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ABSTRACT

Remaining useful life (RUL) is the expected remaining oper-
ating life of an asset until it can no longer perform its intended
function. The 2021 PHM Society Data Challenge posed the
problem of estimating the RUL of aircraft engines with vari-
ous competing failure modes and underlying degradation tra-
jectories. In this work, we describe the approach and solution
to the challenge where we map from the multivariate time
series sensor readings to the remaining useful life, measured
in the remaining number of flight cycles until failure. The
proposed solution utilizes a deep convolutional neural net-
work that can take inputs of variable length. Furthermore, we
preprocess the data according to a normalization procedure
that help reveal the degradation trend that is obfuscated by
the continuously varying flight conditions. The normalization
procedure involves training a feedforward neural network on
a non-degraded subset of the data that maps from the flight
conditions to the sensor outputs. The difference between the
expected sensor readings and the actual observations is then
interpreted as the extent of deviation from normal, i.e., degra-
dation. Finally, we describe the sampling techniques which
is designed to reduce the number of non-informative samples
fed to the neural network.

1. INTRODUCTION

In the context of Prognostics & Health Management (PHM)
(Vachtsevanos, Lewis, Roemer, Hess, & Wu, 2006), prognos-
tics refers to predicting the remaining useful life (RUL) of
an asset or industrial system. Accurate RUL predictions en-
able predictive maintenance strategies as it can give advanced
warning of incipient system failures. Such prognostics capa-
bilities not only enable maintenance and reduce downtime,
but it can also prevent catastrophic failure while maintaining
safety and reliability. As the availability of condition moni-
toring data for engineering systems is increasing, the appli-
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Figure 1. The four flight condition settings for a randomly
selected cycle and engine.

cation of data-driven models to estimate time to failure is be-
coming more common.

The most common dataset used to benchmark prognostics al-
gorithms is the CMAPSS dataset (Saxena & Goebel, 2008b)
which contains run-to-failure trajectories of simulated air-
craft turbofan engines. A first instance of this dataset was
first introduced as the PHM08 Data Challenge (Saxena &
Goebel, 2008a). Since the release of the datasets, many dif-
ferent strategies for RUL estimation of turbofans have been
proposed. The most successful models on the usually in-
volve deep learning based architectures. Architectures ap-
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plied to this dataset are most commonly recurrent networks
(Heimes, 2008) or convolutional networks (Li, Ding, & Sun,
2018). While the architecture and details of the models ap-
plied varies between different studies, the data preprocessing
and data ingestion typically remain the same. A fixed size
sliding window technique is usually applied to create the in-
put samples. Using this approach, the window size is limited
by shortest sequence length on which you want to be able to
make predictions at test time. For sequences that are longer
than the window size, information and context is discarded
as it is outside the window length. An alternative way is
to use an architecture that can handle sequences of variable
length. Convolutional and recurrent networks are generally
input length agnostic, hence using the fixed sliding window is
not a requirement. For convolutional networks, a fixed length
feature representation can be achieved by a global pooling op-
eration before the final output layer. By taking the average of
each feature over the time dimension, the output features will
be of the same dimensions, regardless of the input sequence
length. In this paper, we describe the development of a data-
driven model to predict RUL of turbofan engines as part of
the 2021 PHM Society Data Challenge.

2. PROBLEM FORMULATION

The 2021 PHM Society Data Challenge data consists of a
subset of the N-CMAPSS dataset (Arias Chao, Kulkarni,
Goebel, & Fink, 2021). In total, 90 synthetic run-to-failure
trajectories of turbofan engines, generated by the CMAPSS
model (Frederick, DeCastro, & Litt, 2007), are provided.
There is a total off seven different failure modes within the
dataset. Each engine has an unknown initial health state.
As opposed to the PHM08 Data Challenge, N-CMAPSS has
flight conditions from real flights, recorded on a commercial
jet, as inputs to the model. Figure 1 shows the four different
flight settings for a randomly selected cycle in a randomly se-
lected engine. These operating conditions also relate to the
degradation conditions where its history determine the onset
of abnormal degradation. Each engine has 14 sensor mea-
surements, Xs, recorded for the full trajectory until failure.
The flight conditions, W , consisting of the 4 variables in Fig-
ure 1, are also provided. Additionally, 4 auxiliary variables
are made available: unit number, flight cycle number, flight
class and health state (hs).

The objective of the competition is to use the 90 trajectories
in the training set to predict the RUL of 38 engines in a test
set. In the test set, the engine trajectories are truncated at
random points in time. In other words, the engines in the test
set are only partially degraded. The metric of the competition
evaluation is an aggregation of the root mean squared error
and a scoring function:

score = RMSE · 0.5 + s · 0.5 (1)

RMSE =

√√√√ 1

n

n∑
i=1

∆2
i (2)

s =
1

n

n∑
i=1

exp(α|∆i|) − 1 (3)

Where n is the number of engines to score, ∆i is the differ-
ence between the true and predicted RUL for the i-th engine,
and α is 1

13 if RUL is under-estimated and 1
10 if it is over-

estimated. Hence, the scoring function is asymmetric and pe-
nalizes over-estimations of the RUL.

3. METHODOLOGY

In this section we describe the methodology from the prepro-
cessing step to the training procedure.

3.1. Preprocessing

Due to the time constraints of the competition, we first reduce
the size of the dataset to improve the iteration speed. This
is done in two ways. First, we change the sensor readings
from double-precision floating-point format to half-precision
floating-point format, effectively reducing the storage and
memory footprint by 75%. Second, upon inspecting the sen-
sor measurements, we reduce the sampling frequency from
1Hz to 0.1Hz by decimation, further reducing the size. A
side effect of reducing the frequency is that we achieve a
longer receptive field for the same number of layers in the
neural network. The downside is that, for both data reduction
steps, information is lost. The motivation behind it is that the
long-range trend is more important than the local perturba-
tions within individual flight cycles as the degradation is not
abrupt enough to be lost in the decimation step.

3.2. Normalization procedure

The sensor signals are first normalized with respect to the
flight conditions, W . We apply a feedforward neural net-
work that map from the flight conditions to the sensor out-
puts. The input consists of 5 features: the flight condition
variables flight mach number (mach), altitude (alt), throttle
resolve angle (TRA) and total fan inlet temperature (T2), as
well as the flight class (a categorical feature describing the
flight length) and a positional variable of time elapsed within
the flight cycle (ranging from 0 to 1 within each cycle). A
subset of the data, where the health state variable, hs, indi-
cates a non-degraded engine, is used as training data. By us-
ing healthy state data, we create a model that can output the
expected sensor readings given some flight condition. The
difference between the model estimates and the actual sensor
readings can then be interpreted as the degree of degradation
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Figure 2. (a) T30 sensor values for a randomly selected en-
gine. The degradation trend is obfuscated by the flight con-
ditions. (b) shows the same sensor signal after transforma-
tion and normalization with respect to flight conditions. The
degradation trend is now observable.

or deviation from expected normal. The sensor data at each
timestep t can then be calculated as

X̂t = Xt – f(Wt) (4)

where the function f is the neural network with four lay-
ers and ReLU activations. The input layer of the network
f has 5 units, the hidden layers have 128 units, and the out-
put layer has 14 units that corresponds to the 14 sensor sig-
nals. We use the Adam optimizer with decoupled weight de-
cay (Loshchilov & Hutter, 2019). A learning rate of 5e-4 is
used and the weight decay is set to 1e-3. The model is trained
for 100 epochs. After the transformation step, X̂ is normal-
ized in the [0,1] range through min/max-normalization.

Figure 2a shows the T30 sensor values for a randomly se-
lected engine. Due to the continuously varying operating con-
ditions, no clear degradation signal can be observed. Figure
2b shows the same sensor signal after the transformation step
described above. A clear degradation trend can now be ob-
served.
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Global Avg Pool
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Figure 3. Diagram of the remaining useful life prediction
model. It has 10 layers where each layer consists of a dilated
convolution, a gated linear activation unit, and layer normal-
ization. A skip connection is also added, indicated by the
arrow bypassing the above operations.

3.3. Remaining useful life prediction model

To map from the condition monitoring sensor signals to the
remaining useful life, we apply a deep neural network con-
sisting of dilated convolutions with gated linear activations
and residual skip connections. The purpose of the dilation
factor is to increase the effective receptive field of the network
without increasing the number of parameters. A dilated con-
volution is a convolution where the receptive field of a kernel
is extended by skipping input values with a certain step size.
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Figure 4. Illustration of the allowable sampling area for se-
quences. The endpoint of the sequence must be in the shaded
area. The shaded area begins when the 20% of the total time
in abnormal operation has elapsed. This is applied across all
14 sensors.

In other words, we artificially increase the span of the kernel
without increasing the number of parameters. The combina-
tion of the decimation of the data with the dilated convolu-
tions allow the model to operate on a much coarser scale than
if we were to use standard convolutions on non-decimated
data. By stacking the dilated convolutions, we can achieve a
very large receptive field in just a few layers. Since we also
apply skip connections, the receptive field can be considered
flexible. An overview of the model architecture is shown in
Figure 3.

The convolutional layers have 8 filters and a kernel size of
10. In the penultimate layer, global average pooling is ap-
plied, where the features are averaged over the time dimen-
sion. This way, the input to the final linear layer is fixed in
size, regardless of the input sequence length. The dilation
rate for layer n is 2n. We stack 10 layers resulting in a dila-
tion rate sequence of 1,2,4. . . ,1024. For each layer, we apply
layer normalization (Ba, Kiros, & Hinton, 2016). The acti-
vation applied is the gated linear unit (GLU) where the input
features are split in to two feature maps. One of the feature
maps is then passed through a sigmoid function and then mul-
tiplied with the other half. Each layer also includes a residual
(skip) connection such that

xi+1 = xi + gi(xi, θi) (5)

where xi is the feature map at the i-th layer, gi is the convo-
lutional operation and θi is the parameters of the kernel.

For training we use the Adam optimizer with decoupled
weight decay (Loshchilov & Hutter, 2019) and a learning
rate of 5e-4. The weight decay is set to 1e-3. The model
is trained for 11000 gradient steps, where Stochastic Weight
Averaging (SWA) (Izmailov, Podoprikhin, Garipov, Vetrov,
& Wilson, 2018) is applied for the last 1000 steps. The filter

size, kernel size and weight decay hyperparameters is chosen
based on two factors. First, the initial value is set based on
priors obtained from previous experiments on the CMAPSS
dataset. Second, the parameters are adjusted based on the
validation score (we keep 6 engines out of the training data
for validation). In addition to the 14 sensor values, we add 3
categorical variables to the input tensor. Cycle number, flight
category and health state are concatenated to the input via
entity embeddings (Guo & Berkhahn, 2016). The final sub-
mission to the competition is an average of six model training
runs, where all 90 trajectories as used as training inputs.

3.4. Sequence Sampling

As described in the N-CMAPSS dataset description docu-
ment (Arias Chao et al., 2021), degradation first occur lin-
early and then transitions to abnormal degradation. The tran-
sition happens slowly and the health decreases throughout the
lifetime of the engine. We speculate that models which can
operate on a coarse scale is more likely to discover the true
underlying degradation trajectory than one that operates on a
fine-grained scale. Intuitively, a shorter sequence of the con-
dition monitoring signals yields a more uncertain estimate
of the true degradation state due to noise and perturbations.
Conversely, a model operating on a coarse scale may be dis-
advantaged when the degradation and failure occur rapidly,
or when a transient event has a large impact on the trajectory.

As the degradation of the turbofan engines progresses, the
stronger this signal becomes in the sensor data. Early in the
turbofan engine lifetime, in its healthy state, there is no clear
degradation observable. Sequences that do not contain any
degradation signal then act as noise in the training of the prog-
nostics model. To alleviate this issue, we propose a sampling
procedure where any training sequence fed to the model must
contain some degree of degradation signal. The health state
variable given in the dataset, hs, indicates whether engine is
operating normally (hs = 1) or abnormally (hs = 0). We
make use of this label by making sure that the endpoint of
our sampled sequence must be in the abnormal degradation
regime. More specifically, we define this as the point in time
when 20% of the total abnormal operation period has elapsed.
This is arbitrarily chosen.

While sequences can still contain long segments of non-
degraded signal, the end of the sequence must include degra-
dation information. This is illustrated in Figure 4, where the
allowable end-point RUL label area is marked. The figure
shows a single sensor (T30) but it is applied across all 14 in-
put sensors.

Input to the neural network typically consist of sequences of
fixed length where a sliding window is applied across the in-
put signals to create the training samples. The downside of
such an approach is that the window size must be the length of
the shortest sequence on which you want to make predictions
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Figure 5. RUL predictions for two engines in the validation
set. Predictions are conservative early in the engine lifetime.

at test time. In other words, you cannot consider a longer time
horizon than the chosen window length even when the input
you want to make predictions on is significantly longer than
that.

Training loop: Here we describe the training procedure. For
each gradient step, a sequence length in the range [Ll, Lh]
is randomly chosen. Ll is defined by the shortest sequence
length in the test set, while Lh is defined by the shortest tra-
jectory in the train set. Given the sequence length, we ran-
domly sample a sequence from N number of engines in the
allowable range, given by the change point location (hs = 0).
The N number of sequences is then concatenated to form the
batch dimension. The resulting input tensor has the shape [N,
C, L], where C is the number of input channels (i.e., num-
ber of sensors in the condition monitoring data) and L is the
sequence length. Each sequence has a RUL label associated
with it, forming the target variable Y of shape [N,1]. N is set
to 20.

4. RESULTS AND DISCUSSION

The top 5 entries in the competition is shown in Table 1. Fig-
ure 5 shows the RUL predictions for two engines in the val-
idation set. As expected, the prediction comes closer to the

Table 1. Top 5 entries in the 2021 PHM Society Data Chal-
lenge

Rank Team Score
1 IJoinedTooLate 3.006
2 YellowJackets 3.327
3 DatrikUS 3.651
4 SHRMer 3.689
5 XJTUPHM 4.017

true value as we move closer to the failure point. As we have
chosen a minimum sequence length Ll, the first prediction
point will occur after Ll timesteps (this corresponds to 8000
timesteps), as the model outputs a single estimate of the RUL
for the whole sequence. Predictions early in the engine life-
time tend to be conservative. This is intentional as we want
to avoid the large penalty score given by late predictions in
the scoring function (Equation 3). The reason for the conser-
vative predictions is twofold. First, the sampling technique
described in section 3.4 limits the number of samples with a
high RUL, making the model less likely to make such predic-
tions. Second, we apply weight decay to all the convolutional
layers, as well as the final linear output layer, helping sup-
press large RUL values from being output.

In the PHM08 Data Challenge, this problem was handled by
introducing a piece-wise linear RUL label where the number
of cycles to failure is truncated at some value representing
the shift to abnormal degradation (Heimes, 2008). A sim-
ilar strategy can also be applied here, but in contrast to the
PHM08 Data Challenge, we have access to the change points
for each individual engine. If access was not given to the
health state label, a similar label can be constructed via an au-
toencoder. As the normalization scheme presented in section
3.2 reveals the degradation trend, compressing the multivari-
ate sensor signals to a single dimension can give an overall
degradation trend. The substitute for the health state label
can then inferred by inspecting the derivative of the latent
space signal, where the knee-point indicating the transition to
abnormal degradation may be observed. This makes the pro-
posed techniques applicable to scenarios where a health state
label might not be readily available.

There are many ways in which the approach presented here
can be improved. First, the transition point that indicated the
allowable sampling space is somewhat arbitrarily chosen and
could be improved by being treated as a tunable hyperparam-
eter. Second, it is likely the case that a longer training time
would improve the results. Due to the time constraints of the
competition, the training was stopped before the validation
loss had reached a minimum or plateaued. Third, results may
improve if the sampling frequency is not decreased by such a
large factor. Future work outside the time constraints of the
competition setting will determine whether results improve if
the data is not reduced. Lastly, a longer allowable sequence
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length may also reduce the error for longer sequences in the
test set. In our case, we have picked a maximum input length
sequence of 30k timesteps (Lh) due to this being the shortest
trajectory in the training set. Since we do not sample from all
the engines in each gradient step, it is possible to adapt the
maximum sequence length allowed based on the lengths of
the engine trajectories being sampled. This should increase
the accuracy of the predictions on trajectories in the test set
that is longer than 30k timesteps. It should be noted that the
time steps here refer to the decimated dataset. In the origi-
nal format, this corresponds to 300k timesteps. Furthermore,
given the large weight decay and the relatively small num-
ber of filters, the model is probably underfit. Combining this
with the fact that the procedure presented here severely dec-
imates the data, we believe that there is significant room for
improvement in the score.

5. CONCLUSIONS

This paper has presented the winning solution to the 2021
PHM Society Data Challenge. The solution is based on the
following main concepts:

• Transformation and normalization with respect to flight
conditions.

• Dilated convolutions with a large receptive field.
• Variable length input sequences.

As the degradation process is slowly developing over time,
working on a coarser scale over many flight cycles is more
important than working on a local scale within individual
cycles. To enable this, we propose an architecture that can
make predictions on input sequences of variable length. Fur-
thermore, we preprocess the multivariate time series sensor
readings by calculating the distance from expected normal for
each of the 14 sensors. This reveals the degradation trend in
the data that is otherwise obfuscated by the flight settings.

ACKNOWLEDGMENT

This work received funding by the ECSEL Joint Undertak-
ing (JU) under grant agreement No 876659. Support for the
project by the Swedish Governmental Agency for Innovation
Systems (Vinnova) under contract 2020-00991, is gratefully
acknowledged.

REFERENCES

Arias Chao, M., Kulkarni, C., Goebel, K., & Fink, O.

(2021). Aircraft engine run-to-failure dataset under real
flight conditions for prognostics and diagnostics. Data,
6(1). Retrieved from https://www.mdpi.com/
2306-5729/6/1/5 doi: 10.3390/data6010005

Ba, J., Kiros, J. R., & Hinton, G. E. (2016). Layer normal-
ization. ArXiv, abs/1607.06450.

Frederick, D., DeCastro, J., & Litt, J. (2007, 01). User’s guide
for the commercial modular aero-propulsion system
simulation (c-mapss). NASA Technical Manuscript,
2007–215026.

Guo, C., & Berkhahn, F. (2016). Entity embeddings of cate-
gorical variables. ArXiv, abs/1604.06737.

Heimes, F. O. (2008). Recurrent neural networks for remain-
ing useful life estimation. In 2008 international confer-
ence on prognostics and health management (p. 1-6).
doi: 10.1109/PHM.2008.4711422

Izmailov, P., Podoprikhin, D., Garipov, T., Vetrov, D., & Wil-
son, A. (2018). Averaging weights leads to wider op-
tima and better generalization. In R. Silva, A. Glober-
son, & A. Globerson (Eds.), 34th conference on un-
certainty in artificial intelligence 2018, uai 2018 (pp.
876–885). Association For Uncertainty in Artificial In-
telligence (AUAI).

Li, X., Ding, Q., & Sun, J.-Q. (2018). Remaining useful
life estimation in prognostics using deep convolution
neural networks. Reliability Engineering System
Safety, 172, 1-11. Retrieved from https://
www.sciencedirect.com/science/
article/pii/S0951832017307779 doi:
https://doi.org/10.1016/j.ress.2017.11.021

Loshchilov, I., & Hutter, F. (2019). Decoupled weight
decay regularization. In International conference on
learning representations. Retrieved from https://
openreview.net/forum?id=Bkg6RiCqY7

Saxena, A., & Goebel, K. (2008a). Phm08 challenge data
set. http://ti.arc.nasa.gov/project/
prognostic-data-repository. NASA Ames
Research Center, Moffett Field, CA.

Saxena, A., & Goebel, K. (2008b). Turbo-
fan engine degradation simulation data set.
http://ti.arc.nasa.gov/project/
prognostic-data-repository. NASA
Ames Research Center, Moffett Field, CA.

Vachtsevanos, G. J., Lewis, F. L., Roemer, M. J., Hess, A. J.,
& Wu, B. (2006). Intelligent fault diagnosis and prog-
nosis for engineering systems..

6


