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ABSTRACT 

Estimating relationships between system inputs and outputs 
can provide insight to system characteristics. Furthermore, 
with an established input-output relationship and measured 
output, one can estimate the corresponding input to the 
system. Traditionally, the relationship between input and 
output can be represented with transfer functions or 
frequency response functions. However, those functions need 
to be built on physical parameters, which are hard to obtain 
in practical systems. Also, the inverse problem of solving for 
the input with a known/measured output is often more 
difficult to solve than the forward problem. This paper aims 
to explore the data-driven input-output relationship between 
system inputs and outputs for system diagnostics, 
prognostics, performance prediction, and control. A data-
driven relationship can provide a new way for system input 
estimation or output prediction. In this paper, a sparse linear 
regression model with nonlinear function basis is proposed 
for input estimation with measured outputs. The proposed 
method explicitly creates a nonlinear function basis for the 
regression relationship. A threshold-based sparse linear 
regression is designed to ensure sparsity. The method is 
tested with experimental data from a spindle testbed that 
simulates cutting forces within machine tools. The results 
show that the proposed approach can predict the input force 
based on the measured vibration response with high accuracy. 
Force prediction errors are around 5 percent on randomly 
reserved testing data and about 10 percent to 15 percent for 
unforeseen testing data from the training dataset. The 
prediction results are also compared with neural networks, 
which represents a more complicated nonlinear regression 
method. 

1. INTRODUCTION 

Online system identification is an important task in system 
prediction and control. In the past, model-based system 
identification was a major focus. For example, Kalman filter-
based techniques can be employed to estimate system 
parameters and perform prediction. In recent years, data-
driven system identification has drawn much research 
attention due to the expressive power of machine learning. 
Dynamic mode decomposition (DMD) (Schmid, 2010) and 
Koopman operator theory (Williams et al., 2015) are two 
examples of data-driven approaches for dynamical system 
modeling. A dynamical system refers to a system in which a 
function describes the time dependence of the evolution 
process of the state variables. DMD provides a 
decomposition method to learn a matrix-based representation 
of a high-dimensional linear system. The Koopman operator 
further provides a framework that converts the problem of 
learning a representation of a nonlinear system into learning 
an infinite-dimensional linear system representation. 
Physics-informed neural networks (PINN) have been 
developed as another popular approach that aims to include 
physics during the machine learning process (Raissi et al., 
2019). The major benefit of PINN lies in that the imposed 
physics constraint can help the machine learning algorithm 
converge faster with a relatively small dataset while 
respecting physical rules to a certain extent. The purpose of 
PINN is to learn an expressive model for the time-evolving 
function of a dynamical system, which can then be used for 
response prediction or model parameter identification. 
 
However, most of the existing data-driven modeling of 
system dynamics mainly focus on dynamical systems in 
which the evolution of the system is governed solely by the 
internal properties of the system, without external 
excitations, and following zero input response. 
Mathematically, the state evolution obeys differential 
equations involving time derivatives. In practice, under real-
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time operating conditions, a physical system cannot be 
modeled as an unforced dynamical system due to the forced 
response from continuous external inputs. In this scenario, a 
time-based dynamical model is not the best for predicting the 
response of the system. Instead, an input-output model should 
be obtained to model the system. Such an input-output model 
can be considered as a generalized frequency response 
function (Qu et al., 2021), which defines the input-output 
relationship for systems undergoing a general forced 
excitation. Such a model is typically hard to obtain by a 
physics-based approach, since many physical parameters are 
difficult to measure or estimate for run-time systems, 
especially those involving rotating contacts as in a spindle of 
a machine tool. To help address this problem, this paper 
outlines how to build a data-driven input-output relationship 
for run-time systems that provides useful information for 
estimation and control. 
 
For example, the cutting tool within a machine tool makes 
dynamic contact with the workpiece and generates vibration, 
which further affects the cutting performance, such as the 
surface quality. In general, cutting forces can be considered 
as the excitation to the spindle system and serves as the input 
of the system. Therefore, estimating cutting forces is more of 
an inverse problem rather than a forward problem. 
Nonetheless, vibration sensors are often installed on the 
spindle housing for spindle health monitoring. A hypothesis 
is that if the measured vibration on the spindle housing can 
be correlated to the real-time cutting forces, then the cutting 
forces can be estimated in real-time during machining. To 
achieve this goal, we created a cutting simulation testbed, in 
which the cutting forces can be simulated and measured. 
Then, we set out to investigate the possibility of learning a 
data-driven model that can estimate cutting forces with only 
vibration data. The learned model may then be applied for 
real-time force estimation on a machining spindle if some 
calibration data can be collected on the machine tool. 
 
Manufacturers desire a method to monitor cutting forces 
during machining processes, in order to transform machine 
tools into smart machine tools that are self-aware with real-
time diagnostics and prognostics for asset management. If 
cutting forces are monitored, then tool wear, tool breakage, 
surface quality, and chatter can potentially be monitored in 
real time. Hence, production could be stopped at the moment 
a fault in the cutting process is detected, before a failure or 
violation of a production specification is breached. Currently, 
one difficulty in monitoring cutting forces is that they cannot 
be measured without invasive force sensors installed on the 
machine tool or underneath the workpiece. However, because 
of their small size, accelerometers could potentially be used 
to estimate cutting forces non-invasively. Accelerometers 
were determined to have a great potential to be integrated for 
use in smart spindles because they can satisfy requirements 
including (1) no reduction in  spindle stiffnesses, (2) no 
limitations on cutting parameters, (3) reliable signal 

transmission, and (4) long operational life and simple 
maintenance (Cao et al., 2017). In fact, Postel et al. (2019) 
used five low-cost accelerometers on a stationary spindle 
housing to estimate the AC-components of cutting forces and 
vibrations at the tool tip. Despite the lack of application for 
low-to-moderate spindle speeds, the method verified that 
spindle-mounted accelerometers can be used to estimate 
high-speed cutting forces and vibrations at the tool tip (Postel 
et al., 2019). Similarly, this paper explains a technique that 
uses vibrations measured by on-machine accelerometers to 
estimate cutting forces in real time. 
 
Vibrations, as generally high-frequency signals, contain a lot 
of noise and non-stationary patterns. Moreover, machining 
involves time-varying inputs, so the relationship between 
force and vibration cannot be easily correlated in a point-to-
point manner in the time domain. However, in the frequency 
domain, the relationship between force and vibration should 
be more easily determined. Therefore, in this paper, we 
formulate the problem of estimating the cutting force in the 
frequency domain as a vector regression problem from the 
vibration spectrum to the force spectrum.  
 
Traditionally, the frequency response function (FRF) is 
defined as the ratio between the output component at a 
particular frequency (𝜔!) and the same frequency component 
(𝜔!)  in the input signal (Feucht, 1990). However, this 
definition is only valid when the system is linear and does not 
involve frequency modulation due to rotational motion. In 
machine spindles, the force frequency can be modulated by 
the rotational transmission path, such as gears and bearings. 
Structural resonances are another source that create high-
frequency components even under low frequency input. Also, 
as the spindle speed increases, the natural frequency can 
decrease and the damping can increase due to gyroscopic 
moments and centrifugal forces that cause the bearing 
stiffness to decrease (Grossi et al., 2017). Hence, the FRF 
between vibration and the cutting force depends on spindle 
speed. Therefore, we consider the relationship between the 
input spectrum and the output spectrum as a generalized FRF, 
where each output frequency depends on each of the input 
frequencies and vice versa (Qu et al., 2021). Thus, the process 
of the spectrum estimation is defined as a multi-variate 
regression problem. To this end, we propose a sparse linear 
regression method with nonlinear function basis to model the 
input and output relationship in the frequency domain. 
 
The rest of the paper is organized as follows: Section 2 
introduces the background and mathematical formulations of 
the methods. Section 3 presents our experimental setup and 
the flow chart of the proposed methodology, while Section 4 
discusses the results with the proposed methodology. Finally, 
Section 5 compares the results with those from neural 
networks, and Section 6 concludes the paper. 
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2. METHODOLOGY 

2.1. Related Background 

In this section, a sparse linear regression model for input-
output modeling is proposed. As discussed in Section 1, the 
input-output relationship learning can be formulated as a 
vector-to-vector regression problem. Intuitively, we can 
consider each dimension in the output vector as independent 
and formulate the problem as a multiple linear regression 
problem. The original problem can be formulated as a vector 
function:  

 𝑌" = 𝐹ℝ!→ℝ"(𝑋%) (1) 

If we take each dimension of 𝑌 separately, it becomes: 
 𝑌! = 𝑓ℝ!→ℝ(𝑋%)	, 𝑖 ∈ (1,2, …𝑚)	 (2) 

where the superscripts (𝑛,𝑚) denote the dimension of the 
variable, 𝑌"  means 𝑌 ∈ ℝ"  and 𝑋%  means 𝑋 ∈ ℝ% . 
𝐹ℝ!→ℝ" means 𝐹 is a function that maps values from space 
ℝ% to ℝ", similar with 𝑓ℝ!→ℝ. 
 
We seek to estimate a functional relationship between	𝑌 and 
𝑋. If a linear relationship suffices to model the relationship 
between 𝑌 and 𝑋, then we can perform a linear regression 
between each dimension of 𝑌 and 𝑋. In the case that a linear 
relationship is insufficient, one can build a nonlinear model, 
such as a neural network, for 𝑌!  and 𝑋 in the form of 𝑌! =
𝑓(𝑤 ∗ (𝑓(…𝑓(𝑤 ∗ 𝑋))), which is essentially a kernel-based 
nonlinear regression model. However, depending on the size 
of the hidden layer in the neural network, a large number of 
samples may be required to train such a neural network 
model. Neural network results will be provided in Section 5 
for comparison. 
 
Recently, in physics-informed machine learning, sparse 
identification of nonlinear dynamics (Sindy) (Brunton et al., 
2016) has been proposed to approximate nonlinear 
differential equations with linear regression and a nonlinear 
function basis. In Sindy, the nonlinear terms can be 
constructed with a nonlinear function basis to enrich the 
‘observation’ and achieve a linear relationship between 
states. Inspired by the work of ‘Sindy’, we propose to use 
linear regression with nonlinear function basis for the general 
multi-variate regression. 
 
In the original work, Sindy was designed to learn a functional 
representation of the time-evolving function of a dynamical 
system. For example, a generic dynamical system can be 
written as: 

 𝑑
𝑑𝑡 𝑥 = 𝑓(𝑥) (3) 

Without losing generality, 𝑥 is assumed to be in ℝ. In the 
discretized form, Eq. (3) can be written as: 

 𝑥&'( = 𝑓(𝑥&) (4) 

In the Sindy algorithm, a library of candidate nonlinear 
functions Θ(𝑥) can be constructed from 𝑥, 
 

 Θ(𝑥) = [1, 𝑥, 𝑥), … , 𝑥* , sin(𝑥) , cos(2𝑥) , …	] (5) 

where Θ(𝑥) can be constructed with any number of arbitrary 
functions. Then, a regular linear regression can be performed 
as 

 �̇� = 	Θ(𝑥)𝜉 (6) 
where 𝜉  represents the coefficient for each of the basis 
functions. While 𝜉 is solved using the measured data of 𝑥, 𝜉 
also provides the weights for the basis functions as expressed 
in Θ(𝑥). Therefore, when 𝜉 is solved, it is equivalent that the 
nonlinear function 𝑓(𝑥) can be represented as Θ(𝑥)𝜉 with a 
nonlinear functional basis.  

2.2. Proposed Approach- Linear Regression with 
Nonlinear Function Basis (LR-NFB) 

In this paper, we extend the Sindy framework to a general 
multi-variate linear regression problem. Instead of Eq. (2), we 
use: 

 	𝑌! = 𝑓ℝ!×$→ℝ(𝑔((𝑋), 𝑔)(𝑋), … , 𝑔&(𝑋)) (7) 
 
where 𝑔!	(𝑖 = 1,2, … , 𝐾) is an arbitrary nonlinear function, 
with 𝑖 ∈ (1,2, …𝐾), and 𝑓ℝ!×$→ℝ is a linear function from 
space ℝ%×- to ℝ. Equation (7) can be rearranged as: 
 

 	𝑌! = 𝐺(𝑋)𝜁,  𝜁 ∈ ℝ-×% (8) 
where 𝐺(𝑋) represents the augmented data from 𝑋, and 𝜁 is 
the regression coefficients. Compared with a neural network, 
where the nonlinear activation is taken on the weighted sum 
of all dimensions, the linear regression model with nonlinear 
function basis allows nonlinear mappings to be taken on each 
dimension of the input separately and therefore provides 
more flexibility to handle nonlinearities. 
 
Because the dimension of the original vector has been 
augmented 𝐾  times in Eq. (8), it may seem that more 
parameters have been added to the model. However, 
compared with a neural network, the number of parameters is 
kept at a moderate level in Eq. (8). For example, for a 200-
dimensional input vector, the augmented dimension in the 
proposed approach will be 1000 when 𝐾 = 5, which indicates 
that 1000 linear parameters will need to be learned. However, 
with a shallow neural network with one hidden layer, the 
number of parameters is 201*5 + 6*1 = 1011 when there are 
only 5 nodes in the hidden layer. The number of parameters 
will increase dramatically when the number of nodes in the 
hidden layer is greater than 5. With 100 hidden nodes in the 
hidden layer, the total number of parameters for a neural 
network will be 201*100 + 101*1 = 20201. For a deep neural 
network, the total number of parameters will further increase. 
In general, as a rule of thumb, the number of samples should 
be close to the number of parameters in the model to have the 
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model well converged and avoid overfitting. To this end, the 
LR-NFB problem will be overdetermined rather than 
underdetermined as long as the number of samples is greater 
than approximately 1000 in the given example. 

2.3. Sparse Regularization of LR-NFB (SLR-NFB) 

It is possible that the artificially created nonlinear function 
basis may not be useful for the regression task. In practice, 
many of the coefficients are typically effectively zero and 
should not be included in the final model. Therefore, a sparse 
penalty should be added to the model to ensure sparsity. An 
L1 norm is a common regularization term that can be added 
to the loss function, such as mean square error of the 
prediction, as: 
 

 𝜁 = argmin.′‖𝑌 − 𝐺(𝑋)𝜁‖) + 𝜆‖𝜁‖( (9) 
 
However, in practice, the optimization of Eq. (9) is 
computationally expensive when the dimension of input is 
large. Instead, a sequential threshold least squares (STLS) 
algorithm, which is proposed in the original Sindy method 
(Brunton et al., 2016), is adopted for the sparse 
regularization. STLS can be summarized with the following 
pseudo code: 
 

 
Figure 1. Pseudo code of the sequential threshold least 
squares (STLS) algorithm. 

3. EXPERIMENTAL SETUP AND METHODOLOGY 

3.1. Spindle Testbed 

A new method for estimating real-time cutting forces was 
realized in a spindle testbed, shown in Figure 2. A motor 
rotates an instrumented tool holder in a custom spindle above 
a metrology suite. The instrumented tool holder is the “tool” 
and the metrology suite is the “workpiece”. Accordingly, the 
metrology suite measures the “tool-to-workpiece” forces, 
torques, and error motions during rotation of the tool holder. 
A data acquisition (DAQ) box collects the data from the 
metrology suite sensors as well as data from two triaxial 
inertial sensors attached to the custom spindle housing. Six 
accelerations were sensed from two Dytran 7576A1 tri-axial 
vibration sensors, and the forces were sensed from two ATI 
Mini45 force-torque sensors. The sampling rate for both force 
and vibration was set at 10 kHz. In this paper, only one X-

axis vibration signal and the total X-axis force were used for 
model development. 

For the purposes of explaining the testbed data, Figure 3 
shows an illustration of the portable components of the 
spindle testbed on a machine tool. As the tool holder rotates, 
the inertial sensors attached to the spindle housing measure 
the spindle housing vibrations. Simultaneously, a magnet on 
the tool holder interacts with magnets fixed on two force-
torque sensors in the metrology suite; the “tool-to-
workpiece” forces and torques are also measured during 
rotation. Figure 4 shows how the force-torque sensors are 
attached to linear positioning stages so that the magnetic 
interactions can be changed via the separation distance, 𝑑. 

 
Figure 2. Spindle testbed. 

 
Figure 3. Illustration of application of the new method on a 
machine tool. 

 
Figure 4. Illustration of a magnetic assembly located to yield 
a (a) relatively low tool-to-workpiece force or (b) relatively 
high tool-to-workpiece force. 
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3.2. Method Overview 

Whether data is collected on the spindle testbed or on a 
machine tool, all signals are collected simultaneously and 
processed to yield the 30 signals shown in Figure 5: the “A” 
prefix is for an acceleration, the “E” prefix is for an error 
motion, the “F” prefix is for a force, the “G” prefix is for a 
rate velocity, and the “T” prefix is for a torque. The 
metrology suite yields the 3 forces and 3 torques (FX1, FY1, 
FZ1, TX1, TY1, and TZ1) associated with the X-direction 
force-torque sensor, the 3 forces and 3 torques (FX2, FY2, 
FZ2, TX2, TY2, and TZ2) associated with the Y-direction 
force-torque sensor, the 2 translational error motions (EXC 
and EYC) of the laser diode in the “tool”, and the 2 rotational 
error motions (EAC and EBC) of the laser diode in the “tool”. 
The two inertial sensors yield the 6 inertial signals (AX1, 
AY1, AZ1, GX1, GY1, and GZ1) associated with the first 
sensor and the 6 inertial signals (AX2, AY2, AZ2, GX2, 
GY2, and GZ2) associated with the second sensor. 

 
Figure 5. Close-up view of instrumented tool holder and 
inertial sensors in spindle testbed with associated signals. 

Figure 6 shows a summary of a new method for estimating 
real-time cutting forces. Before machining, on-machine 
sensors (e.g., accelerometers), an instrumented tool holder, 
and a metrology suite are placed within the machine tool. The 
instrumented tool holder in the spindle works in tandem with 
the metrology suite to induce simulated cutting forces during 
rotation, per the spindle testbed explained in Section 3.1. The 
forces are composed of three orthogonal components, to 
represent a general cutting force, composed of the cutting 
force (parallel to the velocity), the thrust force (perpendicular 
to the velocity and spindle axis), and the axial force (aligned 
with the spindle axis). Any component could be estimated by 
the new method, but the thrust force component, in the X-axis 
direction, is estimated by the new method within this 
manuscript, because it is the largest component created 
within the spindle testbed. 

During rotation, data is collected simultaneously and 
synchronously from the on-machine sensors and the 
metrology suite for a variety of force levels and rotational 
speeds. This dataset is then processed via machine learning 
to create an estimator of the tool-to-workpiece forces based 
solely on the on-machine sensor data as inputs. Finally, 
during machining, the instrumented tool holder and 

metrology suite are removed from the machine, and a 
different tool holder with the same taper mechanism is placed 
in the spindle. As the tool rotates and removes material from 
the workpiece, the on-machine sensor data is inputted into the 
estimator, which outputs a real-time estimation of the forces. 
In this sense, the new method may transform a conventional 
spindle into a smart spindle for future smart machine tools.  

The new method for simulating and monitoring cutting forces 
has several advantages over existing methods. Not only does 
the method not affect the cutting process, but as long as 
inertial sensors can be mounted on the spindle housing, the 
method can be applied to all spindles and tools that utilize 
tool holders with the same taper mechanism as the 
instrumented tool holder. 

 
Figure 6. Summary of new method for estimating real-time 
cutting forces. 

3.3. Overall Methodology 

Again, the purpose of this research is to estimate the cutting 
force from the measured vibration on the spindle housing. In 
order to fully evaluate the feasibility of using a data-driven 
approach to build an inverse FRF model that can be used to 
estimate the cutting force under various spindle speeds and 
force levels, spindle data was collected for 100 different 
spindle speeds and 13 different force levels. Table 1 
summarizes the dataset. There are a total of 1300 different 
operating conditions at which data was collected, with 
spindle speeds ranging from 400 rpm to 3000 rpm, selected 
uniformly every 26 rpm, and thrust force impulse magnitudes 
ranging from 4 N to 40 N, selected uniformly every 3 N. For 
each operating condition, 1 s of data was collected.  

To create training data and testing data, we divide the data 
into 0.5-s-long segments, which doubles the number of 
samples to 2600 samples. Each sample contains the actual 
force signal and the corresponding vibration signal in the time 
domain. Then, a Fourier transform is taken to convert the 
temporal data to the frequency domain. These single-sided 
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Fourier spectrums have a frequency resolution of 2 Hz, due 
to the sample length of 0.5 s. The DC components are not 
utilized, however, to focus on the AC response of the 
dynamical system. 

 

 
Figure 7. Flow chart of the overall methodology to estimate 
the cutting force. 

It is worth noting that in the implementation process, the 
complex spectra are separated into their real and imaginary 
parts, which are concatenated together to form a double-
length real vector as an input with the function basis 
augmentation. The regression method with function basis can 
be directly applied to complex numbers as well. In our 
testing, it was found that the complex-number regression 
result is similar or slightly inferior to the real-number 
regression. A possible reason might be that some of the basis 
functions are not well defined for complex numbers. The 
route of directly working with complex numbers is not 
presented due to its inferior results. Figure 7 shows the flow 
chart of the overall methodology. 

In the initial testing, four basis functions were chosen, 
namely, square root, square, natural exponential function, 
and the original form (first order). We also included a 

constant term to accommodate for a bias. The proposed 
model was run on a MacBook-Air laptop in matlab. The 
computer is configured with 1.6 GHz core i5 CPU and 8GB 
of memory. Detailed results will be shown and discussed in 
Section 4. 

4. RESULTS AND DISCUSSIONS 

This section is organized as the following: In Section 4.1, we 
first show examples of raw data collected from the spindle 
testbed, which illustrates the data and gives an overview of 
the force prediction problems. Section 4.2 presents three test 
cases that illustrate how the model is learned and predicts the 
forces. Finally, in Section 4.3, the effect of different basis 
functions is briefly discussed. 

4.1. Overview of the Dataset 

Figure 8 shows examples of force and vibration signals. Due 
to the varying operating conditions, the vibration-to-force 
relationship in the frequency domain under different spindle 
speeds are very different at the same frequency. Thus, the 
regression model for the force should take into consideration 
the operating conditions and amplitude relationships between 
different frequencies. Our hypothesis is that those 
relationships are hidden in the vibration spectrum and can be 
utilized if the regression model has enough expressive power. 

 

 
(c) (d) 

Figure 8. Example force and vibration signals and their 
spectrums: (a) the force signals, (b) the force spectrums, 
(c) the vibration signals, and (d) the vibration spectrums for 
two spindle states with different spindle speeds and force 
levels. 

4.2. Three Test Cases and Results 

To investigate the possibility of learning a generalized data-
driven FRF, testing is performed for three different scenarios: 

(a) (b) 

Table 1. Summary of dataset. 
       Force 

Speed 
4 N 7 N … 37 N 40 N 

400 rpm X X … X X 
426 rpm X X … X X 

… … … … … … 
2974 rpm X X … X X 
3000 rpm X X … X X 
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• Case 1: The full set of data is randomly separated into 
70 percent for training and 30 percent for testing and 
prediction. In this case, it is largely guaranteed that 
similar operating conditions either under the same 
spindle speed or under the same force level have been 
seen in the training dataset. 780 samples out of 
2600 samples are reserved for testing. 

• Case 2: The training is only performed with some force 
levels. Then the model is used to predict the forces at 
untrained force levels. More specifically, 16 N, 19 N, 
34 N, and 40 N out of the thirteen (13) different force 
levels are never trained under any spindle speeds. It 
should be mentioned that 40 N is the highest force level 
in this experiment. Omitting all training data for 40 N 
will make it a fully out-of-range prediction. 800 samples 
out of 2600 samples are reserved for testing and 
prediction.  

• Case 3: The training data set only includes some spindle 
speeds. The prediction is then performed on unforeseen 
spindle speeds. In this test, data under spindle speeds of 
505 rpm, 1004 rpm, 1503 rpm, 2002 rpm, 2501 rpm, and 
3000 rpm are never trained. This is the most difficult 
case, since the spindle can have dramatically different 
FRFs at different spindle speeds. 156 samples out of 
2600 samples are used for testing and prediction. 

Next, we present the results for the above three cases. We 
also present results for regular linear regression (LR), linear 
regression with nonlinear function basis (LR-NFB), and 
sparse linear regression with nonlinear function basis (SLR-
NFB). 

Figure 9 shows example predictions for Case 1, with the solid 
black line as the true force, the blue line as the results of linear 
regression (LR), the red line represents results for LR-NFB, 
and the green line shows the SLR-NFB results. It can be seen 
from the results that the multi-variate regression-based 
approach can effectively predict the cutting force based on 
the vibration response. It can also be seen that the proposed 
regression approaches with nonlinear function basis generate 
more accurate prediction results than simple linear 
regression. 

Quantitative comparisons among the methods are given in 
Table 2. In this error table and all subsequent error tables, the 
values are expressed as mean ± standard deviation in newtons 
(N). Two metrics are evaluated to compare the force 
prediction accuracy. The first one is Mean Absolute Error 
(MAE), which is computed as absolute error between the 
predicted force versus true force, and then the average over 
all tested cases is reported. MAE not only evaluates the 
amplitude error between the true and predicted forces, but 
also includes the phase shift error. The second metric is the 
mean root mean square error (M-RMSE). To calculate M-
RMSE, we first calculate the absolute error between the RMS 
for each sample and the RMS for each predicted force, and 

then take the average across all samples. The RMS value of 
a force signal represents the effective force in the cutting 
process, similar to the effective value of a voltage signal in 
electrical engineering. Both mean error and standard 
deviation of the error distribution are given in Table 2 and the 
following tables. 

Comparison of the MAE and M-RMSE metrics for the three 
methods (LR, LR-NFB, SLR-NFB) in Table 2 shows that 
LR-NFB outperforms simple linear regression. The sparse 
version of the algorithms further improved the accuracy 
slightly. It is noted that the prediction accuracy is an average 
error for all force levels from 4 N to 40 N. For example, the 
force prediction error for SLR-NFB of 1.15 N is roughly 
5 percent for the median force level of 22 N for the dataset. 
Such small differences are illustrated in Figure 10, which 
shows the true force and SLR-NFB-based predicted force 
from Figure 9. Therefore, the average prediction error is 
potentially acceptable for force monitoring purposes within 
manufacturing. 

 
Figure 9. Example predicted force using vibration response 
with three different regression approaches. 

 
Figure 10. Example predicted force with SLR-NFB. 

 
We continue to show the results for Case 2, in which the 
prediction is performed on force levels that have never been 
trained. Table 3 shows the prediction accuracies via the MAE 

Table 2. Testing error for reserved testing data. 
Metric LR LR-NFB SLR-NFB 
MAE 1.43 ± 1.95 1.18 ± 1.77 1.15 ± 1.73 

M-RMSE 0.43 ± 0.53 0.34 ± 0.53 0.34 ± 0.53 
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and M-RMSE metrics for the three methods. First, as 
expected, the prediction error increased compared with 
Case 1. However, the prediction accuracy is still very high 
without significant performance degradation. Second, the 
prediction errors with the nonlinear function basis are slightly 
smaller than those without the nonlinear function basis. 
However, we also notice that the error standard deviation for 
LR-NFB and SLR-NFB are larger than that of the LR model, 
which indicate that the predictions of the SLR-NFB model 
have more fluctuation. 

 
Nonetheless, the SLR-NFB method was shown to be accurate 
for force predictions at 40 N, which is out of the trained force 
range and represent extrapolating. Figure 11 shows an 
example of the prediction results for 40 N, which are 
observed to be highly accurate. 

 
Figure 11. Example predicted force for 40 N, which was 
untrained and out of the trained force range. 

Next, Table 4 shows the prediction performances for Case 3, 
in which the prediction is performed for spindle speeds that 
have never been trained. In general, the prediction error 
metrics increase for the unforeseen speed levels compared to 
those for the untrained force levels (Case 2). The major 
reason is perhaps the extrapolation limitations of the models 
without physics. First, from a mechanical point of view, 
under different spindle speeds, the FRF function can be 
dramatically different due to different physical properties 
from different bearing contact stiffnesses and motor 
influences. Second, the vibration signal during rotation is 
dominated by harmonics at the spindle speed and its integer 
multiples, leading to a sub-accurate relationship at untrained 
speeds away from the trained harmonic frequencies. 
Nonetheless, because the accuracy of around 3 N represents 
a force prediction error of roughly 15 percent, the model 
demonstrates potential for data-driven FRF learning and 
application for estimating machining forces that vary by 
relatively large magnitudes. 

However, compared with simple linear regression, the 
prediction performance decreased slightly. One of the 

possible reasons for the performance degradation could be 
associated with overfitting of the model. Although the linear 
regression problem is overdetermined, with a sparse penalty, 
the solution space is significantly larger than the number of 
model parameters. Another possible reason for the 
performance degradation is overfitting by dominant 
dependencies in the model, such as a higher-order term. This 
can be potentially solved by adding an L2 regularizer that 
limit dominant weights on the function basis. 

 
Table 5 shows a summary of the performance improvement 
of using sparse regularization with linear regression with 
nonlinear function basis (SLR-NFB). It can be seen that the 
proposed SLR-NFB model generally outperforms linear 
regression model except for the test case of untrained spindle 
speeds.  

 
While the sparse version of SLR-NFB only sees about 2.5% 
of improvement over the non-sparse version of LR-NFB in 
our tested case, it is expected in future work that the 
improvement will be more significant with an increased 
number of basis functions. 

4.3. Evaluation of Different Function Basis 

It is interesting to see how the function basis affects the 
performance of force prediction. In a simple evaluation, we 
tested cos(2x)	as a replacement of the exponential function 
in the initial function basis. The results are shown in Table 6 
to Table 9. Table 9 shows that the results are very similar as 
those for the initial test (see Table 5). It appears that the 
regression model is relatively not very sensitive to the 
highest-order term in the function basis. 

 

Table 3. Prediction error for untrained force levels. 
Metric LR LR-NFB SLR-NFB 
MAE 1.61 ± 2.21 1.60 ± 2.93 1.56 ± 2.82 

M-RMSE 0.54 ± 0.57 0.51 ± 1.16 0.50 ± 1.10 
 
 

Table 4. Prediction error for untrained spindle speeds. 
Metric LR LR-NFB SLR-NFB 
MAE 2.90 ± 4.15 3.60 ± 5.84 3.56 ± 5.72 

M-RMSE 0.76 ± 0.89 1.16 ± 2.21 1.13 ± 2.12 
 
 

Table 5. Force prediction accuracy improvement of 
SLR-NFB over linear regression model. 

Metric Testing data Untrained 
force 

Untrained 
speed 

MAE 19.6 % 3.11 % -22.8 % 
M-RMSE 20.9 % 7.41 % -48.7 % 

 
 

Table 6. Testing error for reserved testing data. 
Metric LR LR-NFB SLR-NFB 
MAE 1.42 ± 1.92 1.21 ± 1.80 1.18 ± 1.75 

M-RMSE 0.44 ± 0.49 0.38 ± 0.52 0.38 ± 0.52 
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5. COMPARISON WITH DEEP NEURAL NETWORK 

Different neural networks were tested for regression and 
compared against the models discussed in the previous 
sections. It was found that the deep neural network 
outperformed the shallow neural network. A fully connected 
feedforward neural network with four layers was created and 
tested for the task. The number of nodes in each sequential 
layer is 200, 100, 100, and 200. It is worth mentioning that 
tanh activation functions were adopted, while sigmoid and 
rectified linear unit (ReLU) activation functions do not 
converge in the training stage.  

To compare the computation cost of the proposed model and 
deep neural networks, we timed the training process for both 
models on Case 1, where 70% of data out of 2600 samples 
was used for training. It took 111.2 sec to run the sparse 
regression model with 10 iterations (similar to epochs). In 
contrast, it took about 148.5 seconds for the neural networks 
to converge with 500 epochs. 

Table 10 shows the prediction results for the deep neural 
network. It is seen that the prediction performance of the 
neural network is not as good as that for linear regression for 
the given problem. The major reason is that the number of 
samples is relatively small for the neural network to be fully 
trained for the large solution space. Another reason is that for 
the regression model, each output dimension is treated 
independently, and effectively, a linear model for each 
dimension is then trained. However, it is unrealistic to train 
and save a neural network for each output dimension. 
Therefore, the neural network model represents a large 
vector-to-vector regression model. 

 
Table 11 compares the results of the SLR-NFB model with 
those from the deep neural network. In general, the SLR-NFB 
model performs better than the deep neural network, by as 
much as about 50 percent. 

Based on the above observations, it is inferred that the linear 
model has the best extrapolation capability, while the SLR-
NFB model has a more accurate expressive capability 
compared with the linear model. It can also be inferred that 
with a relatively small dataset, neural networks may not be a 
good candidate for this type of learning task. 

 

6. CONCLUSIONS 

In this paper, a study of cutting force prediction with 
measured vibration signals was performed. More 
specifically, acceleration data collected on the spindle 
housing of a testbed, which was designed to simulate cutting 
processes on a machine tool, were used to predict the testbed 
“cutting” force signals. Regression methods with a nonlinear 
function basis were proposed for data-driven input-output 
relationship learning. The proposed methods were tested with 
experimental data collected from a spindle testbed. The 
learned model represents a data-driven inverse frequency 
response function. 

The results demonstrate that the proposed methods can use 
the acceleration signals to effectively predict the cutting force 
with good accuracy. It was further shown that the proposed 
regression method (SLR-NFB) outperforms linear regression 
on the testing dataset with random training/testing. SLR-NFB 
also outperformed linear regression for force predictions at 
unforeseen spindle forces. However, the performance of the 
SLR-NFB model was not better than linear regression for 
unforeseen spindle speeds, which indicates that there was a 
relative lack of extrapolation capability for SLR-NFB. 
Finally, in comparison with deep neural networks, linear 
regression performed better in all tested cases. SLR-NFB 
performed better than the deep neural network in all cases, 
except for force predictions at untrained spindle speeds. The 
proposed model is not optimized in the sense of overfitting, 
so for future work, an L2 regularizer will be included to 
improve the extrapolation capability. Furthermore, hybrid 

Table 7. Prediction error for untrained force levels. 
Metric LR LR-NFB SLR-NFB 
MAE 1.61 ± 2.21 1.63 ± 3.25 1.58 ± 3.17 

M-RMSE 0.53 ± 0.57 0.49 ± 1.34 0.48 ± 1.29 
 
 Table 8. Prediction error for untrained spindle speeds. 

Metric LR LR-NFB SLR-NFB 
MAE 2.90 ± 4.15 3.30 ± 5.36 3.22 ± 5.26 

M-RMSE 0.76 ± 0.88 1.12 ± 2.16 1.14 ± 2.18 
 
 Table 9. Force prediction accuracy improvement of 

SLR-NFB over linear regression model. 

Metric Testing data Untrained 
force 

Untrained 
speed 

MAE 16.9 % 1.9 % -11.0 % 
M-RMSE 13.6 % 9.4 % -50.0 % 

 
 

Table 10. Prediction accuracy of deep neural network. 
Metric Case 1 Case 2 Case 3 
MAE 1.68 ± 2.28 1.91 ± 2.62 3.24 ± 4.61 

M-RMSE 0.52 ± 0.67 0.74 ± 0.75 0.82 ± 0.98 
 
 

Table 11. Force prediction accuracy improvement of 
SLR-NFB over deep neural network.  

Metric Testing data Untrained 
force 

Untrained 
speed 

MAE 46.1 % 23.2 % -8.9 % 
M-RMSE 52.9 % 48.0 % -27.4 % 
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model like physics informed neural network will be 
investigated for the FRF learning. 
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