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ABSTRACT

This paper presents a vibration-based condition monitoring
approach for early assessment of valve wear in an industrial
reciprocating compressor. Valve seat wear is a common fault
mode that is caused by repeated impact and accelerated by
chatter. Seeded faults consistent with valve seat wear are in-
stalled on the head-side discharge valves of a Dresser-Rand
ESH-1 industrial reciprocating compressor. Due to the cyclo-
stationary nature of these units a time-frequency analysis is
employed where targeted crank angle positions can isolate
externally mounted, non-invasive, vibration measurements.
A region-of-interest (ROI) is then extracted from the time-
frequency analysis and used to train a suitably sized convo-
lutional neural network (CNN). The proposed deep learning
method is then compared against a similarly trained discrim-
inant classifier using the same ROIs where features are ex-
tracted using texture and shape image statistics. Both meth-
ods achieve > 90% success with the CNN classification strat-
egy nearing a perfect result.

1. INTRODUCTION

Current reciprocating compression technology is the culmi-
nation of over 100 years of design and manufacturing expe-
rience and are one of the most widely deployed compressors
in industry. They operate reliably at a wide range of pres-
sures, can compress a large variety of gas, and are highly
adaptable thanks to multi-stage capabilities. However, re-
ciprocating compressors suffer from relatively high mainte-
nance costs, certainly more so than their centrifugal counter-
part. The majority of reciprocating compressor downtime and
maintenance costs can be attributed to the compressor valves,
which account for 36% of shut downs and 50% of total re-
pair costs (Schirmer, Fernandes, & Caux, 2004). Condition
monitoring of valves and related components can provide sig-
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nificant reduction in overall maintenance costs and provide a
basis for condition-based maintenance programs.

The most common approach employed in industry for condi-
tion monitoring in reciprocating compressors is through the
use of the pressure-volume (P-V) curve. When measurement
of the P-V diagram deviates from theory certain failure modes
are likely, such as chatter or leakage. While these diagrams
have proven successful they do require the use of real-time,
in-cylinder, pressure measurements that add expense and ad-
ditional maintenance.

Another common monitoring approach is through vibration
analysis that looks for deviations in a machines typical vi-
bration signature due to a fault condition. The vibration for
reciprocating machines is characterized by a series of pe-
riodic events (such as piston slap, valve opening and clos-
ing, etc.) all which produce a highly cyclic vibration sig-
nature (Randall, 2011). This type of vibration signal is de-
scribed as cyclostationary in which signals exhibit some pe-
riodicity in their energy profile that have key characteristics
which can be used to identify statistically significant varia-
tion due to changes in operating condition (Antoni, 2009).
Due to the cyclostationary nature of the measurement, time-
frequency transforms in the cycle-domain are thus used rather
than the time-domain. The first half of this research is based
on the concept of compressor’s cyclostationary nature and
subsequent time-frequency analysis.

A variety of research has been done investigating valve fault
detection in reciprocating compressors. (Liang, Gu, Ball, &
Henry, 1996) developed a procedure to detect valve faults us-
ing the smoothed-pseudo Wigner-Ville Distribution which re-
vealed characteristic patterns due to impact response vibra-
tion. (Elhaj, Gu, Ball, Shi, & Wright, 2001) investigated
early detection of valve leakage through the extraction of
detection features using Continuous Wavelet Transforms of
both vibration and acoustic measurements. They later com-
bined the monitoring of dynamic cylinder pressure and in-
stantaneous angular speed to develop a reliable means of de-
tecting valve leakage (Elhaj, Almrabet, Rgeai, & Ehtiwesh,
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2010). (Zouari et al., 2007; Antoni, 2009) have shown the
use of cyclo-stationary modeling for the purposes of recip-
rocating machine condition monitoring. In regard to valve
faults they identified simple fault indicators through the use of
the Wigner-Ville Spectrum. (Yih-Hwang, Liu, & Wu, 2006,
2009) examined the use of time-frequency analysis for recip-
rocating compressor vibration signals with a neural network
for automated condition classification and later applied this
to valve fault classification using seeded faults.

Deep learning has recently been implemented in condition
monitoring of reciprocating compressor valves. (Liu, Duan,
Yuan, Wang, & Zhao, 2019) created a method of fault classi-
fication by combining local mean decomposition for process-
ing vibration signal and stack denoising autoencoder for fea-
ture extraction. This method was used to detect spring failure,
valve fracture, and valve wear and had a classification accu-
racy of 92.7%. (Guo et al., 2020) utilized a one-dimensional
convolution neural network (1DCNN) with pressure and tem-
perature signals as inputs to classify leakage in a 6-stage re-
ciprocating compressor. The 1DCNN output is fed into the
Softmax function to identify the stage of the compressor that
is leaking with the results showing a 100% accuracy.

In 2013, using the compressor in this work at the RIT Com-
pression Test Cell, (Guerra & Kolodziej, 2014) developed a
mechanical-thermodynamic model of the compressor and in-
vestigated health monitoring of discharge valves using P-V
diagrams, dynamic pressure measurements, and frequency
domain analysis. Later, (Kolodziej & Trout, 2018) ex-
tended this work into the time-frequency domain using image
processing methods, and most recently (Scott & Kolodziej,
2020) investigated fault isolation of valve health across all
manifolds, inlet and outlet, using a novelty detection SVM.

The presented work advances previous health monitoring re-
search in the RIT Compression Test Cell (Fig. 1) by in-
corporating time-frequency analysis of vibration measure-
ments into the detection of valve related faults. Using time-
frequency analysis two machine learning methods are com-
pared as effective vibration-based methods for early detec-
tion of valve wear within industrial reciprocating compres-
sors. One of the more common valve related fault conditions
is valve seat wear and is investigated at various degrees of
severity on the head-side discharge valves of Dresser-Rand
ESH-1 compressor. Using common operational data includ-
ing vibration, cylinder pressure, and crank shaft position, two
condition monitoring methods are developed to classify fault
severity. Nominal (healthy) and two levels of degraded (non-
healthy) valves are seeded in the compressor and operating
data analyzed using time-frequency analysis. The resulting
diagrams are processed as images and then used to train two
machine learning methods: a statistical Bayesian classifier
and a deep learning convolutional neural network (CNN). The

Model: ESH-1 Max. Temp (◦F): 320
Stages: single Flow Capacity (ACFM): 34
Piston Diameter: 6” Compressor (BHP): 7
Stroke: 5” Weight (lbs): ∼8,000
Max. Pressure (psia): 50 Speed (RPM): 360

Figure 1. Dresser-Rand’s ESH-1 Compressor at the RIT
Compressor Test Cell

effectiveness of each method to reveal fault signatures is eval-
uated based on classifier performance of separate test data.

2. COMPRESSOR TEST CELL AT RIT

The experimental test platform used in this work is a Dresser-
Rand, now A Siemens Business, ESH-1 reciprocating com-
pressor located at the Rochester Institute of Technology’s
(RIT) Compression Test Cell shown in Fig. 1. The single-
stage, dual-acting, compressor, commonly used in the petro-
chemical industry, was donated by Dresser-Rand and in-
stalled at RIT in 2010. One of their smaller industrial com-
pressors, the ESH-1 is driven by a 10-hp electric motor and
has a 6-inch piston with a 5-inch stroke that operates nomi-
nally at 360 RPM.

The ESH-1 is an intermittent flow, positive displacement air
compressor with a single piston which pressurizes cylinders
on both sides of the piston head, denoted as crank-side cylin-
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der and head-side cylinder. The compressor can be operated
under full load (both cylinders), half-load (only crank-side),
or no load. Each cylinder has a set of inlet suction valves that
allow air to be drawn in at atmospheric pressure, and a set of
discharge valves that allow compressed air to be discharged
into an anti-pulsation tank. Each valve assembly (Fig. 2) in-
cludes 16 individual poppet valves that are spring loaded to
keep the valves closed until a pressure differential is achieved.
Condition monitoring of these valve-spring assemblies is the
focus of this research.

The compression test cell is outfitted with a comprehen-
sive NI-based CompactDAQ system to record measurements
during compressor operation. The specific sensors utilized
for this work are a triaxial accelerometer (PCB 356A16)
mounted magnetically to the head-side discharge valve man-
ifold (Fig. 3), an angular encoder (Photocraft HS20.5QZ)
mounted on the main crankshaft, and two in-cylinder pressure
transducers (Omega PX309-100AI) to measure both cylin-
der pressures. Four single-axis stud mounted industrial ac-
celerometers (PCB 622B01) are permanently affixed to the
valve manifolds but are only used to verify the performance
of the magnetically mounted sensor. Measurements are col-
lected at 25.6-kHz using a custom NI LabVIEW interface to
view sensor readings and export data for post-processing.

3. TIME-FREQUENCY ANALYSIS

Traditional spectral analysis techniques, such the Fourier
transform, estimate the frequency content of a signal over
its entire length and are ideal for analyzing stationary, or

Figure 2. Poppet Valve Assembly - [top]. Three wear condi-
tions: healthy, degraded 1 (-1/32”), degraded 2 (-1/16”) - [bot-
tom]

non-time varying, systems. However, when considering non-
stationary signals, such as those produced by reciprocating
compressors, it is often valuable to know how the frequency
spectrum of a signal varies with respect to time. Time-
frequency analysis techniques have been developed for these
types of signals such as the Short-Time Fourier Transform
(STFT), the Wigner-Ville Distribution and the Continuous
Wavelet Transform. For this work the STFT is applied be-
cause of its computation ease, well established acceptance,
and overall success in the proposed method.

Simply stated, a STFT is performed by dividing a signal into
short time segments and applying the Fourier transform to
each segment. The resulting spectrum segments are com-
bined with the third dimension showing amplitude to illus-
trate how the signal’s spectrum varies with each time win-
dow. In general, the magnitude scale (linear vs log), window
size, window shape, and overlap chosen all effect the visual
properties of the STFT and as such are “tunable” knobs the
condition monitoring application can use.

4. FAULT SEEDING & METHODOLOGY

Compressor valves experience several different fault condi-
tions, such as spring fatigue and leakage, but the one chosen
for this study is valve seat wear because of its common oc-
currence in field data. The valve seat as shown in Fig. 2 -
[top] can experience a gradual loss of thickness due to pop-
pet impact and torsional rubbing from the helical spring. This
slowly increases the poppet’s travel distance during opening
thereby increasing gas flow and valve impact force. To avoid

Figure 3. Head-side outlet valve manifold with triaxial (PCB
356A16) and (PCB 622B01) stud mounted accelerometers
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Figure 4. Proposed methodology overview

introducing permanent valve seat damage to the manifold as-
sembly by purposefully removing seat material, the effect is
simulated by removing a precise amount of material from the
bottom of the poppet. The level of valve seat wear seeded
in the compressor, as shown in Fig. 2 - [bottom], is 0”
(healthy), -1/32” (degraded 1), and -1/16” (degraded 2) removed
from the poppet. There is an assumption that all sixteen pop-
pets degrade gradually and uniformly within the valve assem-
bly. The fault condition is only introduced into the head-side
discharge valve while the crank-side discharge valve and both
suction valves remain in their original, healthy state. To main-
tain consistency during data collection, the compressor is op-
erated only at full load with constant discharge tank pressure.

4.1. Signal Processing

An overview of the proposed compressor valve condition
monitoring methodology is shown in Fig. 4. Post data-
collection signal processing involves decomposing the raw
vibration signals into individual compression cycles using
the crank shaft position measurement and then performing
a time-frequency analysis. Thus, a 15-second data file nom-
inally has 100 compression cycles. Figure 5 shows one cy-
cle of vibration data along with crank and head-side cylinder
pressures collected during compressor operation.

As expected, the highest intensity vibration occurs during the
opening and closing of the crank and head-side discharge
valves as each cylinder reaches discharge pressure. Less in-
tense vibration, in between discharge valve activity, is related
to the opening and closing of the inlet suction valves. A STFT
is generated for each cycle with the result being multiple ex-
perimental observations from the particular fault case. It is
important to point out that Fig. 5 shows all three health condi-
tions. From a cylinder pressure standpoint the effect is negli-
gible, with raw vibration alone equally inconclusive, thereby
illustrating the need for a more comprehensive analysis.

The number of data samples per cycle, Ncycle, is determined

via the crank shaft position as provided by a mounted rotary
encoder. The operating RPM of the ESH-1 is essentially con-
stant with negligible variation. Under these conditions the
crank shaft position is a linear function of time and therefore
sample rate. Given that the DAQ sample rate is fixed at 25.6-
kHz and for the compressor operating actually around 383
RPM the samples per cycle nominally is about 4012 sam-
ples/cycle. Thus, the degrees per sample is θsample = 360◦

Ncycle

with an average value of 0.0897 degs/sample. Based on cal-
culated θsample for each data set, vibration and pressure data
are converted to the angular domain and separated into sets of
360◦ cycles. It is defined in this work that a shaft position of
0◦ corresponds to the piston’s position at bottom-dead center,

Figure 5. Cyclic decomposition of vibration and pressure sig-
nals for each fault condition
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or minimum crank-side cylinder volume. Likewise, this re-
sults in the opening of head-side discharge valves, where our
seeded faults are placed, near mid cycle or top dead center
between shaft positions of 120◦ and 220◦.

As seen in Fig. 5, the vibration signal for a complete cycle
is non-stationary and appears to be a function of shaft po-
sition. Time-frequency diagrams, created via the short-time
Fourier Transform, are used to investigate the frequency con-
tent as a function of shaft position. For this work the STFT
representing vibration measurement is found for each decom-
posed cycle using a 51 sample window length, 75% window
overlap, and a half sine window shape with no averaging ap-
plied. Note that these parameters are selected in an ad hoc
manner, but provide reasonable angular resolution with some
frequency smearing but also represent further design options
for future work.

Two STFTs for the healthy and 1/16” degraded cases are shown
in Fig. 6. Both diagrams show distinct frequency activity
occurring from 120◦ to 220◦ and from 320◦ to 20◦. These
shaft positions coincide with discharge valve activity from the
head-side and crank-side cylinders, respectively. However, it
now becomes more apparent that there is a visual difference
between the two health states.

The STFTs show a wide range of frequency content in the vi-
bration signal during the time of valve operation. However,
it is determined to target frequency regions within each wear
case that shows cross-case variation with inner-case consis-
tency. By observing areas within the discharge valve opera-
tion window, and through a simplified modal analysis when
the compressor is off, a region-of-interest (ROI) is selected.

Poppet impact with the valve seat is a form of impulse in-
put and can expect compressor structural natural frequencies
to be present in the measurement. Moreover, the frequency
range (5%) of the PCB-356A16 accelerometer used in this
work has a published bandwidth of 5kHz. Thus the frequency
range chosen is 2.5 kHz to 4.5 kHz between a shaft position
of 125◦ to 185◦ as shown in the boxed regions in Fig. 6. The
ROI is then extracted from every STFT observation from all
cases reducing the image size drastically while still focusing
on the key valve opening event.

4.2. Feature Extraction

These ROI’s are then used to perform the two classification
methods applied in this work. First, a traditional statistical-
based approach is applied (linear and quadratic discriminant
(LDC/QDC) analysis) and used as a baseline. In order to ap-
ply this method a feature extraction step is required to process
the ROIs into a set of feature vectors for each observation.
Second, a deep learning approach is implemented by directly
using the ROIs to train a convolution neural network (CNN).
The benefit of the CNN method is that the feature extraction
step, which can and does require potentially significant effort
and experience, can be omitted at the expense of computa-
tional overhead and larger training data sets.

For the statistical (LDC/QDC) classifier approach it is nec-
essary to summarize the ROI with a series of key metrics
commonly called features. Feature extraction is a data reduc-
tion technique in which a sub-set of properties, or features,
are used to represent a larger data object, such as an image.
These features are compiled into a feature vector, x̄, which
contains k calculated features xi, where i = 1, 2, ..., k for a

(a) Healthy condition: 0” valve seat wear (b) Degraded 2 condition: -1/16” valve seat

Figure 6. Two STFTs for a single compression cycle at full load with the accelerometer located at the head-side discharge
manifold. (51 sample window length, 75% overlap, half-sine window, linear scale). Region of Interest (ROI): [125◦ − 185◦ &
2, 500− 4, 500 Hz]
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given observation as shown in Eqn. (1).

x̄ = [x1, x2, x3, . . . , xk]
T (1)

In this work, the ROI from each STFT is broken into a gray-
scale image that represents image texture and a binary image
that shows shape. The right side of Fig. 4 illustrates the re-
sult. The texture of an image can be described as smooth,
rough, bumpy, etc. Analysis of the spatial relationships and
intensity gradients allow for quantification of such textural
descriptions. The texture features extracted are divided into
two groups, 1st order statistics and 2nd order statistics. The
gray-scale representation of the ROI has a range in intensity
from 0 (representing black) to 1 (representing white) at dis-
crete levels. Each ROI is treated as an M ×N image, in this
case 51 × 19, with each element value representing a pixel
intensity value I(m,n).

The amplitude spectrum within the ROI vary from approxi-
mately 0 to 60 (for the linear scale). Various values of Imax

and Imin are tested and evaluated based on visual distinction
of the region and how well object boundaries are identified.
Mapping values of 8 and -8 are chosen which appear to maxi-
mize gradients and object delineation within the region of 3.8
kHz, or the nominal peak amplitude frequency. These values
are maintained for every ROI to ensure visual consistency be-
tween cases and faults. I(m,n) is then normalized to have
a value range of 0 to 1, and binned into Ngray = 265 dis-
crete intensity values. These parameters are yet another set of
options for tuning the proposed approach to the application.

Next, image statistics are calculated that result in 13 met-
rics representing each observation. First order statistics pro-
vide information about the overall gray level distribution of
the image as a whole (Theodoridis & Koutroumbas, 2008).
These include the following five metrics: mean, standard de-
viation, skewness, and kurtosis which are the average, disper-
sion, asymmetry, and peakedness about mean intensity, re-
spectively; and entropy which is the measure of histogram
uniformity.

Second order statistics provide additional information about
the relative location of gray levels. To extract these features,
a gray-level co-occurrence matrix (GLCM) is created from
the gray-scale intensity image (Haralick (Robert M. Haral-
ick, 1973)). The GLCM contains information which char-
acterizes the texture of an image and the features extracted
help describe the spatial relationship, transitional intensity,
and general complexity of gray levels within the image. The
resulting matrix can also be viewed as a second order his-
togram in which gray levels are considered in pairs with a
specified spatial relationship, unlike a first order histogram
where only single gray levels are considered. The second or-
der statistics are calculated for the resulting GLCM matrices

where the mean and range value across all matrices are used
as features. This results in eight additional features per ROI.

To compliment the gray-scale image, shape features are deter-
mined by creating a binary image of the ROI. The intensity
values equal to 0 (black) or 1 (white) are based on a cho-
sen intensity threshold value. For this work, the threshold
is selected for each image individually based on a method
described by Otsu (Otsu, 1979) which minimizes inter-class
variance of black and white pixels.

The result is an image with a black background and white
“blob” like regions, or objects. All objects are treated as a
single discontinuous region for the purpose of extracting re-
gion shape properties. Any smaller unwanted objects below
a certain pixel area that do not make up the bulk of the main
region are treated as artifacts and removed. The pixel area
threshold (in this case 40) is chosen in an ad hoc manner that
met with acceptable results but remains a tunable parame-
ter. An example of the resulting binary representation is also
shown in Fig. 4.

From each observation, the following 18 shape features are
extracted: Area, Centroid (x and y), Bounding Box (four cor-
ners), Major Axis Length, Minor Axis Length, Eccentricity,
Orientation, Convex Area, Filled Area, Extrema, Equivalent
Diameter, Solidity, Extent, and Perimeter. For this work,
two shape features are then omitted, Bounding Box (y-width)
and Extrema, because they were statistically insignificant be-
tween the three degradation classes.

The final result of the feature extraction step of the LDC/QDC
approach are 29 individual features that are then used to train
and test the classifier.

One of the key benefits that CNNs provide over traditional
statistical machine learning approaches is the lack of neces-
sity of the feature extraction step. Since ROIs are essentially
treated as images their application to fundamental CNNs is
seamless. With an appropriately designed CNN the feature
extraction step is by design interwoven into the training of
the network. So once the ROI is extracted from the STFT, at
the desired crank angle range, and a gray-scale representation
calculated, the approach moves directly to the training of the
classifier.

4.3. Classification

The two classification methods used for this work are su-
pervised classifiers that require a set of “training” data with
known class membership to predict the most likely class for
unknown observations. First, two types of Bayes classifiers
are investigated, a linear discriminant classifier (LDC) and a
quadratic discriminant classifier (QDC). These assume that
the training data are normally distributed within each class
to which observations assigned include one of the three wear
cases.
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The second method is a traditional convolutional neural net-
work that in its basic form has eight layers. They are an im-
age input layer of size 19x51x1 to accept the gray-scale ROI,
a convolution layer of size 10 (or 20), a batch normalization
layer, a rectified linear Unit (ReLU), a 2x2 max pooling layer,
a 2 or 3 fully connected layer for the predicted health classes,
and a classification output layer. Most of these layers are typ-
ical default selections in a CNN. The two or three sized con-
nected layer is used for the 2 class (0”, 1/16”) or 3 class (0”,
1/32”, 1/16”) predictions. The primary variable that was selected
is the size of the convolution layer. In this case ten is chosen
because of its prediction accuracy and speed of training. Due
to the relatively small sized network the CNN is trained on
a single CPU with a 2020 laptop in under 30 seconds for all
cases. Given the high degree of success this minimal training
time should be considered an notable benefit of the the deep
learning approach.

Finally, Tab. 1 outlines the distribution of all compressor cy-
cle observations used in this work. Performance of the classi-
fiers are evaluated by comparing the predicted classes of both
the training set and a test set to their known classes. The
overall classification accuracy of the test data sets is used to
assess how well the proposed methodology, and associated
time-frequency technique, produced unique fault signatures
of the valve seat wear cases tested. 80% is used for training
data, and presented here, but note that other training data set
sizes were studied (70%) with similar results.

Table 1. Total cycles (ROIs & feature vectors) for each health
state. 10% reserved for testing - 80/10/10.

Class Training Validation Test TOTAL

Healthy (-0”) 600 75 75 750
Degraded 1 (-1/32”) 600 75 75 750
Degraded 2 (-1/16”) 600 75 75 750

TOTAL 1800 225 225 2250

5. RESULTS

The two described methodologies are applied to the vibration
data collected from the ESH-1 compressor for the valve seat
wear fault condition for two possible scenarios: two classes
(0”, 1/16”) and 3 classes (0”, 1/32”, 1/16”). Raw vibration data is
processed through a transformation from the time to angular
position domain followed by STFT generation of each com-
pression cycle. ROIs in a gray-scale image format are extract
from each STFT between 125◦ - 185◦ crank angle across a
frequency range of 2,500-4,500 Hz with a pixel size 51x19.
This is where the two classification methods begin with the
statistical LDC/QDC classifier determining 29 image-based
features and the CNN using the pixel intensities directly. De-
tailed results for all scenarios are given as follows, first with
the overall classification accuracy between the training and

Table 2. LDC/QDC classifier result for 2 and 3 class cases
with and without shape features

# Classes # Features LDC QDC

2 13
Training 96.2% 95.0%

Test 94.0% 92.7%

3 13
Training 83.1% 77.3%

Test 78.7% 72.9%

2 29
Training 99.6% 99.3%

Test 98.7% 98.7%

3 29
Training 91.0% 91.2%

Test 90.7% 86.2%

test data sets, followed by the confusion matrix result for only
the test data sets.

Table 2 shows that classification accuracy is very good ex-
ceeding 80% for most cases. The results show that adding the
shape features from the binary ROI representation improves
accuracy significantly with the two class case nearly perfect
and the three class case in the low 90%. The 13 feature (tex-
ture only) cases do well exceeding 70%, but with minimal
overhead of adding shape features. However, from the accu-
racy improvement in the 29 feature case it is apparent there is
a strong motivation to do so even if it adds a degree of free-
dom in threshold and outlier determination. From the confu-
sion matrices in Tab. 3 and Tab. 4 the two class case shows
very little miss classification while the three class case shows
a bit more uncertainly in the classification of the slightly worn
(1/32”) valves seat.

Next, the performance of the deep learning approach is pre-
sented, again with both the two and three class scenarios. A
minor ad hoc investigation of the number of training epochs
and nodes in the convolutional layer is shown in Tab. 5. In
all cases the accuracy of the same test data sets from the

Table 3. QDC(LDC) Confusion Matrix - Test Data (2-class
[top] & 3-class [bottom]) - 13-features

Classified
all 0” all 1/16” Totals

A
ct

ua
l

all 0” 70 (72) 8 (6) 78
all 1/16” 3 (3) 69 (69) 72
Totals 73 (75) 67 (65) 150

Classified
all 0” all 1/32” all 1/16” Totals

A
ct

ua
l all 0” 58 (67) 15 (6) 0 (0) 73

all 1/32” 0 (5) 71 (62) 19 (23) 90
all 1/16” 0 (1) 27 (13) 35 (48) 62
Totals 58 (73) 113 (81) 54 (71) 225
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Table 4. QDC(LDC) Confusion Matrix - Test Data (2-class
[top] & 3-class [bottom]) - 29-features

Classified
all 0” all 1/16” Totals

A
ct

ua
l

all 0” 79 (80) 2 (1) 81
all 1/16” 0 (1) 69 (68) 69
Totals 79 (81) 71 (69) 150

Classified
all 0” all 1/32” all 1/16” Totals

A
ct

ua
l all 0” 80 (79) 7 (8) 0 (0) 87

all 1/32” 2 (1) 60 (66) 11 (6) 73
all 1/16” 0 (0) 11 (6) 54 (59) 65
Totals 82 (80) 78 (80) 65 (65) 225

Table 5. CNN classifier results for 2 and 3 class cases

# Classes # Epochs # Nodes Accuracy

2 5 10
Training 97.0%

Test 96.7%

2 10 10
Training 99.0%

Test 98.7%

3 5 10
Training 89.8%

Test 85.3%

3 10 10
Training 93.6%

Test 92.9%

3 10 20
Training 95.9%

Test 93.3%

LDC/QDC approach above showed excellent success with
the most challenging three class case reaching 93.3% with
20 nodes. Table 6 shows corresponding confusion matrices
for both cases. With the high level of accuracy of the CNN
there is little miss-classification.

6. CONCLUSION

The aim of this work is to develop and compare two vibration-
based condition monitoring methods for early detection of
valve seat wear in reciprocating compressors. Vibration data
is collected at the head-side discharge valve manifold and
processed using time-frequency analysis. Regions of inter-
est are then extracted based on known piston position during
discharge valve open events. At this point two methods of
health classification are presented: a Bayesian method using
manually extracted features based on gray-scale and binary
image statistics and a deep learning method based on training
a relatively small sized convolution neural network. In both
cases the methods frequently achieve greater than 90% health
classification success.

Table 6. CNN Confusion Matrix for Test Data (2-class & 3-
class) - 10-epochs, 10-nodes

Classified
all 0” all 1/16” Totals

A
ct

ua
l

all 0” 75 0 75
all 1/16” 2 73 75
Totals 77 73 150

Classified
all 0” all 1/32” all 1/16” Totals

A
ct

ua
l all 0” 75 0 0 75

all 1/32” 1 69 5 75
all 1/16” 1 9 65 75
Totals 77 78 70 225

It is important to point out that the primary sensor is co-
located near where the fault is seeded, namely the head-side
discharge. There is a wealth of other conditions that are com-
mon to the compression industry that require investigation,
such as mixed faults (not all poppets worn), different fault
modes (spring fatigue or poppet leakage), and fault isolation
(inlet valves, crank and head-side, crank-side discharge) to
name a few. However, the performance achieved is partic-
ularly encouraging when considering the wear gradients in-
vestigated. The processes developed produced promising re-
sults with significant room for optimization of the methods
presented specifically the “tunable” parameters pointed out
throughout this paper.
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