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ABSTRACT 

High value asset vehicles, or vehicles where safety/operational 
readiness is important, benefit from an accurate remaining 
useful life (RUL) estimate. For these assets, RUL allows 
operators to realize increase revenue because of improved 
availability. This paper uses a hybrid algorithm based on two 
high cycle fracture mechanics models: a linear elastic fracture 
mechanics model, and the dislocation theory fracture mechanic 
model. Additionally, the hybrid model uses two separate 
Kalman filters to linearize the nonlinear component degradation 
process resulting in an improved RUL estimate. The hybrid 
model’s performance is validated using prognosability, 
trendability and monotonicity against the two existing models 
using a real-world data set. The improved hybrid model allows 
a longer prognostic time horizon over which to marshal the 
resources needed for repair and give operations personnel an 
extended window to bring other assets to cover missions that 
would otherwise be unavailable.  

1. THE OPERATIONAL NECESSITY FOR RUL 

Preventive maintenance is designed to ensure the reliability and 
safe operation of equipment between servicing. The design goal 
of the maintenance plan is that there will be no failures caused 
from fatigue, neglect, or normal wear. For example, the time 
between overhaul on the M250 C47 engine turbine section is 
2000 hours. Yet, inherent in this design, due to safety of flight, 
is the incorporation of two magnetic chip detectors. These 
sensors are installed in to detect ferrous debris in the oil 
indicative of component wear which could result in a failure. 
As a result of improper assembly, contamination, unanticipated 

loads, etc., even this highly reliable engine can fail prematurely. 
For a helicopter, the chip detector is in effect, a “on condition” 
indicator triggering an immediate and disruptive maintenance 
event.  

An online condition monitoring system can extend the 
operational readiness, reliability, and safety of the system by 
giving a longer timeline prior to a potentially failure and an 
unplanned maintenance event. As such, extending the estimate 
as to when unscheduled maintenance should be performed 
requires an accurate prognostic capability. Calculating the 
remaining useful life (RUL) allows operation and maintenance 
personnel to better schedule assets and logisticians to order long 
lead-time parts. This preemptive action helps improve asset 
availability. In addition, higher asset availability allows revenue 
to be generated through missions/operations that would 
otherwise be lost because the asset was down for maintenance. 
While several RUL techniques have been reported, this 
proposed hybrid model improves upon exiting, model-based 
RUL algorithms. The term improvement implies that the 
estimate of RUL is more consistently accurate over time 
(prognosability, monotonicity and trendability). This 
improvement was achieved using two novel ideas. 

As shown in “Contending Remaining Useful Life Algorithms” 
(Bechhoefer, Dube, 2020) three high cycle fracture mechanics 
theories were used to design RUL models. While these models 
were powerful, no single model fit the data over the entire 700 
hours of damage propagation. Dr. Kai Goebel suggested that a 
combination of models might work better. Dr. Goebel’s 
comment led to the hypothesis that fatigue damage, such as 
spalling of a bearing, gear tooth root bending, or shaft coupling 
failure, could result from a combination of degradation modes.  

Fatigue crack growth can be characterized as a Mode 1 (opening 
mode) failure (Beer, 1992), where the crack surface is forced 
directly apart. The Linear Elastic fracture mechanism 
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characterizes this type of failure model. Alternatively, in a 
Mode 2 failure model, the crack surfaces move normal to the 
crack and remain in the crack plane. Head’s theory is one such 
model that used this failure mode. Finally, in a Mode 3 model, 
the crack surface moves parallel to the crack front and remains 
in the crack plane. This mode is characterized by dissociation 
theory (Beer, 1992).  

The hypothesized improvement was to realize that complex 
components, such as gears/bearings, which have complex 
shapes, suffer from fatigue damage as a combination of failure 
modes. Hence, a better model for fatigue failure is a model that 
is a combination of Mode 1 and Mode 3 damage (as Mode 1 
over estimated damage propagation while Mode 3 
underestimated the propagation. Mode 2 was not considered, as 
its performance was worse than the Mode 3 model, see 
Bechhoefer, Dube, 2020). Clearly, an improved damage model 
allows for a better prediction of crack growth. This, in turn, 
allows for an improved estimate of the RUL. 

The other improvement is an observation that while crack 
growth is nonlinear (e.g., the rate of change of a crack length 
grows faster as the crack length increases), the RUL is linear. 
That is, for any relatively constant load, the RUL rate of change 
(dRUL/dt) is approximately -1 when the model was converged 
(for both Mode 1 and Mode 3). For example, if the life of a 
component is given as 100 hours, after one hour of usage, the 
life should logically be 99 hours. This seemingly obvious 
observation (as measured in Bechhoefer and Dube 2020) can be 
used mathematically to improve the estimate of the RUL 
calculation as it is an extra observable when using state 
reconstruction algorithms. 

2. BACKGROUND ON THE HYBRID MODEL 

For many vehicles (especially in aerospace), the manufacture 
determines the inspection and overhaul schedule. Installation of 
condition monitoring equipment (such as Health and Usage 
Monitoring Systems – HUMS) via a supplement type certificate 
(STC), will not change these maintenance intervals. The goal of 
HUMS in these applications is to reduce unscheduled 
maintenance while improving safety and availability.  

In general, helicopters have inspections every 50 hours of flight 
time, with heavier maintenance conducted at 100 and 300 hours. 
Aircraft also have annual inspections. Typically, the number of 
hours flown per month is dependent on the operator's mission. 
It is not surprising to see fleets that average 300 to 500 hours 
per annum. Of course, for operators that fly inspection 
(inventorying power poles and examining power lines for 
encroachment) or other seasonal missions (firefighting, by 
dropping water, or delivering man/material to a fire), these 
aircraft can fly as much as 25 to 40 hours per week.  

The importance of having an accurate RUL calculation is to 
support and supplement the already established maintenance 
practices. HUMS with an RUL capability allows the fleet 
operation manager to order parts, schedule the right personnel 
to perform maintenance. This turns an unscheduled 
maintenance action into scheduled maintenance. For example, 

as in figure 1, this M250 No. 5 bearing has been trending for 50 
hours. The operations manager knows that in 70 hours, this 
engine bearing will need to be replaced. During this 70-hour 
interval, the aircraft and engine manufacture can be notified. 
The replacement engine can be ordered and at the convivence 
of the helicopter operator (e.g., while performing other 
scheduled maintenance), the repair can be performed 
opportunistically with other existing maintenance 
requirements. This prevents a potential unscheduled 
maintenance activity in the future, which improve availability, 
and hence, revenue. 

For the light helicopter market or cases where the aircraft has 
no extended overwater flights, HUMS provides logistic support 
to improve availability (e.g., allowing the generation of revenue 
flights) rather than the safety of flight requirement. The aircraft, 
having been type certificated and adequately maintained, is 
inherently safe. The worst possible outcome for the bearing 
fault in figure 1 would be that the pilot sees a chips light 
(annunciator indicating metal debris in the gearbox) and is 
forced to land. As noted, a goal of HUMS is to generate a 
maintenance action before a chips light, so that this 
maintenance is done opportunistically while the aircraft is 
already down for some required scheduled inspection. 

 
Figure 1 No. 5 Engine Bearing Propagating Fault 

3. PROGNOSTICS CALCULATION OF THE RUL 

A prognostic based on a fracture mechanics model, requires 
four inputs to calculate a RUL.  

1. An estimate of the current component health. 

2. An estimate of when it is appropriate to do maintenance, 
e.g., the threshold. 

3. An estimate of the future component load. 

4. A component degradation process model takes the current 
component health, the estimated future load and calculates 
the time/cycles to when it is appropriate to do maintenance. 

HUMS typically acquires vibration data at an appropriate 
aircraft regime. An appropriate regime would be straight and 
level, at a benign flight envelope, for example, hover, 60 or 120 
knots. Because the airframe is relatively flexible, it is not 
appropriate to acquire data while the aircraft is maneuvering, as 
those maneuvering loads are transferred to the drivetrain and 
can corrupt the acquisition measurements.  
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When in a benign regime, through signal processing techniques 
based on component configuration, the HUMS can calculate 
condition indicators (CI) representative of component health. 
Ideally, these condition indicators are also proportional to the 
extent of the component damage. This allows HUMS to 
provide, effectively, a virtual inspection of the drivetrain 
components. For a review of condition monitoring algorithm, 
Vercer (2005) is an excellent reference for many common 
condition indicators. 

The estimate of when it is appropriate to do maintenance is a 
threshold-setting problem. A hypothesis testing approached has 
been adopted for this paper (Bechhoefer, 2005, 2011). In this 
paradigm, the measured set of condition indicators are used to 
provide evidence that the component is no longer good. That is, 
the CIs are used to reject the Null Hypothesis that the 
component is nominal. If the component is not nominal it is 
appropriate to perform maintenance.   

While many classification problems have been solved using 
artificial neural networks (ANN) or deep learning techniques, 
this problem is better suited to this hypothesis testing process. 
Data-driven techniques such as ANN excel in the classification 
using symmetric datasets (e.g., there is a training set of known 
nominals and known faults to train against). This is not the case 
with many condition monitoring applications, particularly, 
helicopters. Because of the helicopters’ high reliability, there 
are few, if any, training sets of know faults. Further, because of 
the large number of shafts, gears, and bearings within the 
helicopter drivetrain, it is highly unlikely that there will ever be 
a symmetric dataset for training. 

Consider just the power turbine section of the M250 engine. It 
contains five shafts (with three failure modes for each shaft), six 
gears (with at least six different failure modes) and 13 bearings 
(with, at least four failure modes, each). For a comprehensive 
and symmetric dataset, one would require five × four (one extra 
for the nominal case) shaft example, six × seven gear sets and 
13 × five bearings sets for a total of 127 different cases.  

Hypothesis test functions in the domain of asymmetric data. 
The dataset is asymmetric as most if not all the training set are 
nominal data – that is, there is data from a health gearbox on a 
fielded aircraft. In this environment, one is not concerned with 
Type II errors (missed detection) as there are so few fault 
examples to test with. Instead, we employ hypothesis testing, 
using a specified by Type I error – the probability of fault alarm. 
This is the condition customarily found in condition 
monitoring, as the vast amount of data collected is nominal and 
can be used to establish the probability density function (PDF) 
of the measured CIs.  

The difficult of asymmetric nature of helicopter data can be 
seen, for example in the Bell 407 drivetrain. This aircraft has 30 
bearings, as noted with at least four fault modes. The aircraft 
has 22 shafts and 15 gears (at least six failure modes: chip, 
crack, pitting, micro pitting, scuffing, wear). The total number 
of training cases for this gearbox would be at least 343 
conditions if approaching this as a classification problem.  

To restate, due to the high quality of the gearbox, and regular 
maintenance, failures are rare. This suggests that training sets 
would require seeded fault testing – which is not practical due 
to the large number of shafts, gears and bearing in the helicopter 
drivetrain. As such, hypothesis testing is a good option. 
Typically, enough data is needed to estimate the condition 
indicator covariance matrix and PDF, in perhaps 50 to 100 data 
points. This can represent three hours of flight time for a 
helicopter, assuming 20 to 30 acquisitions per hour 

3.1. Generation of Maintenance Appropriate Thresholds 

In the context of hypothesis test, it is observed that all condition 
indicators (CIs) have a PDF. Any operation on the CI to define 
a health index (HI) is then a function of distributions. The HI 
function in the application is the weighted norm of n CIs (e.g., 
the normalized energy of n CIs), where the weights are 
determined by the Jacobian (the inverse covariance): 

                       𝐻𝐼 = 	0.35 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙/ √𝒀!𝒀	                          (1) 

where Y is the whitened, normalized array of CIs, and critical, 
is the critical value of the test. In a hypothesis test, the critical 
value is calculated from the inverse cumulative distribution 
function (ICDF) for a given probability of false alarm. For Eq. 
(1), the ICDF is the Nakagami where h is the number of CIs in 
the array and = n, and w = h/(2-p/2)*2, see Bechhoefer 2011 for 
the proof. A normalized HI > 0.35 for a component, indicates 
that the Null Hypothesis is rejected. That is, the component is 
no longer nominal. Note however that maintenance is not 
recommended until the HI > 1. These threshold values have 
been tested numerous helicopters, wind turbines, and seeded 
fault testing on 60+ gearboxes. The level of damage for an HI 
of 1.00 is typically moderate visible damage.  

This function Eq (1) is valid if and only if the distribution (e.g., 
CIs) are independent and identical (e.g., IID). For example, for 
Gaussian distribution, subtracting the mean and dividing by the 
standard deviation will give identical Z distributions. The issue 
of ensuring independence is much more difficult.  In general, 
the correlation between CIs is non-zero. This has been 
measured on numerous tests, see Bechhoefer 2011.  

This correlation between CIs implies that for a given function 
of distributions to have a threshold that operationally meets the 
design probability of false alarm (PFA), the CIs must be 
whitened (e.g., de-correlated).  

Whiting ensures that the realized false alarm rate of a fielded 
system will be the designed PFA. Consider a thought 
experiment where the HI is the sum of two CIs (X and Y) that 
are Gaussian with s = 1. Then the standard deviation of X+Y is:  

             𝜎"#$ = 3𝜎"% + 𝜎$% + 2𝜌𝜎"𝜎$            (2) 

Here r is the correction between X and Y. If the correlation is 
near 0, the standard deviation is sqrt(2). However, if the 
correlation is nonzero (or worst case near 1) the standard 
deviation is 2. Hence, the observed PFA (which is based on the 
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HI standard deviation) of the HUMS when the data is correlated 
with will be much higher than designed. For example, if 
independence is assumed with a PFA of 10&', and in fact the X 
and Y measurements are highly corrected, the observed PFA 
would be: 3.4&(. The observed PFA would be or 388x greater 
than designed. This would result in needless maintenance and 
loss in system confidence.  

It can be shown that a whitening solution can be implemented 
using Cholesky decomposition (Bechhoefer 2011). The 
Cholesky decomposition of Hermitian, positive definite matrix 
results in A = LL*, where L is a lower triangular, and L* is its 
conjugate transpose. Thus, by definition, the inverse covariance 
is positive definite Hermitian. It then follows that if: 

                       LL* = S-1, then Y = L × CIT                         (3) 

The vector CI is the correlated CIs processed due to data 
acquisition on the aircraft, which are used for the HI calculation. 
The transformed vector Y is 1 to n independent CIs with unit 
variance (one CI representing the trivial case). The Cholesky 
decomposition, in effect, creates the square root of the inverse 
covariance. This, in turn, is analogous to dividing the CI by its 
standard deviation (as in the case of one CI). It can be shown 
that Y = L × CIT then creates the necessary independent and 
identical distributions required to calculate the critical values 
for a function of distributions. 

The critical (critical, Eq. (1)) value is taken from the ICDF for 
the HI. The CIs used are assumed to have Rayleigh-like PDFs 
(e.g., heavily tailed). For magnitude-based CIs, it can be shown 
that for the nominal case, the CI probability distribution 
function (PDF) is Rayleigh (Bechhoefer, 2005, 2011). For Gear 
CIs and Bearing CIs (where magnitudes are biased by root mean 
square (RMS)), a transform is used to make the CI more 
Rayleigh. The transform "left shifts" the CI. For example, a shift 
such that the .05 CDF (cumulative distribution function) is 
assigned to 0.0. 

Consequently, the HI function is based using the Rayleigh 
distribution. The PDF for the Rayleigh distribution uses a single 
parameter, b, defining the mean µ = b (p/2)0.5, and variance s2 
= (2 - p/2) b2.  The PDF of the Rayleigh is: x/b2exp(x/2b2).	Note 
that when applying these operations to the whitening process, 
the value for b for each CI will then be: s2 = 1, such that: 

          1.526 = 1 32 − 𝜋 2	⁄ = 	𝛽⁄                           (4) 

For the HI equation in (1), the normalized energy of the CIs, it 
can be shown that the function defines a Nakagami PDF (2011). 
As note previously, the statistics for the Nakagami are h = n, 
and w = 1/(2-p/2)×2×n, where n is the number IID CIs used in 
the HI calculation. 

4. THE RUL CALCULATION 

For this application, RUL is taken as the time when it is 
appropriate to do maintenance and not the time until the 
component fails. For aviation application, maintenance is a 
process to restore the equipment to the original design 

reliability. Worn or damaged parts have reduced reliability. 
Maintenance repairs those parts and restores the design 
reliability to the system. The concept that an HI exceeding 1 
triggers a maintenance event is complementary to existing 
maintenance practices as it is design to restore the system’s 
reliability to the manufactures design requirements. 

For an example of a critical system, the design reliability is 
typically "six-nines," e.g., the probability of failure of the part 
under design loads is less than 10&' per hour. For the damaged 
part, the reliability may be reduced to three-nines or a 
probability of failure of 10&) . Thus, the appropriateness to 
repair the faulty component can be seen as an action to restore 
the designed reliability of the system. From a maintainer 
perspective, then: 

• HI reflect the current components damage, where the 
probability of exceeding an HI of 0.35 is the PFA. 

• A warning (yellow) alert is generated when the HI is 
greater than or equal to 0.75. Therefore, maintenance 
should be planned by estimating the RUL until the HI 
is 1.0. 

• An alarm (red) alert is generated when the HI is greater 
than or equal to 1.0. Continued operations could cause 
collateral damage. 

• This threshold setting model ensures that the 
probability of false alarm is exceedingly small when 
the HI reaches 1. However, from numerous 
installations and seeded fault tests in practice, a bearing 
at HI 1 has easily seen physical damage.  

A component with a HI value does not define a probability of 
failure for the component nor that the component fails when the 
HI is 1.0. Instead, defining maintenance at an HI of 1 initiates a 
proactive policy to change operator behavior. The desire is to 
reduce cost and time associated with component failure by 
performing maintenance prior to the generations of collateral or 
cascading faults. As an example, by performing maintenance on 
a bearing before the bearing shedding extensive material, costly 
gearbox replacement can be avoided, and the reliability of the 
gearbox can be restored to its design requirements. 

Hence, the RUL is defined as the time from the current HI until 
the HI is greater than or equal to 1. 

4.1. The Linear Elastic Fracture Mechanics Model 

For many materials, such as steel used in gears and bearings, 
which are subject to tensile loading cycle, the fatigue crack 
growth is Mode 1 and can be expressed as: 

*+
*,
	= 	𝐷(Δ𝐾)-                (5) 

where  

• da/dN is the rate of change in the half crack length per 
cycle 

• D is a material constant 

• m is the crack growth exponent for steal is 4. 



 

5 

Substituting in DK:  
*+
*,
	= 	𝐷 C2𝜎(𝜋). %/ 𝛼E

-
𝑎- %/             (6) 

Inverting and integrating to get N, the number of cycles gives: 

𝑁 = ∫ 𝑎&- %/

𝐷 C2𝜎(𝜋). %/ 𝛼E
-H 𝑑𝑎+!

+"
     (7) 

By taking a as ao to get the crack growth rate, the constants 
cancel out, leaving: 

𝑁 = −𝑑𝑁
𝑑𝑎/ 𝑎0 − 𝑎1J𝑎0 𝑎1⁄ K

-
%/

𝑚
2/ − 1H         (8) 

Setting m to be 4, this gives: 

𝑁 =	−𝑑𝑁 𝑑𝑎/ × 𝑎0 × 𝑙𝑛J1 𝑎0/ K	            (9) 

For constant rate machines, such as a helicopter gearbox, N is 
proportional to time.  

We substitute the measured component health (the HI) for a0, 
as it is proportional to damage. As our rule is to perform 
maintenance when the HI is 1, Eq. (9) then define the RUL 
estimate. 

Eq (5), includes a term for strain. Strain is the cyclic load 
imparted on a component and cancels out eq (7). Inherent in 
this, is the assumes that the load at a0 is constant. In general, 
load varies with time, but on average, similar missions have 
similar load.  

For example, the torque, on average for a given mission, are 
very similar from one operation (start, mission, landing) to 
another mission. However, to account for a more aggressive 
mission, a correction factor as a percent change in mean load 
can be applied to the -dN/da term. For example, a mission that 
requires a sling load may be 10% more aggressive than a typical 
mission. The RUL for these more aggressive missions is then -
dN/da × 1.10. 

4.2. Dislocation Theory Fracture Mechanics Model  

In the case where crack loading is in the anti-plane strain (e.g., 
Mode 3), the plastic zone at the crack tip can be represented as 
a continuously distributed array of small dislocations on the 
crack plane. It is assumed that crack growth occurs when the 
accumulated plastic strain distribution at the crack tip exceeds 
some critical value and continues as this value is exceeded at 
the crack tip. The rate at which the crack grows per stress cycle 
in terms of displacement leads to:  

𝑑𝑎 = 	 +
#2$%&

'

342(
                 (10) 

This is similar to Eq. (6), with an exponent of 2. Inverting, 
integrating, and changing terms gives: 

𝑁 =	−𝑑𝑁 𝑑𝑎/ × 𝑎0 × J2𝑎1	 − 23𝑎0K    (11) 

Again, N is proportional to time and the crack length is a.  

4.3. The Combined Mode Fracture Mechanics Model 
Equations 

The health paradigm is adopted where the RUL is the time from 
the current health to and health of 1. Then, by hypothesizing 
that fatigue failure is a combination of fracture modes, one can 
combine (9) and (11) to give a hybrid fracture mechanics model 
equation of:  

𝑁 =	−𝑑𝑁 𝑑𝐻𝐼/ × 𝐻𝐼 × J−2 + 2√𝐻𝐼K   (12) 

Note that N is usually a cycle or count, but for many machines 
that operate at constant RPM (such as a helicopter), N is 
proportional to time. Note that in the mechanization of a 
solution, a0 is the current health (HI), and dN/da is the inverse 
derivative of HI (e.g., dHI/dt). Hence, the calculation of the 
derivate is an essential part of solving for the RUL. By 
assuming the central limit theorem and its implied Gaussian 
noise, an unbiased estimate of the HI and dHI/dt can be 
calculated with a Kalman filter.  

 
Figure 2  Process flow of RUL Estimation 

4.4. Calculation of RUL with Two Inputs   

Past mechanization of RUL has used state observer (for 
example, Kalman Filter, or Alpha-Beta-Gama filter) to give an 
unbiased estimate or RUL (e.g., N in Eq. (12)), and its first and 
second derivative. This hybrid model expands the measurement 
matrix to include inputs for the RUL and uses -1 as a 
measurement of the RUL derivative. As noted, this extra input, 
which has not been reported in earlier works, allows a second 
input to improve the observability of the state observer (figure 
2). 

Combining the improved RUL model using a combination (e.g., 
hybrid model) of fracture mechanics models and the use of a 
second RUL observable as -1 for dRUL/dt significantly 
improve the accuracy of the prediction early in the fault. Figure 
3 shows a comparison of models, at time -450 hours. Note that 
on this fault, which is a high-speed bearing, both the Linear 
Elastic and Dislocation models overshot ideal RUL from -600 
to -300 hours. The hybrid model is much closer to the ideal 
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RUL. This is due to the extra observable input of -1 for 
dRUL/dt. This can be seen the health indicator trend plot at 
approximately -520 hours (figure 4).  

Note the performance of the models from -300 to 50 hours. Here 
it is seen that the hybrid model compares favorably with the 
existing models. We can quantify the accuracy by looking at the 
mean and standard deviation of the error between each model 
and the ideal RUL. The ideal RUL decreases by 1 for each hour 
of usage. 

 
Figure 3 Trend Plot at -520 hours showing RUL Overshoot 

The extra observable of -1 dHI/dt stabilizes and improves the 
RUL estimate, as can be seen in figure 4. 

5. QUANTIFYING RUL PERFORMANCE 

One measure of accuracy performance is to measure the mean 
error and standard deviation of error over the period. Here we 
see that the (Table I) that both the mean and standard error of 
the RUL. This is a rather gross measure of performance, 
although it does indicate that on average, the standard error is 
lowest for the hybrid model.  

TABLE I.  STATISTICAL COMPARISON OF THREE MODELS 
Model Mean Error Std of Error 

Linear Elastic Model 2.44 hours 18.22 hours 

Dislocation Model -11.68 hours 14.00 hours 

Hybrid Model  -1.96 hours 10.72 hours 

The mean error and standard error may not adequately capture 
the dynamics and complexity in RUL over time. Therefore, a 
more satisfactory metric was given in by Dr. Coble (2010), who 
introduces the concept of prognosability, monotonicity and 
trendability as RUL performance metrics.   

 
Figure 4 Linear Elastic, Dislocation and Hybrid RUL Models 

Prognosability is usually defined as the deviation of the final 
failure values for each path divided by the mean range of the 
path. This would be exponentially weighted to give the zero to 
one scale. However, for this study, it was modified to capture 
the evolution of the RUL by taking the standard deviation of the 
RUL and dividing it by the ideal RUL value:  

𝐼6789 = 𝑒𝑥𝑝 C−𝑠𝑡𝑑(𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑	𝑅𝑈𝐿 − 𝑅𝑈𝐿) 𝑅𝑈𝐿/ E   (13) 

In this model, if the estimated RUL is close to the Ideal RUL, 
the resulting exponent is small, returning a prognosability close 
to 1. The mean prognosability was calculated from -700 hours 
to 1 hour (Figure 5). 

 
Figure 5 Prognosability of the Contending Models 

Monotonicity is usually adopted to capture the underlying 
positive or negative trend of a series of health indicators. It is 
also used to evaluate the fitness of the extracted health indicator 
for RUL prediction. In [8], monotonicity can be measured by: 
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Here, n is the number of observations in a particular history. 
The monotonicity of a series of RUL is given by the average 
difference of the fraction of positive (h+indicator) and negative (h-
indicator) derivatives for each RUL estimate.  

Alternatively, trendability is defined to indicate the degree to 
which a series of RULs have the same underlying shape. In 
Coble 2010, trendability is given by the smallest linear 
correlation across a series RUL series as, 

                    (15) 
Initially, trendability was characterized by comparing the 
fraction of positive first and second derivatives in a series of 
health indicators. It should have a different functional form 
compared with Eq. (14). Even though Eq. (15) is an available 
measure of trendability, it cannot form the trend over the time 
horizon of the RUL, as the RUL prediction is a time-series 
regression problem. In consideration of the trendability 
definition, we propose a new measure for trendability as,  

                                                            
(16) 

Where TW means the size of a given time window. Hi*TW is the 
average value of RUL in the ith time window. Hi*TW is then the 
corresponding values in the adjacent time window. NTW 
indicates the total number of time windows. The numerator in 
Eq. (16) indicates the number of negative values from the 
comparison of average health indicators in each two adjacent 
time windows among NTW. 

The performance metrics (prognosability, monotonicity and 
trendability) compare the three different RUL extracted from 
the contending models. The results are listed in Table 2. Here 
we see that the prognosability, monotonicity and trendability 
from the hybrid method shows better performance than the 
linear elastic or dislocation methods. This supports the 
hypothesis that for complex shaped components the failure 
propagation is some combination of Mode 1 and 3 stresses. The 
result is that the RUL from the hybrid method is more 
monotonic and trendable, and hence, higher accuracy.  

Table II. Comparison the RUL performance (prognosability, 
monotonicity, and trendability) of different models 

MODLE HI from 
linear elastic 
method 

HI from 
dislocation 
method 

HI from 
hybrid 
method 

PROGNOSABILITY 0.8826 0.9095 0.9219 

MONOTONICITY 0.5647 0.5528 0.8495 

TRENDABILITY 0.7857 0.7810 0.9286 

From Eq. (16), the trendability value is related to the time 
window. In Table II, the time window is set to 20. To stress the 
variation impacted by the time window, the time window is 
changed from 10 hours to 200 by 10 increments in each step; 
the results are shown in Figure 6. As can be seen, the hybrid 

method always shows a higher trendability value compared 
with the contending methods. 

 
Figure 6 Trendability of Contending RUL Models 

6. CONCLUSION  

Presented is a physics-based model of a high cycle fatigue 
remaining useful life (RUL) algorithm. This model-based 
approach has the advantage of not needing extensive training 
from exemplars/fault data sets, as it is based on the relationship 
between processes noise of a nominal component and the rate 
of change of component over time. Three models were 
compared: the linear elastic model, a dislocation theory-based 
model, and a hybrid model, which combines both the linear 
elastics and dislocation model features. It was hypothesized that 
due to the complex shape of the component (e.g., a 
gears/bearing) that fractures due to high cycle fatigue have 
multiple propagation modes (Mode 1 and Mode 3). Further, it 
was hypothesized that the rate of change of the RUL should be 
-1 (e.g., the RUL decrements by one hour for each hour of life 
that is consumed). The second assumptions allow -1 to be used 
a as measurement the Kalman filter, increasing the state 
observability. This in improved the performance of the RUL 
calculation. 

Using prognosability, monotonicity and trendability as 
accuracy metrics, the performance of these models’ RUL was 
compared. 

It was found that the hybrid model (combination of the linear 
elastic and dislocation theory models, with a secondary 
observable of -1 as a measurement) gave a much better estimate 
of RUL, especially during the initial fault propagation. 
Furthermore, as the RUL decreases, the extra observable 
reduces the standard deviation of the RUL estimate over other 
models and improves both the monotonicity and trendability of 
the RUL. This improved estimate and reduced variance allow 
maintainer and operators to schedule their assets better to 
improve availability and increase revenue. 
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