: 

(i) Identifiability: Correlation of the HI with the Ground 

Truth (GT); (ii) Compactness: Mean of the standard deviation 

of the estimated SOHs; (iii) Robustness to Noise Factors: An 

HI is considered robust when it meets all functional and 

customer requirements under all operating conditions and its 

performance is not affected by the variations in the 

environment, operating conditions or other factors impacting 

the performance in an undesired way (noise factors); (iv) 

Monotonicity: To quantify the monotonic trend in HIs as the 

fault level increases from healthy baseline to the most severe 

faults. Monotone HIs are preferred as they will likely 

generalize better to data not used in development; and (v) 

Estimation Error: The average relative error between the GT 

and the prediction obtained from the regression analysis. 

Results showed that this framework can be applied to several 

HIs derived from performing time and frequency analysis on 

various sensor signals used to monitor the health of brake 

rotors. Top HIs selected based on this framework provided 

the best performance in detecting degraded brake rotors as 

evidenced by higher classification score. 

1. INTRODUCTION 

The advantages of prognostics and health management 

(PHM) include increased safety and reliability, reduced 

collateral damage, lower logistics costs, avoiding 

unnecessary service and enabling efficient maintenance 

scheduling. Metrics are needed to quantify the performance 

of PHM systems to ensure that the developed solution meets 

the performance requirements. This is especially true in 

safety-critical settings, where accurate fault PHM is crucial 

to maintaining system safety. Performance metrics can also 

aid in developing PHM algorithms by enabling comparison 

of alternative approaches. 

For clarity, in this paper, the term Health Indicator (HI) is 

defined as a “feature” derived from raw signals. In other 

publications and nomenclature, the term Condition Indicator 

(CI) is used to refer to the same “feature”. Numerous methods 

to construct an HI (e.g. choice of signal, pre-processing, 

manipulation, post-processing, fusion and calibration) could 

impact the performance of the algorithm and results in 

variations in the outcome of a prognostic solution. The 

number of HIs to be used in algorithm development could 

easily add up to hundreds of features and without defining 

performance metrics, it would be a tedious task to manually 

go through all of them and decide which one is the best. 

Specially, where an improvement in one factor, comes at a 

cost of another factor. Therefore, it is valuable to define 

objective metrics, link relevant ones to customer/technical 

requirements and use an objective framework to select the top 

HIs. 

In the automotive industry, there are various stakeholders 

within a vehicle health management (VHM) organization that 

may define requirements for a PHM system. These include 

engineers, fleet managers, service personnel, customers, 

regulatory bodies, and program managers, for example. 

VHM has different goals and expectations for each 

stakeholder, and it is important to assess the needs of PHM 

solutions with respect to different perspectives. Program 

managers have to maintain high customer expectations and 
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evaluate the cost-benefit tradeoffs of PHM. Fleet managers 

need to monitor fleet health to enable mission planning with 

minimal down time. Engineers must design components and 

systems to meet performance requirements that likely include 

a maximum acceptable rate of failure. Service personnel need 

to schedule maintenance often enough to prevent in-service 

failures, but not too often to result in expensive and 

unnecessary maintenance. Early fault detection and isolation 

is key in addressing all of these perspectives (Saxena, Celaya, 

Saha, Saha, and Goebel 2010). 

There are a number of research works on HI construction and 

evaluating the suitability of HIs for prognostics (see  Lei, Li, 

Guo, Li, Yan, and Lin (2018) for a review). Various 

prediction performance metrics have been introduced in the 

literature covering a wide range from algorithm performance 

to computational and cost-benefit metrics (Vachtsevanos 

(2003), Banks and Merenich (2007), Saxena, Celaya, 

Balaban, Goebel, Saha, Saha, and Schwabacher (2008), 

Saxena, Celaya, Balaban, Saha, Saha, and Goebel (2009), 

Feldman, Kurtoglu, Narasimhan, Poll, and Garcia (2010), 

Coble (2010), Yang, Habibullah, Zhang, Xu, Lim and 

Nadarajan (2016)). Different researchers have used and 

suggested different metrics depending on the application, the 

end user and the requirements. Some of these performance 

metrics are in competition with each other (Coble 2010). 

Basic metrics are often transformed to more complex metrics 

which reduces the chance of being adopted by the 

practitioners resulting in not having a standardized set of 

metrics to be used for comparing various algorithms.  

One of the main challenges when developing a PHM system 

is in identifying a set of health indicators (HIs) that may be 

used to assess component health. An HI is any feature that is 

designed to represent the health condition of the unit under 

test. These are parameters extracted from pre-processed 

signals and may employ any number of signal processing 

techniques (e.g. detrending, filtering, time-synchronous 

averaging, domain transforms, calculating RMS, kurtosis, 

skewness, envelope, order analysis, etc.). 

In this paper we first introduce a framework to rank various 

health indicators used for early fault detection and 

identification. It is important to note that the proposed 

framework is applicable to the health monitoring of the 

chassis components (e.g. brake rotors, wheel bearing, etc.) 

The goal is to formulate a framework that can be used in 

selecting the best candidates from a large set of HIs that may 

be used to detect faults in a component. The large set of HIs 

under study may include HIs generated from different 

signals, as well as HIs generated from the same signal using 

different pre- or post-processing techniques. Emphasis is 

placed on quantifying algorithm performance. 

The criteria proposed to rank HIs include identifiability, 

variability, sensitivity to noise factors, monotonicity and 

estimation error. 

Then, a case study related to a brake rotor health monitoring 

system is presented in which the rank health indicator 

framework was applied to hundreds of health indicators 

derived from performing time and frequency analysis on 

three signals of interest to monitor the health of brake rotors. 

Processing techniques such as derivative, detrend, variance, 

envelope, order analysis, and correlation were applied to 

these signals in both time domain and phase domains to 

generate HIs to differentiate between healthy and faulty 

rotors. The HI ranking framework is applied to identify the 

best HIs in terms of source signal and signal processing 

method, enabling selection of the best HI for deploying an 

early fault detection algorithm. 

2. MATERIALS AND METHODS 

In order to identify a set of metrics that can be used to assess 

the performance of an HI, we must first understand the 

application and determine what characteristics of an HI is 

desired. For the brake rotor health monitoring system, if the 

goal is to formulate the problem as a regression problem and 

estimate the rotor thickness variation, then a good HI is one 

that can estimate the Health Stage (HS) of the brake rotor 

with smallest error. Deviations from the identity, in the form 

of either bias or variance, will degrade this HI. An HI with 

high variance but low bias will still be useful for estimating 

HS, albeit with some degree of error. An HI with high bias 

but low variance may not be as useful for estimating HS but 

may serve as an excellent feature for a classification 

algorithm if the HI maintains monotonicity with increasing 

health states.  

On the other hand, we can also consider the characteristics of 

a bad HI. Obviously, an HI that is constant will not be useful 

for any fault detection or health state estimation. At the very 

least, an HI must have statistically different values for 

different health states. With these qualitative ideas in mind, 

we can describe the five metrics we propose for quantifying 

HI performance. 

2.1. Performance Metrics 

The following criteria could be beneficial in characterizing 

the performance of an HI:  

Identifiability: 

This metric measures the correlation between HI and HS. If 

an HI is a good indicator of HS, the correlation between the 

two will be high. This metric captures the ability of the HI to 

identify different HSs. An HI with higher correlation to the 

HS is desired. Note that this is the most basic indication that 
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an HI will be promising for detecting faults, as correlation 

directly measures if a change in the HS results in a change in 

the HI, a necessary feature for fault detection. The 

Identifiability metric was calculated by obtaining the Pearson 

correlation coefficient between arrays of HI and HS using the 

algorithm in Eqn. 1, where 𝐻𝐼̅̅̅̅  and 𝐻𝑆̅̅ ̅̅  represent the mean of 

HI and HS respectively where m and n represent the length 

of HI and HS respectively. 

𝐼𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦

=  
∑ ∑ (𝐻𝐼𝑚𝑛 −  𝐻𝐼̅̅̅̅ )(𝐻𝑆𝑚𝑛 − 𝐻𝑆̅̅ ̅̅ )𝑛𝑚

√(∑ ∑ (𝐻𝐼𝑚𝑛 − 𝐻𝐼̅̅̅̅ )𝑛𝑚
2

)(∑ ∑ (𝐻𝑆𝑚𝑛 −  𝐻𝑆̅̅ ̅̅ )𝑛𝑚
2
)

 (1) 

Monotonicity: 

Another significant requirement of a good HI is 

monotonicity. As fault level increases, so should the HI. 

While this is partially captured by correlation, a more direct 

metric of deviation from monotonicity helps identify HIs 

with strong correlation at extreme values, but weak 

correlation in intermediate value. Note that monotonicity is 

mostly an important quality for an HI for an irreversible 

component degradation process, assuming system damage to 

be cumulative. It is important to note that although 

monotonicity is generally expected but not guaranteed in 

every system. If a component goes under self-healing, the 

appropriate HI to model such behavior would be non-

monotonic (Coble and Hines 2009), however this is not a 

valid assumption for most systems.  Also, some systems may 

show localized self-recovery, or because of undesirable noise 

that cannot be eliminated, may lead to non-monotonic 

behaviors. In addition, for intermittent faults, monotonicity 

may not be required. Therefore, one might factor in the 

underlying assumptions for the degradation before applying 

this metric. The formulation of monotonicity is given by Eqn. 

2. 

Monotonicity =
1

𝑛
∑ 1𝑚𝑖

𝑖−1<0 ∗ |𝑚𝑖
𝑖−1| ∗ (𝐻𝑆𝑖 − 𝐻𝑆𝑖−1)

𝑛

𝑖=1
 

where 

𝑚𝑖
𝑖−1 = median({𝐻𝐼}𝑖) − median({𝐻𝐼}𝑖−1) 

(2) 

and 

𝐻𝑆0 = 0, {𝐻𝐼}0 = {0}  
 

In Eqn. 2, 𝑛  is the total number of health states that 

experimental data is collected at, 𝐻𝑆𝑖  is the ground-truth 

health state of experiment 𝑖 , and {𝐻𝐼}𝑖  is the set of health 

indicators calculated for experiment 𝑖. Note that 𝐻𝑆 is sorted 

so that 𝐻𝑆𝑖  is larger than 𝐻𝑆𝑖−1. 1𝑚𝑖
𝑖−1<0 is 1 only when 𝑚𝑖

𝑖−1 <

0, otherwise, it's 0. Since 𝐻𝑆  is sorted increasing, 1𝑚𝑖
𝑖−1<0 

should be 0 if 𝑚𝑖
𝑖−1 > 0.  This metric was derived to penalize 

negative slopes between median HIs when plotted as a 

function of HS. A value of 0 indicates a perfectly monotone 

HI, and any non-zero value is a measure of deviation from 

monotonicity. 

Linearity:  

The ideal HI is one that accurately estimates HS with no bias. 

An HI may have high identifiability and monotonicity, but if 

it yields a high error bias versus the HS (for example, by 

having a logarithmic trend vs. HS) will not present as much 

value as an HI with ideal linearity. 

The formulation used for linearity is given by Eq. 3 below. 

𝐿𝑖𝑛𝑎𝑒𝑟𝑖𝑡𝑦 =  √∑
(𝐻𝑆𝑖 − median({𝐻𝐼}𝑖))2

𝑛

𝑛

𝑖=1
 (3) 

This captures the deviation of the median HI estimates from 

the ideal HI. 

Compactness: 

While identifiability, monotonicity and linearity capture the 

tendency of an HI to trend with HS, they are missing an 

assessment of the consistency of an HI for a given HS. 

Ideally, HI estimates for a constant HS will have a small 

variance. It has been observed that HIs often display 

heteroskedasticity, and variance tends to grow as the 

underlying fault worsens. Therefore, the measure of 

variability we employ is the average relative variance of the 

HI, captured by Eqn. 4. 

𝐶𝑜𝑚𝑝𝑎𝑐𝑡𝑛𝑒𝑠𝑠 =  
1

𝑛
∑

𝑠𝑡𝑑({𝐻𝐼}𝑖)

𝐻𝑆𝑖

𝑛

𝑖=1
 (4) 

Estimation Error: 

Finally, an overall summary metric of the predictive power 

of an HI is the mean absolute percentage error (MAPE) 

between an HI’s estimation and the ground-truth HS. The 

lower estimation error indicates more suitable HIs. The 

formulation for estimation error is presented in Eqn. 5. 

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛 𝐸𝑟𝑟𝑜𝑟 =  
1

𝑁
∑

|𝐻𝐼𝑘 − 𝐻𝑆𝑘|

𝐻𝑆𝑘

𝑁

𝑘=1
 (5) 

Here, 𝑘  is the index of a single output sample from the 

algorithm, 𝐻𝐼𝑘  is the calculated health indicator, and 𝐻𝑆𝑘 is 

the ground truth health state for sample 𝑘.  

In some senses, this metric combines the linearity and 

robustness metrics, and it is true that an HI that scores well 

in estimation error must also score well in both linearity and 

variability, and vice-versa. It must be recognized, however, 
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that an HI with strong robustness but poor linearity may still 

be a very strong candidate, especially for a binary fault 

detection algorithm in which separation of health states is 

important but prediction of health state is not. This possibly 

indicates that a regression is required to map the HI to a more 

linear form. 

Robustness/Sensitivity to Noise Factors:  

Control and noise factors affect the response of the systems. 

It is important to select an HI that will give high performance 

of the PHM system in all possible operating conditions. In 

automotive, for example, it will be required for an HI to 

exhibit strong performance regardless of road surface, 

outside temperature, vehicle age and condition, and 

passenger load. SOH estimates across two levels of each 

noise factor were compared using paired sample t-test or 

Wilcoxon Signed Rank test if the normality assumption of the 

population is violated. In a recent study we proposed methods 

to quantify robustness of HIs as we investigated the impact 

of tire type, tire pressure, and vehicle mass on a brake rotor 

health monitoring system (Kazemi, Garner, Drame, Du, and 

Sadjadi 2021). HIs that are robust to noise factors will have 

higher overall performance and thus it is important to choose 

features or HIs that are robust. 

Other metrics that were considered but not included in this 

study were: computational cost, memory cost, number of 

interfaces and inputs, and calibration complexity. These 

metrics are important considerations for production 

implementation of an HI but are not related specifically to HI 

performance and are therefore out of the scope of this 

framework. 

2.2. Normalization Approach 

In the interest of comparing multiple health indicators to 

select the best candidate, it is useful to normalize all metrics 

to a similar scale so they can be compared. This section 

explains a normalization approach that was used to scale and 

shift the metrics used for ranking HIs to the range from zero 

to one, where 0 is the least suitable HI and 1 is the ideal HI. 

The metrics then can then be averaged, possibly with 

different weighting, to calculate an overall relative 

performance score for each HI.  

Of the five metrics proposed, only identifiability is bounded 

by definition. This metric can be simply normalized by the 

classic approach in Eqn. 6 below, which maps the maximum 

value to one and the minimum value to 0, with a linear 

relationship in-between. This is the simplest way to 

normalize this metric but other normalization approaches 

could also be applied. 

𝑦 =
𝑥 − min (𝑥)

max(𝑥) − min (𝑥)
 (6) 

The other four metrics are bounded below by zero, 

unbounded above, and the goal is to minimize them. Eqn. 6 

is not suitable for normalizing these metrics due to the 

unbounded nature of the calculation. Any HIs with extremely 

poor results (and therefore large values) will skew the 

normalization. A slight adaptation that limits the influence of 

a wide tail on these metrics is applied, as described in Eqn. 7. 

𝑦 = {

𝑥 − 𝑡

0 − 𝑡
;  𝑥 < 𝑡       

  0        ; 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (7) 

Where 

𝑡 = 𝑝𝑟𝑐𝑡𝑖𝑙𝑒(𝑥, 100 − 𝛼)  
 

 

Figure 1. Comparison of normalization approaches for 

experimental monotonicity results. 

 

 

In this normalization approach, a percentile threshold 𝛼 ∈

[0, 100] is chosen such that any value worse than the bottom 

𝛼 percent will be mapped to zero. A perfect score of zero will 

be mapped to 1, and anything between zero and the threshold 

𝑡 will be linearly scaled between 0 and 1. 
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Figure 1 shows a comparison of the two normalization 

approaches for the monotonicity metric. The plot of the raw 

metric demonstrates the problem, in which the outlier at 50 is 

skewing the normalization by Eqn. 6 to give nearly all HIs a 

perfect score of 1. Normalization by Eqn. 7 yields a more 

evenly distributed set of scores, with any HI in the bottom 

third (𝛼 = 33) of monotonicity score taking a normalized 

score of 0. 

2.3. Case Study - Application in Brake Rotor 

Prognostics 

In our previous work (Kazemi, Du, Drame, Dixon, and 

Sadjadi (2019), Du, Mai, Kazemi, and Sadjadi (2020) 

Jalaliyazdi, Garner, Sadjadi, and Kazemi (2021)), we 

developed a methodology to monitor the health of brake 

rotors and generated health indicators to differentiate 

between a healthy brake rotor and a degraded rotor due to 

thickness variation. In this paper, we demonstrate the 

application of the rank HI framework to that study to 

demonstrate the effectiveness of such framework in selecting 

the best performing features. The following briefly discusses 

the brake rotor fault detection methodology, experimental 

setup, fault injection and data collection and features 

generated based on the signals of interest. 

2.3.1. Experimental Setup and Data Collection  

To create faulty rotors, healthy rotors were machined to 

produce varying levels of thickness variation. “first order” 

and “2nd order” rotor thickness variation (RTV) fault profiles 

were generated. A first-order RTV profile has one maximum 

thickness and one minimum thickness. The thickness vs. 

angle curve approximately resembles a single period of a 

sinusoid. A “second-order” faulty profile was also injected 

which has two maxima and two minima, approximately 

resembling two periods of a sinusoid. In total, 25 faulty rotors 

were created.  

 

Figure 2 Explored Health Indicators. 

Over 2000 vehicle level road tests were conducted, and data 

was collected using multiple GM production vehicles. In 

total, 2359 data sets were generated.  165 test cases were 

conducted with healthy rotors (i.e. RTV = 5-15 µm) and the 

remainder of the tests were performed with faulty rotors with 

varying levels of RTV in the range of 20 to 180 µm. 

The main signals of interest that were recorded were Master 

Cylinder Pressure (MCP), Longitudinal Acceleration (AX), 

Vehicle Speed (VS), Wheel Speed (WS), and Brake Pedal 

Position (BPP). CANalyzer was used to record CAN signals 

at the rate of 100 Hz. Data was analyzed using MATLAB 

2017b.  

2.3.2. Health Indicators 

Various combination of pre-processing (e.g. detrend, 

derivative, phase domain transformation), and post-

processing (e.g. variance, envelope, skewness, kurtosis, 

amplitude of average order spectrum) methods (Kazemi et al. 

2019) were applied to MCP, WS Sensor and AX in both time 

and frequency domain which resulted in generating hundreds 

of health indicators. Regression analysis were then performed 

on these features to model the wheel RTV. To keep the focus 

on the rank HI framework, and for illustration purposes only 

the results from regressing the HIs to front left wheel RTV is 

presented.  

Error! Reference source not found. summarizes the 

explored signal processing methods. Examples of the features 

generated include: The median difference between the upper 

and lower envelope of detrended MCP during brake, local 

peak of the order amplitude spectrum of the detrended AX at 

various harmonics (e.g. orders 1, 2, 3, etc.) during brake and 

non-brake actions, the envelope of the wheel angular velocity 

during brake, etc. 

Two parameters needed to calculate each of the metrics 

introduced in Section 2.1, are HI and HS. HI is the feature or 

health indicator discussed in this section and HS is health 

stage of the ground truth which was defined as the maximum 

RTV of the four brake rotors on the vehicle in each test case. 

RESULTS AND DISCUSSION 

Since robustness to noise factors was a strict functional 

requirement, we only considered HIs that were robust to 

noise factors of tire type, tire pressure and passenger weight. 

This eliminated several HIs and narrowed it down to 264 HIs.  

Figure 3 shows the overall results of applying ranking HI 

framework to the 264 HIs developed to determine the SOH 

of the brake rotors. The normalized performance metrics for 

identifiability, linearity, monotonicity, variability, and 

relative estimation error is shown for all of the HIs. It is sorted 

to display the features in the order of importance based on the 

average of the metrics used to rank HIs. The top performing 

HI was determined to be the total peak value of the average 

order spectrum of the detrended MCP. A plot of HI versus 

Health Stage (HS) for this feature is shown in Figure 4 in 

which the raw HIs, the median of the distribution of the HIs 

as well as the ideal response that predicts the RTV of the 

wheel is presented. Results showed that the peak of the 

average order spectrum of detrended MCP signal 

outperformed other HIs by having a higher correlation to the 
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GT, less variability, with higher monotonic trend and lower 

estimation error. Performance analysis of the algorithm 

confirmed that this HI provided better separation between 

 

Figure 3: Results for all 264 health indicators 

 

 

Figure 4: Best overall health indicator (rank = 1) 

 

 

Figure 5: Health indicator with best linearity (rank = 55) 

 

Figure 6: 25th percentile performer (rank = 66) 

 

Figure 7: Median performer (rank = 132) 

 

healthy brake rotors and degraded rotors. 

An example of an HI, the kurtosis of the wheel angular speed 

in phase domain, which showed to have the most linear 

response is illustrated in Figure 5. Even though this HI has 

the perfect normalized score of 1 for linearity, it has an 

overall average score of 0.84 and is ranked 55 out of the 264 

analyzed HIs. 

Figure 6 and Figure 7 shows the plot of HI vs Hs for the 25th 

(Wheel Speed maximum correlation with AX) and the 50th 

percentile (the peak order of the average order spectrum for 

wheel speed at order 5) performers respectively. Visual 

inspection reveals that the performance of the HI in tracking 

the RTV of the wheel is deteriorating which is in line with 

poor performance of these HIs based on the metrics used to 

rank them. In particular, the Identifiability and Relative Error 

were significantly impacted for these HIs that compared to 

the top performing HI. 

The summary of the performance metrics for four HIs are 

listed in Table 1. The best overall performing HI, peak 

amplitude of the average order spectrum of MCP showed 

normalized score of 1 for four categories of identifiability,  

Monotonicity, Variability and Estimation Error.  
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Table 1: Summary metrics for four sample indicators 

 

Figure 8 Correlation analysis between various performance metrics used 

It appears that the Monotonicity and Estimation Error played 

the most significant role in choosing an HI that performs 

better in detecting faulty brake rotors. To gain more insight 

on the degree of similarity between various metrics used and 

to answer the question whether a subset of these parameters 

can be used we performed correlation analysis between these 

metrics which is presented in Figure 8. 

As can be seen, identifiability and relative error are strongly 

correlated. In addition, linearity and monotonicity are highly 

correlated. This may indicate that only one of the metrics in 

each of these two categories can be used. Note, however, that 

this may not be the case for all HIs under investigation. All 

264 HIs considered in this study had been linearly regressed 

to estimate the HS. Had this preprocessing step not been 

taken, it is likely that the correlations between linearity and 

monotonicity, and between identifiability and relative error, 

would both be reduced. 

The three metrics that were selected were Monotonicity, 

Identifiability and Robustness. Top performing HIs based on 

the average of these three metrics showed excellent 

classification performance in detecting thickness variation 

levels of 20 μm and larger as evidenced by ROC area of 1 

illustrated in Figure 9. Note that in our case study, the 

proposed approach to detect degraded rotors is formulated as 

a classification problem and therefore the ROC detection 

score was used to evaluate the choice of HIs. Figure 9 

suggests that the use of proposed metrics can be used in 

selecting HIs and features for early fault detection. 

Depending on the application, one or more of these metrics 

could be useful in selecting HIs to perform detection, 

classification, regression, etc. 

 

Name Rank Comment Identifiability Linearity Monotonicity Robustness 
Relative 

Error 
Overall 

Detrended MCP Order 

Analysis Maximum Value 
1 

Best 

Overall 
1.00 0.94 1.00 1.00 1.00 0.99 

Wheel Speed Kurtosis 55 
Best 

Linearity 
0.73 1.00 1.00 0.97 0.49 0.84 

Wheel Speed Correlation 

with AX 
66 

25th 

Percentile 
0.66 0.95 1.00 0.97 0.53 0.82 

Detrended Wheel Speed 

Order Analysis, Order 2 
132 Median 0.29 0.86 0.86 0.88 0.19 0.62 
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Figure 9 Top performing HIs selected from the 

framework act as the best classifiers in detecting healthy 

and faulty rotors 

CONCLUSION 

Health indicator performance measures are needed when 

developing diagnostics and prognostics solutions for various 

chassis components (e.g. brake rotor, wheel bearing, etc.). It 

is advantageous to have a tool to select top performing health 

indicators and help to compare competing models. We 

developed a framework that can be used for this purpose and 

tested this for an application related to brake rotor health 

monitoring. We showed that there is a strong link between 

HIs selected by the framework and the performance of the 

selected HIs in accurately estimating the health of the brake 

rotor system. Results showed that the use of Identifiability, 

Compactness, Monotonicity, Robustness, Linearity, 

Estimation Error and Sensitivity to noise factors can be used 

in selecting features and indicators to determine the state of 

health of a brake rotor system. 
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