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ABSTRACT

Proactive maintenance aims to accurately classify temporal
trends as early as possible, detect faulty states, and pinpoint
the root cause of faults. Neither late nor early maintenance
is desirable, as each will incur additional operating costs.
While various data-driven techniques have been used to iden-
tify faults, many fail to perform when faced with missing
values at run time or lack explainability. The present work
introduces a framework to identify and classify anomalous
signals in spite of missing values and partially labeled data.
This framework offers explainability by identifying key per-
formance indicators for each fault family using SHapley Ad-
ditive exPlanations (SHAP). A comprehensive study was per-
formed on existing algorithms to determine the best fault clas-
sifier, and candidates with accuracy greater than 80% were se-
lected. This paper introduces a new missing value imputation
technique based on Partial Least Squares (PLS-MV). It also
uses fuzzy C-means (FCM) to detect different healthy unla-
beled operations in the PHME21 dataset. Our results show
that boosting algorithm is best suited for creating a gener-
alized model that is capable of classifying faulty patterns in
multi-label datasets which may include missing values.

1. INTRODUCTION

The ultimate goal of Predictive Maintenance (PdM) is
scheduling right-on-time maintenance (Lee & Scott, 2006).
As such, early detection of faulty patterns and timely schedul-
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ing of maintenance events can minimize risk to the underly-
ing process. Condition Based Maintenance (CBM), which
aims to maximize the useful life of a system by targeting
maintenance for the time it is needed, can reduce the costs
associated with the system downtime and subsequent dam-
age to other subsystems that need to endure working in a
defective state. While scheduling early maintenance would
reduce the production efficiency by increasing the machine’s
downtime and adding unnecessary costs, late maintenance
would damage the operation quality (Geramifard, 2013) by
cascading damage to other healthy subsystems or slowing
down the whole system. Thus, the critical component in
Proactive Maintenance (PM) is a diagnosis of the root cause
behind the various types of faulty states in a complex system
that can determine what subsystem is the cause of the failure
(Salfner & Malek, 2007; Lee & Scott, 2006).

Several attempts have been made to achieve eXplainable Ar-
tificial Intelligence (XAI) and apply them to different fields.
However, when it comes to PdM, there are few XAI applica-
tions for anomaly detection and diagnostics. Steenwinckel
et al. (2021) incorporated rules and semantic knowledge
into ML and created a hybrid system that performed well in
anomaly detection while maintaining explainability. Alfeo
et al. (2020) used an autoencoder architecture for anomaly
detection with results comparable to previously published
works, but unlike the others, their work benefited from XAI
features. Rajendran et al. (2019) also used an adversarial au-
toencoder architecture to detect anomalous behavior in wire-
less spectrum with an average accuracy of 80% and the ability
to explain the features. Langone et al. (2020) used Logistic
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Regression (LR) to detect and explain the anomalous behav-
iors observed in high-pressure plunger pumps.

Many classification techniques are used for PdM, examples
of which include Decision Trees (DT) (Gupta, Uttarakhand,
& Rawat, 2017), Random Forest (RF) (Breiman, 2001), k-
Nearest Neighbors (k-NN) (Wu et al., 2008), Support Vector
Machines (SVM) (Wu et al., 2008), and LR (Peng, Lee, &
Ingersoll, 2002); however, it should be noted that not all of
the techniques mentioned above are explainable. Kamal et al.
(2021) provides a comprehensive look at the XAI techniques
used in PdM. The precise and explainable nature of the tree-
based algorithms has made them the most commonly used
non-linear technique in PdM (Lundberg et al., 2019).

While theoretical models and idealized conditions can be
used to develop PdM workflows, these solutions do not al-
ways translate to real-world examples. To that end, PdM un-
der industrial settings faces challenges that can be classified
into three main categories: overcoming missing values, iden-
tifying the subset of sensors that play a critical role in pin-
pointing the faulty patterns, and handling unlabeled data.

This study introduces a new framework to identify anomalous
signals, classify their faulty states, and determine the most
important attributes that define each faulty class. This frame-
work consists of components that can handle the missing val-
ues and partially labeled data and identify the important fea-
tures that play critical roles for each class type. We evaluate
the performance of various classifier algorithms on the 2021
European Conference of the Prognostic Health Management
Society (PHME) data challenge data set (PHME21). With
the goal of minimizing prediction errors caused by missing
values, while maximizing the accuracy of class type identifi-
cation, we introduce an ensemble method called Partial Least
Squares-Missing Value (PLS-MV) for missing value imputa-
tion. This framework also offers explainability by identifying
key performance indicators for each fault family using SHap-
ley Additive exPlanations (SHAP).

The rest of the article is organized as follows: in section 2 we
present a background on Bagging and Boosting algorithms,
along with an overview of the dataset used in the present
study. Section 3 discusses our methodology, followed by a
discussion of the results in section 4, and conclusions.

2. BACKGROUND

When it comes to working with supervised data, the DTs are
among the most widely used techniques. Their ability to be
visualized, plus their simplicity and applicability to both nu-
merical and categorical data, has made them a prime can-
didate for inductive inference (Gupta et al., 2017). Their
downside, however, is their susceptibility to over-fitting. Sev-
eral techniques, such as bootstrap aggregating (Bagging) and
boosting, have been developed to overcome this shortcoming
of DTs and increase their performance.

Figure 1 shows an overall comparison between a single es-
timator (such as DT) versus multi-estimator algorithms that
combine outputs of individual estimators (Aporras, 2016).

2.1. Bagging methods

Bagging is an ensemble method introduced in (Breiman,
1996). An ensemble method incorporates many models or
classifiers to create a final classification that outperforms a
single classifier by balancing the differences between models
and the accuracy of each individual model (Kotsiantis, 2014).
To create a diversity of models and outperform the biases of a
single classifier, bagging starts by randomly sampling a data
set to create a new training set to be used by a unique clas-
sifier. The sampling is done with replacement, meaning that
training instances are not exclusive to a single model, and
that some training examples may be excluded from all mod-
els. Each model is independent of all other models in the
ensemble, meaning that the classification can be done in par-
allel. The final classification is done by averaging all of the
classifications of the models equally, as shown in Figure 1-b.

Random Forest (RF) is a specific variant of bagging that was
presented in (Breiman, 2001), extending the method to de-
cision trees. Like in bagging, randomly sampling a data set
with replacement serves as input for creating individual deci-
sion trees that consist of branching if statements that classify
the data. The changes in the randomly selected data result
in a diverse set of decision trees that form a random forest.
Again following the main ideas of bagging, when the random
forest makes a prediction, a majority vote from the decision
trees serves as the final prediction.

2.2. Boosting methods

Like the bagging method, the boosting method starts with
classifier training, randomly selecting data with replacement.
After the first classifier is trained, a new classifier is created
using updated weights based on the accuracy of the previous
model. Because the selected data for the next classifier de-
pends on the results of the previous model, boosting has to be
done sequentially, unlike bagging. A weighted average of all
of the models’ classifications is performed to get a final clas-
sification output. How well a single model in the boosting
method performed determines the weight of that model in the
overall classification (Freund & Schapire, 1999). This means
that if a model is generating results that are similar to the ex-
pected output, it gets a higher weight in the overall decisions,
thus influencing subsequent decisions.

One of the earliest and most popular implementations of
boosting is Adaptive Boosting (AdaB) (Freund & Schapire,
1997), which can work on any classifying algorithm, improv-
ing upon incorrectly classified instances of previous models.
Using a gradient of a loss function to tell how a previous
model has performed, this algorithm sequentially produces
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(a) Single Learner (b) Bagging (c) Boosting

Figure 1. Bagging and Boosting both require a base learner. In case of a tree based classifier, the base classifier can only make
a single estimate (a); Bagging (b) with the tree based classifier will average the estimations of each classifier. Boosting (c) will
apply weighted averaging over the results of its classifiers, boosting the contribution of the most successful ones.

a new model that gradually becomes more and more optimal
in branching the trees.

As a more efficient implementation of gradient boosting de-
cision trees, Light Gradient Boosting (LightGB) (Ke et al.,
2017a) only uses data with large gradients, resulting in a rea-
sonable estimation of the information gain while using much
less data. Histogram-based Gradient Boosting classification
tree (HistGB) is another popular boosting estimator that tol-
erates datasets with missing values, and is inspired by the
LightGB algorithm (Ke et al., 2017a).

2.3. Missing Value Imputation

While several different methods are used in the literature for
missing value imputation, examples of which include known
data regression KDR (Arteaga & Ferrer, 2002), conditional
mean replacement (Nelson, Taylor, & MacGregor, 1996) iter-
ative algorithm IA (Walczak & Massart, 2001), and modified
nonlinear iterative partial least squares regression algorithm
NIPALS (Geladi & Kowalski, 1986), NIPALS and IA can be
considered as the two most widely used algorithms in this
category (Folch-Fortuny, Arteaga, & Ferrer, 2017).

2.4. Data set

The PHME21 data challenge data set targets classification of
system state and detection of faults, as well as performing
root cause analysis for a manufacturing production line, illus-
trated in Figure 2 (PHME, 2021). The main objectives of this
competition were to:

• Determine different faults

• Identify anomalous behavior in signals

• Rank input attributes to determine the key predictors

• Identify fault family from an unlabeled data stream using
the minimum number of data points

• Identify system parameter configuration

The data set contains readings from 50 signals, aggregated
at 10-second intervals, encompassing stationary and moving
components of the line. According to the (PHME, 2021), the
data provided as part of the PHME21 data challenge include
signals in three categories:

• Machine health (e.g., Pressure, Vacuum, FuseHeatSlope)
• Environmental factors (e.g., Temperature, Humidity)
• Miscellaneous (e.g., CPUTemperature)

Figure 2. Production line setup: (1) A robotic arm picks up
the fuses; (2) A thermal camera checks fuses for overheating
or degradation; (3) A conveyor belt carries fuses to a robotic
sorting bar; (4) Sorted fuses travel down the line on a con-
veyor belt; (5) Fuses travel back to the start of the line via a
small conveyor belt; (6) fuses are stored to be fed back to the
line.

The data were captured in a controlled environment and was
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free of any faults; however, modifications were made to the
system to manufacture faults that resemble the real-life faults
in the line (such as failures encountered in the testing ma-
chine or conveyor belts) (PHME, 2021). In total, the data set
contains 99 experiments, each run from one to three hours,
with 70 of them resembling healthy operation and 29 of them
signifying eight classes of faulty conditions. Out of the 50
attributes, 14 have no values, and five attributes contain more
than 72% null values. It should be noted that only 5.57%
of the data contains readings for all attributes. Table 2 details
different classes of operation and their corresponding number
of experiments.

3. METHODOLOGY

The present work introduces a framework consisting of six
components to identify and classify anomalous signals in
spite of missing values and partially labeled data (Figure
3), while offering explainability and high accuracy. Table 1
shows the list of components in the proposed framework and
the purpose of each component.

3.1. Data preparation

The data provided as part of the PHME21 data challenge is
aggregated over 10-second intervals; thus, an initial averaging
was already performed on the raw input data. Additionally, a
Gaussian filter with a 15-cycle rolling window was applied to
reduce noise.

The generally accepted practice of data transformation, on the
one hand, is to standardize the data (i.e., mean of the data is
subtracted from each data point; thus, the set has a mean of
zero) and subsequently normalized (i.e., transformed into a 0
- 1 range). On the other hand, unseen real data may include
values that are less than the minimum or greater than the max-
imum values observed during training and testing. As a result,
scaling of input data may have inadvertent outcomes where
transformed data becomes less than 0 or greater than 1. To
avoid such an obstacle, the present work opts out of scaling
raw data or any transformations that otherwise needed prior
knowledge of the full breadth of the data. Instead, we tried

Table 1. Framework components and their purpose

Component name Purpose

PLS-MV Missing-value imputation
Denoiser Noise removal
FCM Generating labels for the unlabeled

healthy operations
KPI component Extracting key performance indicators

before classification
Classifier (HistGB) Detecting and classifying the faulty

patterns
SHAP Explaining the anomalous

signal/feature for each class of fault

Table 2. Number of recordings for each fault class

Operation Class Number of Operation

0 (Healthy) 70
2 (Faulty) 4
3 (Faulty) 4
4 (Faulty) 3
5 (Faulty) 4
7 (Faulty) 4
9 (Faulty) 4
11 (Faulty) 3
12 (Faulty) 3

to use algorithms that were tolerant of the raw data and the
possibility of having data that exceed observed values.

3.2. Healthy operation clustering

Based on the information provided by the data challenge
team, the healthy operations were captured from two different
system settings that caused intentional differences in the sys-
tem behavior, but still reflected healthy operations. This study
uses the FCM algorithm to cluster multi-dimensional data and
detect the two different operational settings in healthy oper-
ations. FCM is an unsupervised clustering method that al-
lows a data point to belong to two or more clusters by as-
signing membership to each data point (Dunn, 1973). The
closer the data is to the cluster center, the higher its member-
ship grade for that particular cluster. We used the scikit-fuzzy
implementation of this algorithm and evaluated the perfor-
mance of FCM before and after imputation of missing values.
The Fuzzy Partition Coefficient (FPC) is a performance met-
ric defined from 0 to 1, with one being the best performance
(Bezdek, 2013). A maximized FPC means that the FCM had
the best performance in describing the data.

3.3. Missing value imputation

We used the NIPALS algorithm as the foundation of the par-
tial least squares (PLS) (Geladi & Kowalski, 1986) in our ap-
proach, illustrated in Figure 4. We introduce an ensemble
method combining conditional mean replacement (Nelson et
al., 1996) and principal component analysis model building
with missing data (Folch-Fortuny et al., 2017) to fill the miss-
ing values. To avoid introducing errors to the predictive mod-
els due to biased imputed values (Harel & Zhou, 2007), our
algorithm starts with the attribute that has the minimum num-
ber of null values and sets it as the TARGET attribute. Next,
a subset of data without missing values is selected, such that
it can explain the TARGET attribute by PLS and fill the Miss-
ing Values (PLS-MV). During the training phase of PLS-MV,
the algorithm drops any null values (thus using a complete
and clean set of INPUT attributes and the TARGET value). It
then trains the PLS regressor on the INPUT attributes, aiming
to explain the TARGET attribute.
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Figure 3. Proposed framework for explainable fault detection and identification in noisy, partially labeled, and containing
missing value data

If PLS fails to give a proper fit (e.g., score or R2 value less
than a user defined threshold), an alternative imputation al-
gorithm is used. It was determined that the backward linear
interpolation was the most suitable alternative imputation al-
gorithm for the present data set. The trained PLS-MV is used
to fill in the missing values for the TARGET attribute (the at-
tribute with the least number of null values). This approach
results in a new set of data, with an additional attribute that
does not have any missing information. The new set of non-
null attributes is used in a subsequent PLS-MV iteration to fill
the next attribute with the minimum number of missing val-
ues, and the cycle continues until none of the attributes have
missing values.

3.4. Key performance indicators

Key Performance Indicators (KPI) are important attributes
that play a critical role in a predictive model. Permutation
Feature Importance (PFI) of the RF classifier was used as the
basis for initial KPI identification. The PFI is model agnos-
tic and denotes the change in the overall score of the model
as an attribute is randomly changed (Breiman, 2001). To de-
termine the most impactful attributes, we limited the number
of attributes to those with a positive PFI score, greater than
a user-defined threshold. After each elimination of low per-
formers, the RF classifier was run again, and the KPIs were
examined until all remaining attributes produced acceptable
PFI scores. A series of iterative eliminations was performed
to remove low-importance attributes.

3.5. Classification and root cause analysis

Different algorithms including k-nearest neighbors (k-NN),
linear and nonlinear support vector machine (SVM), logistic

regression, Gaussian Naive Bayes, Decision Trees (DT), and
Random Forest (RF) were tested to implement a robust clas-
sifier. Additionally, Bagging and Boosting ensemble tech-
niques were evaluated. Among the ensemble boosting tech-
niques, AdaB, LightGB (Ke et al., 2017b) and HistGB (Ke et
al., 2017b) were applied. It should be noted that balanced or
imbalanced datasets may result in overfitting or biased results
in some of the classifiers (e.g., the neural network-based clas-
sifiers); however, use of the bagging or boosting approach
used in the present work eliminates the risk of overfitting
(Ghojogh & Crowley, 2019).

Several approaches are used to analyze the importance of at-
tributes in decisions made by the trees; these include tracing
the path taken for each data point (local explanation) or via
multiple executions of the model with model agnostic algo-
rithms that examine variations in the input attributes and the
resulting predictions. This goal can also be achieved heuristi-
cally with the use of tree interpreters (Lundberg et al., 2020).
However, the optimal way of explaining the importance of
features is considered to be the Shapley Values (Lundberg &
Lee, 2017). Borrowing from the original concept proposed by
Shapley on cooperative game theory (Shapley, 1951), SHAP
(SHapley Additive exPlanations) values are used to interpret
the model outputs (Lipovetsky & Conklin, 2001) and deter-
mine the importance of each attribute in explaining each class
type.

4. RESULTS AND DISCUSSION

This study was limited to the “Value” of attributes, and as
a result, any attributes that did not possess values (e.g., at-
tributes that only had counts) were dropped. As discussed
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Figure 4. Proposed PLS-MV missing value imputation algo-
rithm
earlier, the healthy portion of the data (class 0) pertains to
two system settings; however, it is desirable to differentiate
between the two settings. The FCM algorithm applied to the
raw members of class 0 resulted in an FPC score of 0.5; how-
ever, application of the PLS-MV algorithm with backwards
linear interpolation, which resulted in a clean database with
no missing values, raised the FPC score to 0.9930. Subse-
quently, a new class 1 was extracted from the original class 0.
It should also be noted that the original data did not include
any data for classes 6, 8 or 10.

Reduction of attributes was achieved through successive
elimination of low performing PFIs (section 3.4). Table 3
lists the KPIs selected for subsequent classification analysis.

We kept 20% of the input data for testing and limited the
training data to 80% of the raw data, with the exception of
the LightGB algorithm which used a 10-fold cross-validation.
Accuracy, precision and recall of each classifier were exam-
ined, and to maintain conciseness, we ignored classifiers that
resulted in accuracies less than 80%.

Table 3. KPIs selected for subsequent analysis

Attributes

DBF DFB DPTP
FP P SI
SMPE SMS V
VFP VVC

All classifier algorithms were run on an 80 core CPU worksta-
tion with 128 GB RAM. The runtime of each algorithm is re-
ported as RT. Where applicable, the maximum tree depth was
set to 11, which is the same as the number of selected KPIs.
It should be noted that lower depths resulted in less accuracy,
and higher depths resulted in large trees, which are compu-
tationally expensive in boosting algorithms that sequentially
iterate to boost the accuracy.

Table 4 shows the training and test Accuracies (Acc.), Pre-
cision (Prec.) and Recall (Rec.) for algorithms that resulted
in accuracies over 80%. Since the present dataset includes
multi-label targets, macro averaging was used to calculate the
metrics for each label, and find their unweighted mean. Ad-
ditionally, Figures 6, 7, 8, and 9 show the confusion matrix of
the top four classifier algorithms used in this study.

As shown in Figure 6, the RF algorithm (RT = 1.38s) failed
to capture class 4, and its performance in capturing classes
2 and 7 was subpar. The HistGB algorithm (RT = 1h 30min
57s), Figure 7, improved identification of classes 2 and 7, but
its long training execution time and inability to capture class
4 are considered as negative factors. The LightGB algorithm
(RT = 17min 28s), Figure 8, offered a similar performance to
that of the histGB, except for class 4, at a more reasonable
training time.

The AdaB algorithm (RT = 43S), Figure 9, outperformed the
previous two boosting techniques, while offering a slightly
better accuracy compared to the other ensemble models; how-
ever, the inability of AdaB to be efficiently explained by
SHAP renders it less useful than the other algorithms. To
overcome this, the HistGB classifier combined with SHAP
values was used to determine the most important features for
the test data set.

Table 4. Accuracy (Acc.), Precision (Prec.) and Recall (Rec.)
scores for training and test sets of selected models.

Model Training Scores Test Scores
Acc. Prec. Rec. Acc. Prec. Rec.

DT 0.975 0.980 0.946 0.967 0.965 0.931
RF 0.974 0.994 0.929 0.970 0.989 0.916
LightGB 1.0 1.0 1.0 0.994 0.993 0.987
AdaB 1.0. 1.0 1.0 0.995 0.999 0.986
HistGB 0.999 0.999 0.999 0.996 0.996 0.991
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(a) Global (b) Local

Figure 5. Comparison of Global (a) and Local (b) SHAP values summary plot for the histGB decision tree for all class types.

Additionally, the HistGB classifier was capable of offering
robust classifications, as it handled missing values in the real-
time prediction of data stream feeding to the model, while
avoiding over-fitting.

Figure 5 shows the SHAP for the HistGB decision tree. Com-
pared to Global feature importance (Figure 5-a), using the
SHAP summary plot or local importance (Figure 5-b) makes
it possible to expand the singular magnitude of feature impor-
tance, and explain the effect of individual data points on the
overall trend. The local importance shows how positive or
negative changes in the magnitude of an attribute changes the
target value, thus changing direction of the model’s behavior
(Lundberg et al., 2020).

The SHAP summary plot of Figure 5-b shows non-linear be-
havior among the data. Large values of the SMS attribute can
have a positive impact on the target value, while the SMPE at-
tribute shows the opposite behavior. Large values of SI show
significant impact on the target value, and while VVC is ex-
hibiting a very nonlinear trend, its large values have a great
impact on the target value as well.

Table 5 lists the ranking of features for each class, in decreas-
ing order as determined by SHAP. As an example, the main
differentiating factors between the healthy sub-classes (i.e.,
classes 0 and 1) are DBF and SMS.

As evidenced here, the boosting algorithm is best suited for
creating a generalized model that is capable of classifying
faulty patterns in multi-label datasets, with the possibility of
encountering missing values.

5. CONCLUSION

The present work introduced a new framework to identify
the KPIs for each type of fault and classify faulty patterns
in proactive maintenance. It also introduced a novel missing

value imputation approach, PLS-MV, which is capable of de-
ducing missing values based on the trend observed in other
similar attributes and data points. The proposed workflow
was applied to the PHME21 data challenge data set. Since
the healthy portion of the operations was recorded under two
different sets of operating conditions, FCM was employed to
subdivide the healthy class 0 into two classes that reflected
different operating settings.

While different classifier algorithms were investigated, it was
determined that boosting algorithms are best suited for the
classification of faults in this type of application, and to over-
come missing values in test sets.

We were able to achieve a very high accuracy of 0.999 in
identifying different classes with tree based boosting, com-
pared to other classifiers such as the Bagging algorithm.
However, the non-linear trend of data, and the close similarity
of one of the classes (class 4) to a subset of healthy classes
(class 0), resulted in subpar classification of this class.

Although the HistGB algorithm showed the longest training
time, it performed equally well as the AdaB algorithm; how-
ever, AdaB could not be used with the SHAP explainer, and
we resorted to the HistGB algorithm to perform root cause
analysis, as well as the identification of the feature ranking
for each class.

Lastly, we conclude that the boosting algorithm is best suited
for creating a generalized model that is capable of classifying
faulty patterns in multi-label datasets that may include miss-
ing values.
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Table 5. Feature ranking for each class type using SHAP

Ranking Class 0 Class 1 Class 2 Class 3 Class 4 Class 5 Class 7 Class 9 Class 11 Class 12

1 DBF SMS DPTP SI SMPE VVC FP SMS SMPE SMPE
2 DFB DFB V DPTP SMS FP VFP SMPE DFB DBF
3 SMPE SMPE SI P VVC V VVC DPTP SMS DFB
4 DPTP DBF VFP VVC V DPTP SMPE VVC DBF V
5 FP P VVC DBF DBF VFP V V DPTP VFP
6 SMS VFP DFB V FP SMPE DFB VFP V VVC
7 VFP VVC FP VFP DFB SI DBF SI SI SMS
8 VVC FP SMPE DFB VFP DFB DPTP DBF FP DPTP
9 SI V P SMPE SI P SMS DFB VFP FP
10 V SI DBF SMS P DBF SI P VVC P
11 P DPTP SMS FP DPTP SMS P FP P SI

NOMENCLATURE

DBF DurationRobotFromTestBenchToFeeder

DFB DurationRobotFromFeederToTestBench

SMPE SmartMotorPositionError

DPTP DurationPickToPick

FP FusePicked

SMS SmartMotorSpeed

VFP VacuumFusePicked

VVC VacuumValveClosed

SI SharpnessImage

V Vacuum

P Pressure

RF Random Forest

RT Run Time (for training the model)

DT Decision Tree

KPI Key Performance Indicator

PFI Permutation Feature Importance

FPC Fuzzy Partition Coefficient

HistGB Histogram Gradient Boosting

LightGB Light Gradient Boosting

AdaB Adaptive Boosting
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Figure 6. Confusion matrix for Random Forest
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Figure 7. Confusion matrix for HistGB

Figure 8. Confusion matrix for LightGB
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Figure 9. Confusion matrix for AdaB
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